Mathbox for Steve Rodriguez < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nznngen Structured version   Visualization version   GIF version

Theorem nznngen 41393
 Description: All positive integers in the set of multiples of n, nℤ, are the absolute value of n or greater. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypothesis
Ref Expression
nznngen.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
nznngen (𝜑 → (( ∥ “ {𝑁}) ∩ ℕ) ⊆ (ℤ‘(abs‘𝑁)))

Proof of Theorem nznngen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reldvds 41392 . . . . . . . 8 Rel ∥
2 relimasn 5924 . . . . . . . 8 (Rel ∥ → ( ∥ “ {𝑁}) = {𝑥𝑁𝑥})
31, 2ax-mp 5 . . . . . . 7 ( ∥ “ {𝑁}) = {𝑥𝑁𝑥}
43ineq1i 4113 . . . . . 6 (( ∥ “ {𝑁}) ∩ ℕ) = ({𝑥𝑁𝑥} ∩ ℕ)
5 dfrab2 4213 . . . . . 6 {𝑥 ∈ ℕ ∣ 𝑁𝑥} = ({𝑥𝑁𝑥} ∩ ℕ)
64, 5eqtr4i 2784 . . . . 5 (( ∥ “ {𝑁}) ∩ ℕ) = {𝑥 ∈ ℕ ∣ 𝑁𝑥}
76eleq2i 2843 . . . 4 (𝑥 ∈ (( ∥ “ {𝑁}) ∩ ℕ) ↔ 𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁𝑥})
8 rabid 3296 . . . . . 6 (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁𝑥} ↔ (𝑥 ∈ ℕ ∧ 𝑁𝑥))
9 nznngen.n . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
10 nnz 12043 . . . . . . . . 9 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
11 absdvdsb 15676 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑁𝑥 ↔ (abs‘𝑁) ∥ 𝑥))
129, 10, 11syl2an 598 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (𝑁𝑥 ↔ (abs‘𝑁) ∥ 𝑥))
13 zabscl 14721 . . . . . . . . . 10 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ)
149, 13syl 17 . . . . . . . . 9 (𝜑 → (abs‘𝑁) ∈ ℤ)
15 dvdsle 15711 . . . . . . . . 9 (((abs‘𝑁) ∈ ℤ ∧ 𝑥 ∈ ℕ) → ((abs‘𝑁) ∥ 𝑥 → (abs‘𝑁) ≤ 𝑥))
1614, 15sylan 583 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((abs‘𝑁) ∥ 𝑥 → (abs‘𝑁) ≤ 𝑥))
1712, 16sylbid 243 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (𝑁𝑥 → (abs‘𝑁) ≤ 𝑥))
1817impr 458 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑁𝑥)) → (abs‘𝑁) ≤ 𝑥)
198, 18sylan2b 596 . . . . 5 ((𝜑𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁𝑥}) → (abs‘𝑁) ≤ 𝑥)
208simplbi 501 . . . . . . 7 (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁𝑥} → 𝑥 ∈ ℕ)
2120nnzd 12125 . . . . . 6 (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁𝑥} → 𝑥 ∈ ℤ)
22 eluz 12296 . . . . . 6 (((abs‘𝑁) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ‘(abs‘𝑁)) ↔ (abs‘𝑁) ≤ 𝑥))
2314, 21, 22syl2an 598 . . . . 5 ((𝜑𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁𝑥}) → (𝑥 ∈ (ℤ‘(abs‘𝑁)) ↔ (abs‘𝑁) ≤ 𝑥))
2419, 23mpbird 260 . . . 4 ((𝜑𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁𝑥}) → 𝑥 ∈ (ℤ‘(abs‘𝑁)))
257, 24sylan2b 596 . . 3 ((𝜑𝑥 ∈ (( ∥ “ {𝑁}) ∩ ℕ)) → 𝑥 ∈ (ℤ‘(abs‘𝑁)))
2625ex 416 . 2 (𝜑 → (𝑥 ∈ (( ∥ “ {𝑁}) ∩ ℕ) → 𝑥 ∈ (ℤ‘(abs‘𝑁))))
2726ssrdv 3898 1 (𝜑 → (( ∥ “ {𝑁}) ∩ ℕ) ⊆ (ℤ‘(abs‘𝑁)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  {cab 2735  {crab 3074   ∩ cin 3857   ⊆ wss 3858  {csn 4522   class class class wbr 5032   “ cima 5527  Rel wrel 5529  ‘cfv 6335   ≤ cle 10714  ℕcn 11674  ℤcz 12020  ℤ≥cuz 12282  abscabs 14641   ∥ cdvds 15655 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-sup 8939  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-n0 11935  df-z 12021  df-uz 12283  df-rp 12431  df-seq 13419  df-exp 13480  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-dvds 15656 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator