| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nznngen | Structured version Visualization version GIF version | ||
| Description: All positive integers in the set of multiples of n, nℤ, are the absolute value of n or greater. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| nznngen.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Ref | Expression |
|---|---|
| nznngen | ⊢ (𝜑 → (( ∥ “ {𝑁}) ∩ ℕ) ⊆ (ℤ≥‘(abs‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldvds 44297 | . . . . . . . 8 ⊢ Rel ∥ | |
| 2 | relimasn 6045 | . . . . . . . 8 ⊢ (Rel ∥ → ( ∥ “ {𝑁}) = {𝑥 ∣ 𝑁 ∥ 𝑥}) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . . 7 ⊢ ( ∥ “ {𝑁}) = {𝑥 ∣ 𝑁 ∥ 𝑥} |
| 4 | 3 | ineq1i 4175 | . . . . . 6 ⊢ (( ∥ “ {𝑁}) ∩ ℕ) = ({𝑥 ∣ 𝑁 ∥ 𝑥} ∩ ℕ) |
| 5 | dfrab2 4279 | . . . . . 6 ⊢ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} = ({𝑥 ∣ 𝑁 ∥ 𝑥} ∩ ℕ) | |
| 6 | 4, 5 | eqtr4i 2755 | . . . . 5 ⊢ (( ∥ “ {𝑁}) ∩ ℕ) = {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} |
| 7 | 6 | eleq2i 2820 | . . . 4 ⊢ (𝑥 ∈ (( ∥ “ {𝑁}) ∩ ℕ) ↔ 𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥}) |
| 8 | rabid 3424 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} ↔ (𝑥 ∈ ℕ ∧ 𝑁 ∥ 𝑥)) | |
| 9 | nznngen.n | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 10 | nnz 12526 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℤ) | |
| 11 | absdvdsb 16220 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑁 ∥ 𝑥 ↔ (abs‘𝑁) ∥ 𝑥)) | |
| 12 | 9, 10, 11 | syl2an 596 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (𝑁 ∥ 𝑥 ↔ (abs‘𝑁) ∥ 𝑥)) |
| 13 | zabscl 15255 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ) | |
| 14 | 9, 13 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (abs‘𝑁) ∈ ℤ) |
| 15 | dvdsle 16256 | . . . . . . . . 9 ⊢ (((abs‘𝑁) ∈ ℤ ∧ 𝑥 ∈ ℕ) → ((abs‘𝑁) ∥ 𝑥 → (abs‘𝑁) ≤ 𝑥)) | |
| 16 | 14, 15 | sylan 580 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → ((abs‘𝑁) ∥ 𝑥 → (abs‘𝑁) ≤ 𝑥)) |
| 17 | 12, 16 | sylbid 240 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → (𝑁 ∥ 𝑥 → (abs‘𝑁) ≤ 𝑥)) |
| 18 | 17 | impr 454 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℕ ∧ 𝑁 ∥ 𝑥)) → (abs‘𝑁) ≤ 𝑥) |
| 19 | 8, 18 | sylan2b 594 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥}) → (abs‘𝑁) ≤ 𝑥) |
| 20 | 8 | simplbi 497 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} → 𝑥 ∈ ℕ) |
| 21 | 20 | nnzd 12532 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥} → 𝑥 ∈ ℤ) |
| 22 | eluz 12783 | . . . . . 6 ⊢ (((abs‘𝑁) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘(abs‘𝑁)) ↔ (abs‘𝑁) ≤ 𝑥)) | |
| 23 | 14, 21, 22 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥}) → (𝑥 ∈ (ℤ≥‘(abs‘𝑁)) ↔ (abs‘𝑁) ≤ 𝑥)) |
| 24 | 19, 23 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝑁 ∥ 𝑥}) → 𝑥 ∈ (ℤ≥‘(abs‘𝑁))) |
| 25 | 7, 24 | sylan2b 594 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (( ∥ “ {𝑁}) ∩ ℕ)) → 𝑥 ∈ (ℤ≥‘(abs‘𝑁))) |
| 26 | 25 | ex 412 | . 2 ⊢ (𝜑 → (𝑥 ∈ (( ∥ “ {𝑁}) ∩ ℕ) → 𝑥 ∈ (ℤ≥‘(abs‘𝑁)))) |
| 27 | 26 | ssrdv 3949 | 1 ⊢ (𝜑 → (( ∥ “ {𝑁}) ∩ ℕ) ⊆ (ℤ≥‘(abs‘𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 {crab 3402 ∩ cin 3910 ⊆ wss 3911 {csn 4585 class class class wbr 5102 “ cima 5634 Rel wrel 5636 ‘cfv 6499 ≤ cle 11185 ℕcn 12162 ℤcz 12505 ℤ≥cuz 12769 abscabs 15176 ∥ cdvds 16198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |