![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hashnzfz | Structured version Visualization version GIF version |
Description: Special case of hashdvds 16707: the count of multiples in nℤ restricted to an interval. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
hashnzfz.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
hashnzfz.j | ⊢ (𝜑 → 𝐽 ∈ ℤ) |
hashnzfz.k | ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘(𝐽 − 1))) |
Ref | Expression |
---|---|
hashnzfz | ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashnzfz.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
2 | hashnzfz.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ ℤ) | |
3 | hashnzfz.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘(𝐽 − 1))) | |
4 | 0zd 12569 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
5 | 1, 2, 3, 4 | hashdvds 16707 | . 2 ⊢ (𝜑 → (♯‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = ((⌊‘((𝐾 − 0) / 𝑁)) − (⌊‘(((𝐽 − 1) − 0) / 𝑁)))) |
6 | elfzelz 13500 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝐽...𝐾) → 𝑥 ∈ ℤ) | |
7 | 6 | zcnd 12666 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐽...𝐾) → 𝑥 ∈ ℂ) |
8 | 7 | subid1d 11559 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽...𝐾) → (𝑥 − 0) = 𝑥) |
9 | 8 | breq2d 5160 | . . . . . 6 ⊢ (𝑥 ∈ (𝐽...𝐾) → (𝑁 ∥ (𝑥 − 0) ↔ 𝑁 ∥ 𝑥)) |
10 | 9 | rabbiia 3436 | . . . . 5 ⊢ {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)} = {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ 𝑥} |
11 | dfrab3 4309 | . . . . 5 ⊢ {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ 𝑥} = ((𝐽...𝐾) ∩ {𝑥 ∣ 𝑁 ∥ 𝑥}) | |
12 | reldvds 43064 | . . . . . . . 8 ⊢ Rel ∥ | |
13 | relimasn 6083 | . . . . . . . 8 ⊢ (Rel ∥ → ( ∥ “ {𝑁}) = {𝑥 ∣ 𝑁 ∥ 𝑥}) | |
14 | 12, 13 | ax-mp 5 | . . . . . . 7 ⊢ ( ∥ “ {𝑁}) = {𝑥 ∣ 𝑁 ∥ 𝑥} |
15 | 14 | ineq2i 4209 | . . . . . 6 ⊢ ((𝐽...𝐾) ∩ ( ∥ “ {𝑁})) = ((𝐽...𝐾) ∩ {𝑥 ∣ 𝑁 ∥ 𝑥}) |
16 | incom 4201 | . . . . . 6 ⊢ ((𝐽...𝐾) ∩ ( ∥ “ {𝑁})) = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾)) | |
17 | 15, 16 | eqtr3i 2762 | . . . . 5 ⊢ ((𝐽...𝐾) ∩ {𝑥 ∣ 𝑁 ∥ 𝑥}) = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾)) |
18 | 10, 11, 17 | 3eqtri 2764 | . . . 4 ⊢ {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)} = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾)) |
19 | 18 | fveq2i 6894 | . . 3 ⊢ (♯‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) |
20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → (♯‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾)))) |
21 | eluzelz 12831 | . . . . . . 7 ⊢ (𝐾 ∈ (ℤ≥‘(𝐽 − 1)) → 𝐾 ∈ ℤ) | |
22 | 3, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
23 | 22 | zcnd 12666 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
24 | 23 | subid1d 11559 | . . . 4 ⊢ (𝜑 → (𝐾 − 0) = 𝐾) |
25 | 24 | fvoveq1d 7430 | . . 3 ⊢ (𝜑 → (⌊‘((𝐾 − 0) / 𝑁)) = (⌊‘(𝐾 / 𝑁))) |
26 | peano2zm 12604 | . . . . . . 7 ⊢ (𝐽 ∈ ℤ → (𝐽 − 1) ∈ ℤ) | |
27 | 2, 26 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐽 − 1) ∈ ℤ) |
28 | 27 | zcnd 12666 | . . . . 5 ⊢ (𝜑 → (𝐽 − 1) ∈ ℂ) |
29 | 28 | subid1d 11559 | . . . 4 ⊢ (𝜑 → ((𝐽 − 1) − 0) = (𝐽 − 1)) |
30 | 29 | fvoveq1d 7430 | . . 3 ⊢ (𝜑 → (⌊‘(((𝐽 − 1) − 0) / 𝑁)) = (⌊‘((𝐽 − 1) / 𝑁))) |
31 | 25, 30 | oveq12d 7426 | . 2 ⊢ (𝜑 → ((⌊‘((𝐾 − 0) / 𝑁)) − (⌊‘(((𝐽 − 1) − 0) / 𝑁))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁)))) |
32 | 5, 20, 31 | 3eqtr3d 2780 | 1 ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {cab 2709 {crab 3432 ∩ cin 3947 {csn 4628 class class class wbr 5148 “ cima 5679 Rel wrel 5681 ‘cfv 6543 (class class class)co 7408 0cc0 11109 1c1 11110 − cmin 11443 / cdiv 11870 ℕcn 12211 ℤcz 12557 ℤ≥cuz 12821 ...cfz 13483 ⌊cfl 13754 ♯chash 14289 ∥ cdvds 16196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-fl 13756 df-hash 14290 df-dvds 16197 |
This theorem is referenced by: hashnzfz2 43070 hashnzfzclim 43071 |
Copyright terms: Public domain | W3C validator |