Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashnzfz Structured version   Visualization version   GIF version

Theorem hashnzfz 41920
Description: Special case of hashdvds 16487: the count of multiples in nℤ restricted to an interval. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
hashnzfz.n (𝜑𝑁 ∈ ℕ)
hashnzfz.j (𝜑𝐽 ∈ ℤ)
hashnzfz.k (𝜑𝐾 ∈ (ℤ‘(𝐽 − 1)))
Assertion
Ref Expression
hashnzfz (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁))))

Proof of Theorem hashnzfz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hashnzfz.n . . 3 (𝜑𝑁 ∈ ℕ)
2 hashnzfz.j . . 3 (𝜑𝐽 ∈ ℤ)
3 hashnzfz.k . . 3 (𝜑𝐾 ∈ (ℤ‘(𝐽 − 1)))
4 0zd 12342 . . 3 (𝜑 → 0 ∈ ℤ)
51, 2, 3, 4hashdvds 16487 . 2 (𝜑 → (♯‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = ((⌊‘((𝐾 − 0) / 𝑁)) − (⌊‘(((𝐽 − 1) − 0) / 𝑁))))
6 elfzelz 13267 . . . . . . . . 9 (𝑥 ∈ (𝐽...𝐾) → 𝑥 ∈ ℤ)
76zcnd 12438 . . . . . . . 8 (𝑥 ∈ (𝐽...𝐾) → 𝑥 ∈ ℂ)
87subid1d 11332 . . . . . . 7 (𝑥 ∈ (𝐽...𝐾) → (𝑥 − 0) = 𝑥)
98breq2d 5091 . . . . . 6 (𝑥 ∈ (𝐽...𝐾) → (𝑁 ∥ (𝑥 − 0) ↔ 𝑁𝑥))
109rabbiia 3405 . . . . 5 {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)} = {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁𝑥}
11 dfrab3 4249 . . . . 5 {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁𝑥} = ((𝐽...𝐾) ∩ {𝑥𝑁𝑥})
12 reldvds 41915 . . . . . . . 8 Rel ∥
13 relimasn 5991 . . . . . . . 8 (Rel ∥ → ( ∥ “ {𝑁}) = {𝑥𝑁𝑥})
1412, 13ax-mp 5 . . . . . . 7 ( ∥ “ {𝑁}) = {𝑥𝑁𝑥}
1514ineq2i 4149 . . . . . 6 ((𝐽...𝐾) ∩ ( ∥ “ {𝑁})) = ((𝐽...𝐾) ∩ {𝑥𝑁𝑥})
16 incom 4140 . . . . . 6 ((𝐽...𝐾) ∩ ( ∥ “ {𝑁})) = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾))
1715, 16eqtr3i 2770 . . . . 5 ((𝐽...𝐾) ∩ {𝑥𝑁𝑥}) = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾))
1810, 11, 173eqtri 2772 . . . 4 {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)} = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾))
1918fveq2i 6774 . . 3 (♯‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾)))
2019a1i 11 . 2 (𝜑 → (♯‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))))
21 eluzelz 12603 . . . . . . 7 (𝐾 ∈ (ℤ‘(𝐽 − 1)) → 𝐾 ∈ ℤ)
223, 21syl 17 . . . . . 6 (𝜑𝐾 ∈ ℤ)
2322zcnd 12438 . . . . 5 (𝜑𝐾 ∈ ℂ)
2423subid1d 11332 . . . 4 (𝜑 → (𝐾 − 0) = 𝐾)
2524fvoveq1d 7294 . . 3 (𝜑 → (⌊‘((𝐾 − 0) / 𝑁)) = (⌊‘(𝐾 / 𝑁)))
26 peano2zm 12374 . . . . . . 7 (𝐽 ∈ ℤ → (𝐽 − 1) ∈ ℤ)
272, 26syl 17 . . . . . 6 (𝜑 → (𝐽 − 1) ∈ ℤ)
2827zcnd 12438 . . . . 5 (𝜑 → (𝐽 − 1) ∈ ℂ)
2928subid1d 11332 . . . 4 (𝜑 → ((𝐽 − 1) − 0) = (𝐽 − 1))
3029fvoveq1d 7294 . . 3 (𝜑 → (⌊‘(((𝐽 − 1) − 0) / 𝑁)) = (⌊‘((𝐽 − 1) / 𝑁)))
3125, 30oveq12d 7290 . 2 (𝜑 → ((⌊‘((𝐾 − 0) / 𝑁)) − (⌊‘(((𝐽 − 1) − 0) / 𝑁))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁))))
325, 20, 313eqtr3d 2788 1 (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  {cab 2717  {crab 3070  cin 3891  {csn 4567   class class class wbr 5079  cima 5593  Rel wrel 5595  cfv 6432  (class class class)co 7272  0cc0 10882  1c1 10883  cmin 11216   / cdiv 11643  cn 11984  cz 12330  cuz 12593  ...cfz 13250  cfl 13521  chash 14055  cdvds 15974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959  ax-pre-sup 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-om 7708  df-1st 7825  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-er 8490  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-sup 9189  df-inf 9190  df-card 9708  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-div 11644  df-nn 11985  df-n0 12245  df-z 12331  df-uz 12594  df-fz 13251  df-fl 13523  df-hash 14056  df-dvds 15975
This theorem is referenced by:  hashnzfz2  41921  hashnzfzclim  41922
  Copyright terms: Public domain W3C validator