| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nznngen | Structured version Visualization version GIF version | ||
| Description: All positive integers in the set of multiples of n, nℤ, are the absolute value of n or greater. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| nznngen.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Ref | Expression |
|---|---|
| nznngen | ⊢ (𝜑 → (( ∥ “ {𝑁}) ∩ ℕ) ⊆ (ℤ≥‘(abs‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldvds 44311 | . . . . . . . 8 ⊢ Rel ∥ | |
| 2 | relimasn 6059 | . . . . . . . 8 ⊢ (Rel ∥ → ( ∥ “ {𝑁}) = {𝑥 ∣ 𝑁 ∥ 𝑥}) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . . 7 ⊢ ( ∥ “ {𝑁}) = {𝑥 ∣ 𝑁 ∥ 𝑥} |
| 4 | 3 | ineq1i 4182 | . . . . . 6 ⊢ (( ∥ “ {𝑁}) ∩ ℕ) = ({𝑥 ∣ 𝑁 ∥ 𝑥} ∩ ℕ) |
| 5 | dfrab2 4286 | . . . . . 6 ⊢ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} = ({𝑥 ∣ 𝑁 ∥ 𝑥} ∩ ℕ) | |
| 6 | 4, 5 | eqtr4i 2756 | . . . . 5 ⊢ (( ∥ “ {𝑁}) ∩ ℕ) = {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} |
| 7 | 6 | eleq2i 2821 | . . . 4 ⊢ (𝑥 ∈ (( ∥ “ {𝑁}) ∩ ℕ) ↔ 𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥}) |
| 8 | rabid 3430 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} ↔ (𝑥 ∈ ℕ ∧ 𝑁 ∥ 𝑥)) | |
| 9 | nznngen.n | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 10 | nnz 12557 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℤ) | |
| 11 | absdvdsb 16251 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑁 ∥ 𝑥 ↔ (abs‘𝑁) ∥ 𝑥)) | |
| 12 | 9, 10, 11 | syl2an 596 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (𝑁 ∥ 𝑥 ↔ (abs‘𝑁) ∥ 𝑥)) |
| 13 | zabscl 15286 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ) | |
| 14 | 9, 13 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (abs‘𝑁) ∈ ℤ) |
| 15 | dvdsle 16287 | . . . . . . . . 9 ⊢ (((abs‘𝑁) ∈ ℤ ∧ 𝑥 ∈ ℕ) → ((abs‘𝑁) ∥ 𝑥 → (abs‘𝑁) ≤ 𝑥)) | |
| 16 | 14, 15 | sylan 580 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → ((abs‘𝑁) ∥ 𝑥 → (abs‘𝑁) ≤ 𝑥)) |
| 17 | 12, 16 | sylbid 240 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (𝑁 ∥ 𝑥 → (abs‘𝑁) ≤ 𝑥)) |
| 18 | 17 | impr 454 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑁 ∥ 𝑥)) → (abs‘𝑁) ≤ 𝑥) |
| 19 | 8, 18 | sylan2b 594 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥}) → (abs‘𝑁) ≤ 𝑥) |
| 20 | 8 | simplbi 497 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} → 𝑥 ∈ ℕ) |
| 21 | 20 | nnzd 12563 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} → 𝑥 ∈ ℤ) |
| 22 | eluz 12814 | . . . . . 6 ⊢ (((abs‘𝑁) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(abs‘𝑁)) ↔ (abs‘𝑁) ≤ 𝑥)) | |
| 23 | 14, 21, 22 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥}) → (𝑥 ∈ (ℤ≥‘(abs‘𝑁)) ↔ (abs‘𝑁) ≤ 𝑥)) |
| 24 | 19, 23 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥}) → 𝑥 ∈ (ℤ≥‘(abs‘𝑁))) |
| 25 | 7, 24 | sylan2b 594 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (( ∥ “ {𝑁}) ∩ ℕ)) → 𝑥 ∈ (ℤ≥‘(abs‘𝑁))) |
| 26 | 25 | ex 412 | . 2 ⊢ (𝜑 → (𝑥 ∈ (( ∥ “ {𝑁}) ∩ ℕ) → 𝑥 ∈ (ℤ≥‘(abs‘𝑁)))) |
| 27 | 26 | ssrdv 3955 | 1 ⊢ (𝜑 → (( ∥ “ {𝑁}) ∩ ℕ) ⊆ (ℤ≥‘(abs‘𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 {crab 3408 ∩ cin 3916 ⊆ wss 3917 {csn 4592 class class class wbr 5110 “ cima 5644 Rel wrel 5646 ‘cfv 6514 ≤ cle 11216 ℕcn 12193 ℤcz 12536 ℤ≥cuz 12800 abscabs 15207 ∥ cdvds 16229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |