![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hashnzfz | Structured version Visualization version GIF version |
Description: Special case of hashdvds 16747: the count of multiples in nℤ restricted to an interval. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
hashnzfz.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
hashnzfz.j | ⊢ (𝜑 → 𝐽 ∈ ℤ) |
hashnzfz.k | ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘(𝐽 − 1))) |
Ref | Expression |
---|---|
hashnzfz | ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashnzfz.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
2 | hashnzfz.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ ℤ) | |
3 | hashnzfz.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘(𝐽 − 1))) | |
4 | 0zd 12603 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
5 | 1, 2, 3, 4 | hashdvds 16747 | . 2 ⊢ (𝜑 → (♯‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = ((⌊‘((𝐾 − 0) / 𝑁)) − (⌊‘(((𝐽 − 1) − 0) / 𝑁)))) |
6 | elfzelz 13536 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝐽...𝐾) → 𝑥 ∈ ℤ) | |
7 | 6 | zcnd 12700 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐽...𝐾) → 𝑥 ∈ ℂ) |
8 | 7 | subid1d 11592 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽...𝐾) → (𝑥 − 0) = 𝑥) |
9 | 8 | breq2d 5161 | . . . . . 6 ⊢ (𝑥 ∈ (𝐽...𝐾) → (𝑁 ∥ (𝑥 − 0) ↔ 𝑁 ∥ 𝑥)) |
10 | 9 | rabbiia 3422 | . . . . 5 ⊢ {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)} = {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ 𝑥} |
11 | dfrab3 4308 | . . . . 5 ⊢ {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ 𝑥} = ((𝐽...𝐾) ∩ {𝑥 ∣ 𝑁 ∥ 𝑥}) | |
12 | reldvds 43891 | . . . . . . . 8 ⊢ Rel ∥ | |
13 | relimasn 6089 | . . . . . . . 8 ⊢ (Rel ∥ → ( ∥ “ {𝑁}) = {𝑥 ∣ 𝑁 ∥ 𝑥}) | |
14 | 12, 13 | ax-mp 5 | . . . . . . 7 ⊢ ( ∥ “ {𝑁}) = {𝑥 ∣ 𝑁 ∥ 𝑥} |
15 | 14 | ineq2i 4207 | . . . . . 6 ⊢ ((𝐽...𝐾) ∩ ( ∥ “ {𝑁})) = ((𝐽...𝐾) ∩ {𝑥 ∣ 𝑁 ∥ 𝑥}) |
16 | incom 4199 | . . . . . 6 ⊢ ((𝐽...𝐾) ∩ ( ∥ “ {𝑁})) = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾)) | |
17 | 15, 16 | eqtr3i 2755 | . . . . 5 ⊢ ((𝐽...𝐾) ∩ {𝑥 ∣ 𝑁 ∥ 𝑥}) = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾)) |
18 | 10, 11, 17 | 3eqtri 2757 | . . . 4 ⊢ {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)} = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾)) |
19 | 18 | fveq2i 6899 | . . 3 ⊢ (♯‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) |
20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → (♯‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾)))) |
21 | eluzelz 12865 | . . . . . . 7 ⊢ (𝐾 ∈ (ℤ≥‘(𝐽 − 1)) → 𝐾 ∈ ℤ) | |
22 | 3, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
23 | 22 | zcnd 12700 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
24 | 23 | subid1d 11592 | . . . 4 ⊢ (𝜑 → (𝐾 − 0) = 𝐾) |
25 | 24 | fvoveq1d 7441 | . . 3 ⊢ (𝜑 → (⌊‘((𝐾 − 0) / 𝑁)) = (⌊‘(𝐾 / 𝑁))) |
26 | peano2zm 12638 | . . . . . . 7 ⊢ (𝐽 ∈ ℤ → (𝐽 − 1) ∈ ℤ) | |
27 | 2, 26 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐽 − 1) ∈ ℤ) |
28 | 27 | zcnd 12700 | . . . . 5 ⊢ (𝜑 → (𝐽 − 1) ∈ ℂ) |
29 | 28 | subid1d 11592 | . . . 4 ⊢ (𝜑 → ((𝐽 − 1) − 0) = (𝐽 − 1)) |
30 | 29 | fvoveq1d 7441 | . . 3 ⊢ (𝜑 → (⌊‘(((𝐽 − 1) − 0) / 𝑁)) = (⌊‘((𝐽 − 1) / 𝑁))) |
31 | 25, 30 | oveq12d 7437 | . 2 ⊢ (𝜑 → ((⌊‘((𝐾 − 0) / 𝑁)) − (⌊‘(((𝐽 − 1) − 0) / 𝑁))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁)))) |
32 | 5, 20, 31 | 3eqtr3d 2773 | 1 ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {cab 2702 {crab 3418 ∩ cin 3943 {csn 4630 class class class wbr 5149 “ cima 5681 Rel wrel 5683 ‘cfv 6549 (class class class)co 7419 0cc0 11140 1c1 11141 − cmin 11476 / cdiv 11903 ℕcn 12245 ℤcz 12591 ℤ≥cuz 12855 ...cfz 13519 ⌊cfl 13791 ♯chash 14325 ∥ cdvds 16234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-inf 9468 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-n0 12506 df-z 12592 df-uz 12856 df-fz 13520 df-fl 13793 df-hash 14326 df-dvds 16235 |
This theorem is referenced by: hashnzfz2 43897 hashnzfzclim 43898 |
Copyright terms: Public domain | W3C validator |