Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nznngen | Structured version Visualization version GIF version |
Description: All positive integers in the set of multiples of n, nℤ, are the absolute value of n or greater. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
nznngen.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Ref | Expression |
---|---|
nznngen | ⊢ (𝜑 → (( ∥ “ {𝑁}) ∩ ℕ) ⊆ (ℤ≥‘(abs‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldvds 41392 | . . . . . . . 8 ⊢ Rel ∥ | |
2 | relimasn 5924 | . . . . . . . 8 ⊢ (Rel ∥ → ( ∥ “ {𝑁}) = {𝑥 ∣ 𝑁 ∥ 𝑥}) | |
3 | 1, 2 | ax-mp 5 | . . . . . . 7 ⊢ ( ∥ “ {𝑁}) = {𝑥 ∣ 𝑁 ∥ 𝑥} |
4 | 3 | ineq1i 4113 | . . . . . 6 ⊢ (( ∥ “ {𝑁}) ∩ ℕ) = ({𝑥 ∣ 𝑁 ∥ 𝑥} ∩ ℕ) |
5 | dfrab2 4213 | . . . . . 6 ⊢ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} = ({𝑥 ∣ 𝑁 ∥ 𝑥} ∩ ℕ) | |
6 | 4, 5 | eqtr4i 2784 | . . . . 5 ⊢ (( ∥ “ {𝑁}) ∩ ℕ) = {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} |
7 | 6 | eleq2i 2843 | . . . 4 ⊢ (𝑥 ∈ (( ∥ “ {𝑁}) ∩ ℕ) ↔ 𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥}) |
8 | rabid 3296 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} ↔ (𝑥 ∈ ℕ ∧ 𝑁 ∥ 𝑥)) | |
9 | nznngen.n | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
10 | nnz 12043 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℤ) | |
11 | absdvdsb 15676 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑁 ∥ 𝑥 ↔ (abs‘𝑁) ∥ 𝑥)) | |
12 | 9, 10, 11 | syl2an 598 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (𝑁 ∥ 𝑥 ↔ (abs‘𝑁) ∥ 𝑥)) |
13 | zabscl 14721 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ) | |
14 | 9, 13 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (abs‘𝑁) ∈ ℤ) |
15 | dvdsle 15711 | . . . . . . . . 9 ⊢ (((abs‘𝑁) ∈ ℤ ∧ 𝑥 ∈ ℕ) → ((abs‘𝑁) ∥ 𝑥 → (abs‘𝑁) ≤ 𝑥)) | |
16 | 14, 15 | sylan 583 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → ((abs‘𝑁) ∥ 𝑥 → (abs‘𝑁) ≤ 𝑥)) |
17 | 12, 16 | sylbid 243 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (𝑁 ∥ 𝑥 → (abs‘𝑁) ≤ 𝑥)) |
18 | 17 | impr 458 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑁 ∥ 𝑥)) → (abs‘𝑁) ≤ 𝑥) |
19 | 8, 18 | sylan2b 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥}) → (abs‘𝑁) ≤ 𝑥) |
20 | 8 | simplbi 501 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} → 𝑥 ∈ ℕ) |
21 | 20 | nnzd 12125 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} → 𝑥 ∈ ℤ) |
22 | eluz 12296 | . . . . . 6 ⊢ (((abs‘𝑁) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(abs‘𝑁)) ↔ (abs‘𝑁) ≤ 𝑥)) | |
23 | 14, 21, 22 | syl2an 598 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥}) → (𝑥 ∈ (ℤ≥‘(abs‘𝑁)) ↔ (abs‘𝑁) ≤ 𝑥)) |
24 | 19, 23 | mpbird 260 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥}) → 𝑥 ∈ (ℤ≥‘(abs‘𝑁))) |
25 | 7, 24 | sylan2b 596 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (( ∥ “ {𝑁}) ∩ ℕ)) → 𝑥 ∈ (ℤ≥‘(abs‘𝑁))) |
26 | 25 | ex 416 | . 2 ⊢ (𝜑 → (𝑥 ∈ (( ∥ “ {𝑁}) ∩ ℕ) → 𝑥 ∈ (ℤ≥‘(abs‘𝑁)))) |
27 | 26 | ssrdv 3898 | 1 ⊢ (𝜑 → (( ∥ “ {𝑁}) ∩ ℕ) ⊆ (ℤ≥‘(abs‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {cab 2735 {crab 3074 ∩ cin 3857 ⊆ wss 3858 {csn 4522 class class class wbr 5032 “ cima 5527 Rel wrel 5529 ‘cfv 6335 ≤ cle 10714 ℕcn 11674 ℤcz 12020 ℤ≥cuz 12282 abscabs 14641 ∥ cdvds 15655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-sup 8939 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-n0 11935 df-z 12021 df-uz 12283 df-rp 12431 df-seq 13419 df-exp 13480 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-dvds 15656 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |