Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relin1 | Structured version Visualization version GIF version |
Description: The intersection with a relation is a relation. (Contributed by NM, 16-Aug-1994.) |
Ref | Expression |
---|---|
relin1 | ⊢ (Rel 𝐴 → Rel (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4120 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
2 | relss 5628 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐴 ∩ 𝐵))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐴 → Rel (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3843 ⊆ wss 3844 Rel wrel 5531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2711 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-v 3401 df-in 3851 df-ss 3861 df-rel 5533 |
This theorem is referenced by: inopab 5674 idsset 33838 dihmeetlem1N 38950 dihglblem5apreN 38951 dihmeetlem4preN 38966 dihmeetlem13N 38979 |
Copyright terms: Public domain | W3C validator |