| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hashnzfz | Structured version Visualization version GIF version | ||
| Description: Special case of hashdvds 16745: the count of multiples in nℤ restricted to an interval. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| hashnzfz.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| hashnzfz.j | ⊢ (𝜑 → 𝐽 ∈ ℤ) |
| hashnzfz.k | ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘(𝐽 − 1))) |
| Ref | Expression |
|---|---|
| hashnzfz | ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashnzfz.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 2 | hashnzfz.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ ℤ) | |
| 3 | hashnzfz.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘(𝐽 − 1))) | |
| 4 | 0zd 12541 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 5 | 1, 2, 3, 4 | hashdvds 16745 | . 2 ⊢ (𝜑 → (♯‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = ((⌊‘((𝐾 − 0) / 𝑁)) − (⌊‘(((𝐽 − 1) − 0) / 𝑁)))) |
| 6 | elfzelz 13485 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝐽...𝐾) → 𝑥 ∈ ℤ) | |
| 7 | 6 | zcnd 12639 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐽...𝐾) → 𝑥 ∈ ℂ) |
| 8 | 7 | subid1d 11522 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽...𝐾) → (𝑥 − 0) = 𝑥) |
| 9 | 8 | breq2d 5119 | . . . . . 6 ⊢ (𝑥 ∈ (𝐽...𝐾) → (𝑁 ∥ (𝑥 − 0) ↔ 𝑁 ∥ 𝑥)) |
| 10 | 9 | rabbiia 3409 | . . . . 5 ⊢ {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)} = {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ 𝑥} |
| 11 | dfrab3 4282 | . . . . 5 ⊢ {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ 𝑥} = ((𝐽...𝐾) ∩ {𝑥 ∣ 𝑁 ∥ 𝑥}) | |
| 12 | reldvds 44304 | . . . . . . . 8 ⊢ Rel ∥ | |
| 13 | relimasn 6056 | . . . . . . . 8 ⊢ (Rel ∥ → ( ∥ “ {𝑁}) = {𝑥 ∣ 𝑁 ∥ 𝑥}) | |
| 14 | 12, 13 | ax-mp 5 | . . . . . . 7 ⊢ ( ∥ “ {𝑁}) = {𝑥 ∣ 𝑁 ∥ 𝑥} |
| 15 | 14 | ineq2i 4180 | . . . . . 6 ⊢ ((𝐽...𝐾) ∩ ( ∥ “ {𝑁})) = ((𝐽...𝐾) ∩ {𝑥 ∣ 𝑁 ∥ 𝑥}) |
| 16 | incom 4172 | . . . . . 6 ⊢ ((𝐽...𝐾) ∩ ( ∥ “ {𝑁})) = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾)) | |
| 17 | 15, 16 | eqtr3i 2754 | . . . . 5 ⊢ ((𝐽...𝐾) ∩ {𝑥 ∣ 𝑁 ∥ 𝑥}) = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾)) |
| 18 | 10, 11, 17 | 3eqtri 2756 | . . . 4 ⊢ {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)} = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾)) |
| 19 | 18 | fveq2i 6861 | . . 3 ⊢ (♯‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) |
| 20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → (♯‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾)))) |
| 21 | eluzelz 12803 | . . . . . . 7 ⊢ (𝐾 ∈ (ℤ≥‘(𝐽 − 1)) → 𝐾 ∈ ℤ) | |
| 22 | 3, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 23 | 22 | zcnd 12639 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 24 | 23 | subid1d 11522 | . . . 4 ⊢ (𝜑 → (𝐾 − 0) = 𝐾) |
| 25 | 24 | fvoveq1d 7409 | . . 3 ⊢ (𝜑 → (⌊‘((𝐾 − 0) / 𝑁)) = (⌊‘(𝐾 / 𝑁))) |
| 26 | peano2zm 12576 | . . . . . . 7 ⊢ (𝐽 ∈ ℤ → (𝐽 − 1) ∈ ℤ) | |
| 27 | 2, 26 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐽 − 1) ∈ ℤ) |
| 28 | 27 | zcnd 12639 | . . . . 5 ⊢ (𝜑 → (𝐽 − 1) ∈ ℂ) |
| 29 | 28 | subid1d 11522 | . . . 4 ⊢ (𝜑 → ((𝐽 − 1) − 0) = (𝐽 − 1)) |
| 30 | 29 | fvoveq1d 7409 | . . 3 ⊢ (𝜑 → (⌊‘(((𝐽 − 1) − 0) / 𝑁)) = (⌊‘((𝐽 − 1) / 𝑁))) |
| 31 | 25, 30 | oveq12d 7405 | . 2 ⊢ (𝜑 → ((⌊‘((𝐾 − 0) / 𝑁)) − (⌊‘(((𝐽 − 1) − 0) / 𝑁))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁)))) |
| 32 | 5, 20, 31 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2707 {crab 3405 ∩ cin 3913 {csn 4589 class class class wbr 5107 “ cima 5641 Rel wrel 5643 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 − cmin 11405 / cdiv 11835 ℕcn 12186 ℤcz 12529 ℤ≥cuz 12793 ...cfz 13468 ⌊cfl 13752 ♯chash 14295 ∥ cdvds 16222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fl 13754 df-hash 14296 df-dvds 16223 |
| This theorem is referenced by: hashnzfz2 44310 hashnzfzclim 44311 |
| Copyright terms: Public domain | W3C validator |