| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nznngen | Structured version Visualization version GIF version | ||
| Description: All positive integers in the set of multiples of n, nℤ, are the absolute value of n or greater. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| nznngen.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Ref | Expression |
|---|---|
| nznngen | ⊢ (𝜑 → (( ∥ “ {𝑁}) ∩ ℕ) ⊆ (ℤ≥‘(abs‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldvds 44334 | . . . . . . . 8 ⊢ Rel ∥ | |
| 2 | relimasn 6103 | . . . . . . . 8 ⊢ (Rel ∥ → ( ∥ “ {𝑁}) = {𝑥 ∣ 𝑁 ∥ 𝑥}) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . . 7 ⊢ ( ∥ “ {𝑁}) = {𝑥 ∣ 𝑁 ∥ 𝑥} |
| 4 | 3 | ineq1i 4216 | . . . . . 6 ⊢ (( ∥ “ {𝑁}) ∩ ℕ) = ({𝑥 ∣ 𝑁 ∥ 𝑥} ∩ ℕ) |
| 5 | dfrab2 4320 | . . . . . 6 ⊢ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} = ({𝑥 ∣ 𝑁 ∥ 𝑥} ∩ ℕ) | |
| 6 | 4, 5 | eqtr4i 2768 | . . . . 5 ⊢ (( ∥ “ {𝑁}) ∩ ℕ) = {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} |
| 7 | 6 | eleq2i 2833 | . . . 4 ⊢ (𝑥 ∈ (( ∥ “ {𝑁}) ∩ ℕ) ↔ 𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥}) |
| 8 | rabid 3458 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} ↔ (𝑥 ∈ ℕ ∧ 𝑁 ∥ 𝑥)) | |
| 9 | nznngen.n | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 10 | nnz 12634 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℤ) | |
| 11 | absdvdsb 16312 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑁 ∥ 𝑥 ↔ (abs‘𝑁) ∥ 𝑥)) | |
| 12 | 9, 10, 11 | syl2an 596 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (𝑁 ∥ 𝑥 ↔ (abs‘𝑁) ∥ 𝑥)) |
| 13 | zabscl 15352 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ) | |
| 14 | 9, 13 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (abs‘𝑁) ∈ ℤ) |
| 15 | dvdsle 16347 | . . . . . . . . 9 ⊢ (((abs‘𝑁) ∈ ℤ ∧ 𝑥 ∈ ℕ) → ((abs‘𝑁) ∥ 𝑥 → (abs‘𝑁) ≤ 𝑥)) | |
| 16 | 14, 15 | sylan 580 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → ((abs‘𝑁) ∥ 𝑥 → (abs‘𝑁) ≤ 𝑥)) |
| 17 | 12, 16 | sylbid 240 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (𝑁 ∥ 𝑥 → (abs‘𝑁) ≤ 𝑥)) |
| 18 | 17 | impr 454 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑁 ∥ 𝑥)) → (abs‘𝑁) ≤ 𝑥) |
| 19 | 8, 18 | sylan2b 594 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥}) → (abs‘𝑁) ≤ 𝑥) |
| 20 | 8 | simplbi 497 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} → 𝑥 ∈ ℕ) |
| 21 | 20 | nnzd 12640 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} → 𝑥 ∈ ℤ) |
| 22 | eluz 12892 | . . . . . 6 ⊢ (((abs‘𝑁) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(abs‘𝑁)) ↔ (abs‘𝑁) ≤ 𝑥)) | |
| 23 | 14, 21, 22 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥}) → (𝑥 ∈ (ℤ≥‘(abs‘𝑁)) ↔ (abs‘𝑁) ≤ 𝑥)) |
| 24 | 19, 23 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥}) → 𝑥 ∈ (ℤ≥‘(abs‘𝑁))) |
| 25 | 7, 24 | sylan2b 594 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (( ∥ “ {𝑁}) ∩ ℕ)) → 𝑥 ∈ (ℤ≥‘(abs‘𝑁))) |
| 26 | 25 | ex 412 | . 2 ⊢ (𝜑 → (𝑥 ∈ (( ∥ “ {𝑁}) ∩ ℕ) → 𝑥 ∈ (ℤ≥‘(abs‘𝑁)))) |
| 27 | 26 | ssrdv 3989 | 1 ⊢ (𝜑 → (( ∥ “ {𝑁}) ∩ ℕ) ⊆ (ℤ≥‘(abs‘𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2714 {crab 3436 ∩ cin 3950 ⊆ wss 3951 {csn 4626 class class class wbr 5143 “ cima 5688 Rel wrel 5690 ‘cfv 6561 ≤ cle 11296 ℕcn 12266 ℤcz 12613 ℤ≥cuz 12878 abscabs 15273 ∥ cdvds 16290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-dvds 16291 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |