MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relin1 Structured version   Visualization version   GIF version

Theorem relin1 5775
Description: The intersection with a relation is a relation. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
relin1 (Rel 𝐴 → Rel (𝐴𝐵))

Proof of Theorem relin1
StepHypRef Expression
1 inss1 4200 . 2 (𝐴𝐵) ⊆ 𝐴
2 relss 5744 . 2 ((𝐴𝐵) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐴𝐵)))
31, 2ax-mp 5 1 (Rel 𝐴 → Rel (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cin 3913  wss 3914  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-in 3921  df-ss 3931  df-rel 5645
This theorem is referenced by:  inopab  5792  idsset  35878  dihmeetlem1N  41284  dihglblem5apreN  41285  dihmeetlem4preN  41300  dihmeetlem13N  41313  uptrlem2  49200  uptra  49204  uptrar  49205  uptr2a  49211  thincciso2  49444
  Copyright terms: Public domain W3C validator