MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relin1 Structured version   Visualization version   GIF version

Theorem relin1 5751
Description: The intersection with a relation is a relation. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
relin1 (Rel 𝐴 → Rel (𝐴𝐵))

Proof of Theorem relin1
StepHypRef Expression
1 inss1 4184 . 2 (𝐴𝐵) ⊆ 𝐴
2 relss 5721 . 2 ((𝐴𝐵) ⊆ 𝐴 → (Rel 𝐴 → Rel (𝐴𝐵)))
31, 2ax-mp 5 1 (Rel 𝐴 → Rel (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cin 3896  wss 3897  Rel wrel 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-in 3904  df-ss 3914  df-rel 5621
This theorem is referenced by:  inopab  5768  idsset  35932  dihmeetlem1N  41388  dihglblem5apreN  41389  dihmeetlem4preN  41404  dihmeetlem13N  41417  uptrlem2  49311  uptra  49315  uptrar  49316  uptr2a  49322  thincciso2  49555
  Copyright terms: Public domain W3C validator