Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashnzfz Structured version   Visualization version   GIF version

Theorem hashnzfz 44303
Description: Special case of hashdvds 16686: the count of multiples in nℤ restricted to an interval. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
hashnzfz.n (𝜑𝑁 ∈ ℕ)
hashnzfz.j (𝜑𝐽 ∈ ℤ)
hashnzfz.k (𝜑𝐾 ∈ (ℤ‘(𝐽 − 1)))
Assertion
Ref Expression
hashnzfz (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁))))

Proof of Theorem hashnzfz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hashnzfz.n . . 3 (𝜑𝑁 ∈ ℕ)
2 hashnzfz.j . . 3 (𝜑𝐽 ∈ ℤ)
3 hashnzfz.k . . 3 (𝜑𝐾 ∈ (ℤ‘(𝐽 − 1)))
4 0zd 12483 . . 3 (𝜑 → 0 ∈ ℤ)
51, 2, 3, 4hashdvds 16686 . 2 (𝜑 → (♯‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = ((⌊‘((𝐾 − 0) / 𝑁)) − (⌊‘(((𝐽 − 1) − 0) / 𝑁))))
6 elfzelz 13427 . . . . . . . . 9 (𝑥 ∈ (𝐽...𝐾) → 𝑥 ∈ ℤ)
76zcnd 12581 . . . . . . . 8 (𝑥 ∈ (𝐽...𝐾) → 𝑥 ∈ ℂ)
87subid1d 11464 . . . . . . 7 (𝑥 ∈ (𝐽...𝐾) → (𝑥 − 0) = 𝑥)
98breq2d 5104 . . . . . 6 (𝑥 ∈ (𝐽...𝐾) → (𝑁 ∥ (𝑥 − 0) ↔ 𝑁𝑥))
109rabbiia 3398 . . . . 5 {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)} = {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁𝑥}
11 dfrab3 4270 . . . . 5 {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁𝑥} = ((𝐽...𝐾) ∩ {𝑥𝑁𝑥})
12 reldvds 44298 . . . . . . . 8 Rel ∥
13 relimasn 6036 . . . . . . . 8 (Rel ∥ → ( ∥ “ {𝑁}) = {𝑥𝑁𝑥})
1412, 13ax-mp 5 . . . . . . 7 ( ∥ “ {𝑁}) = {𝑥𝑁𝑥}
1514ineq2i 4168 . . . . . 6 ((𝐽...𝐾) ∩ ( ∥ “ {𝑁})) = ((𝐽...𝐾) ∩ {𝑥𝑁𝑥})
16 incom 4160 . . . . . 6 ((𝐽...𝐾) ∩ ( ∥ “ {𝑁})) = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾))
1715, 16eqtr3i 2754 . . . . 5 ((𝐽...𝐾) ∩ {𝑥𝑁𝑥}) = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾))
1810, 11, 173eqtri 2756 . . . 4 {𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)} = (( ∥ “ {𝑁}) ∩ (𝐽...𝐾))
1918fveq2i 6825 . . 3 (♯‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾)))
2019a1i 11 . 2 (𝜑 → (♯‘{𝑥 ∈ (𝐽...𝐾) ∣ 𝑁 ∥ (𝑥 − 0)}) = (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))))
21 eluzelz 12745 . . . . . . 7 (𝐾 ∈ (ℤ‘(𝐽 − 1)) → 𝐾 ∈ ℤ)
223, 21syl 17 . . . . . 6 (𝜑𝐾 ∈ ℤ)
2322zcnd 12581 . . . . 5 (𝜑𝐾 ∈ ℂ)
2423subid1d 11464 . . . 4 (𝜑 → (𝐾 − 0) = 𝐾)
2524fvoveq1d 7371 . . 3 (𝜑 → (⌊‘((𝐾 − 0) / 𝑁)) = (⌊‘(𝐾 / 𝑁)))
26 peano2zm 12518 . . . . . . 7 (𝐽 ∈ ℤ → (𝐽 − 1) ∈ ℤ)
272, 26syl 17 . . . . . 6 (𝜑 → (𝐽 − 1) ∈ ℤ)
2827zcnd 12581 . . . . 5 (𝜑 → (𝐽 − 1) ∈ ℂ)
2928subid1d 11464 . . . 4 (𝜑 → ((𝐽 − 1) − 0) = (𝐽 − 1))
3029fvoveq1d 7371 . . 3 (𝜑 → (⌊‘(((𝐽 − 1) − 0) / 𝑁)) = (⌊‘((𝐽 − 1) / 𝑁)))
3125, 30oveq12d 7367 . 2 (𝜑 → ((⌊‘((𝐾 − 0) / 𝑁)) − (⌊‘(((𝐽 − 1) − 0) / 𝑁))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁))))
325, 20, 313eqtr3d 2772 1 (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2707  {crab 3394  cin 3902  {csn 4577   class class class wbr 5092  cima 5622  Rel wrel 5624  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010  cmin 11347   / cdiv 11777  cn 12128  cz 12471  cuz 12735  ...cfz 13410  cfl 13694  chash 14237  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fl 13696  df-hash 14238  df-dvds 16164
This theorem is referenced by:  hashnzfz2  44304  hashnzfzclim  44305
  Copyright terms: Public domain W3C validator