Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashnzfz Structured version   Visualization version   GIF version

Theorem hashnzfz 42692
Description: Special case of hashdvds 16655: the count of multiples in nℤ restricted to an interval. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
hashnzfz.n (𝜑𝑁 ∈ ℕ)
hashnzfz.j (𝜑𝐽 ∈ ℤ)
hashnzfz.k (𝜑𝐾 ∈ (ℤ‘(𝐽 − 1)))
Assertion
Ref Expression
hashnzfz (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁))))

Proof of Theorem hashnzfz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hashnzfz.n . . 3 (𝜑𝑁 ∈ ℕ)
2 hashnzfz.j . . 3 (𝜑𝐽 ∈ ℤ)
3 hashnzfz.k . . 3 (𝜑𝐾 ∈ (ℤ‘(𝐽 − 1)))
4 0zd 12519 . . 3 (𝜑 → 0 ∈ ℤ)
51, 2, 3, 4hashdvds 16655 . 2 (𝜑 → (♯‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = ((⌊‘((𝐾 − 0) / 𝑁)) − (⌊‘(((𝐽 − 1) − 0) / 𝑁))))
6 elfzelz 13450 . . . . . . . . 9 (𝑥 ∈ (𝐽...𝐾) → 𝑥 ∈ ℤ)
76zcnd 12616 . . . . . . . 8 (𝑥 ∈ (𝐽...𝐾) → 𝑥 ∈ ℂ)
87subid1d 11509 . . . . . . 7 (𝑥 ∈ (𝐽...𝐾) → (𝑥 − 0) = 𝑥)
98breq2d 5121 . . . . . 6 (𝑥 ∈ (𝐽...𝐾) → (𝑁 ∥ (𝑥 − 0) ↔ 𝑁𝑥))
109rabbiia 3410 . . . . 5 {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)} = {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁𝑥}
11 dfrab3 4273 . . . . 5 {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁𝑥} = ((𝐽...𝐾) ∩ {𝑥𝑁𝑥})
12 reldvds 42687 . . . . . . . 8 Rel ∥
13 relimasn 6040 . . . . . . . 8 (Rel ∥ → ( ∥ “ {𝑁}) = {𝑥𝑁𝑥})
1412, 13ax-mp 5 . . . . . . 7 ( ∥ “ {𝑁}) = {𝑥𝑁𝑥}
1514ineq2i 4173 . . . . . 6 ((𝐽...𝐾) ∩ ( ∥ “ {𝑁})) = ((𝐽...𝐾) ∩ {𝑥𝑁𝑥})
16 incom 4165 . . . . . 6 ((𝐽...𝐾) ∩ ( ∥ “ {𝑁})) = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾))
1715, 16eqtr3i 2763 . . . . 5 ((𝐽...𝐾) ∩ {𝑥𝑁𝑥}) = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾))
1810, 11, 173eqtri 2765 . . . 4 {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)} = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾))
1918fveq2i 6849 . . 3 (♯‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾)))
2019a1i 11 . 2 (𝜑 → (♯‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))))
21 eluzelz 12781 . . . . . . 7 (𝐾 ∈ (ℤ‘(𝐽 − 1)) → 𝐾 ∈ ℤ)
223, 21syl 17 . . . . . 6 (𝜑𝐾 ∈ ℤ)
2322zcnd 12616 . . . . 5 (𝜑𝐾 ∈ ℂ)
2423subid1d 11509 . . . 4 (𝜑 → (𝐾 − 0) = 𝐾)
2524fvoveq1d 7383 . . 3 (𝜑 → (⌊‘((𝐾 − 0) / 𝑁)) = (⌊‘(𝐾 / 𝑁)))
26 peano2zm 12554 . . . . . . 7 (𝐽 ∈ ℤ → (𝐽 − 1) ∈ ℤ)
272, 26syl 17 . . . . . 6 (𝜑 → (𝐽 − 1) ∈ ℤ)
2827zcnd 12616 . . . . 5 (𝜑 → (𝐽 − 1) ∈ ℂ)
2928subid1d 11509 . . . 4 (𝜑 → ((𝐽 − 1) − 0) = (𝐽 − 1))
3029fvoveq1d 7383 . . 3 (𝜑 → (⌊‘(((𝐽 − 1) − 0) / 𝑁)) = (⌊‘((𝐽 − 1) / 𝑁)))
3125, 30oveq12d 7379 . 2 (𝜑 → ((⌊‘((𝐾 − 0) / 𝑁)) − (⌊‘(((𝐽 − 1) − 0) / 𝑁))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁))))
325, 20, 313eqtr3d 2781 1 (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  {cab 2710  {crab 3406  cin 3913  {csn 4590   class class class wbr 5109  cima 5640  Rel wrel 5642  cfv 6500  (class class class)co 7361  0cc0 11059  1c1 11060  cmin 11393   / cdiv 11820  cn 12161  cz 12507  cuz 12771  ...cfz 13433  cfl 13704  chash 14239  cdvds 16144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-pre-sup 11137
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-sup 9386  df-inf 9387  df-card 9883  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-div 11821  df-nn 12162  df-n0 12422  df-z 12508  df-uz 12772  df-fz 13434  df-fl 13706  df-hash 14240  df-dvds 16145
This theorem is referenced by:  hashnzfz2  42693  hashnzfzclim  42694
  Copyright terms: Public domain W3C validator