Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nznngen Structured version   Visualization version   GIF version

Theorem nznngen 44419
Description: All positive integers in the set of multiples of n, nℤ, are the absolute value of n or greater. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypothesis
Ref Expression
nznngen.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
nznngen (𝜑 → (( ∥ “ {𝑁}) ∩ ℕ) ⊆ (ℤ‘(abs‘𝑁)))

Proof of Theorem nznngen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reldvds 44418 . . . . . . . 8 Rel ∥
2 relimasn 6033 . . . . . . . 8 (Rel ∥ → ( ∥ “ {𝑁}) = {𝑥𝑁𝑥})
31, 2ax-mp 5 . . . . . . 7 ( ∥ “ {𝑁}) = {𝑥𝑁𝑥}
43ineq1i 4163 . . . . . 6 (( ∥ “ {𝑁}) ∩ ℕ) = ({𝑥𝑁𝑥} ∩ ℕ)
5 dfrab2 4267 . . . . . 6 {𝑥 ∈ ℕ ∣ 𝑁𝑥} = ({𝑥𝑁𝑥} ∩ ℕ)
64, 5eqtr4i 2757 . . . . 5 (( ∥ “ {𝑁}) ∩ ℕ) = {𝑥 ∈ ℕ ∣ 𝑁𝑥}
76eleq2i 2823 . . . 4 (𝑥 ∈ (( ∥ “ {𝑁}) ∩ ℕ) ↔ 𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁𝑥})
8 rabid 3416 . . . . . 6 (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁𝑥} ↔ (𝑥 ∈ ℕ ∧ 𝑁𝑥))
9 nznngen.n . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
10 nnz 12489 . . . . . . . . 9 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
11 absdvdsb 16185 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑁𝑥 ↔ (abs‘𝑁) ∥ 𝑥))
129, 10, 11syl2an 596 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (𝑁𝑥 ↔ (abs‘𝑁) ∥ 𝑥))
13 zabscl 15220 . . . . . . . . . 10 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ)
149, 13syl 17 . . . . . . . . 9 (𝜑 → (abs‘𝑁) ∈ ℤ)
15 dvdsle 16221 . . . . . . . . 9 (((abs‘𝑁) ∈ ℤ ∧ 𝑥 ∈ ℕ) → ((abs‘𝑁) ∥ 𝑥 → (abs‘𝑁) ≤ 𝑥))
1614, 15sylan 580 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((abs‘𝑁) ∥ 𝑥 → (abs‘𝑁) ≤ 𝑥))
1712, 16sylbid 240 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (𝑁𝑥 → (abs‘𝑁) ≤ 𝑥))
1817impr 454 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑁𝑥)) → (abs‘𝑁) ≤ 𝑥)
198, 18sylan2b 594 . . . . 5 ((𝜑𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁𝑥}) → (abs‘𝑁) ≤ 𝑥)
208simplbi 497 . . . . . . 7 (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁𝑥} → 𝑥 ∈ ℕ)
2120nnzd 12495 . . . . . 6 (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁𝑥} → 𝑥 ∈ ℤ)
22 eluz 12746 . . . . . 6 (((abs‘𝑁) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ‘(abs‘𝑁)) ↔ (abs‘𝑁) ≤ 𝑥))
2314, 21, 22syl2an 596 . . . . 5 ((𝜑𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁𝑥}) → (𝑥 ∈ (ℤ‘(abs‘𝑁)) ↔ (abs‘𝑁) ≤ 𝑥))
2419, 23mpbird 257 . . . 4 ((𝜑𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁𝑥}) → 𝑥 ∈ (ℤ‘(abs‘𝑁)))
257, 24sylan2b 594 . . 3 ((𝜑𝑥 ∈ (( ∥ “ {𝑁}) ∩ ℕ)) → 𝑥 ∈ (ℤ‘(abs‘𝑁)))
2625ex 412 . 2 (𝜑 → (𝑥 ∈ (( ∥ “ {𝑁}) ∩ ℕ) → 𝑥 ∈ (ℤ‘(abs‘𝑁))))
2726ssrdv 3935 1 (𝜑 → (( ∥ “ {𝑁}) ∩ ℕ) ⊆ (ℤ‘(abs‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {cab 2709  {crab 3395  cin 3896  wss 3897  {csn 4573   class class class wbr 5089  cima 5617  Rel wrel 5619  cfv 6481  cle 11147  cn 12125  cz 12468  cuz 12732  abscabs 15141  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator