Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inopab | Structured version Visualization version GIF version |
Description: Intersection of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.) |
Ref | Expression |
---|---|
inopab | ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝜓}) = {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopabv 5731 | . . 3 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | relin1 5722 | . . 3 ⊢ (Rel {〈𝑥, 𝑦〉 ∣ 𝜑} → Rel ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝜓})) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Rel ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝜓}) |
4 | relopabv 5731 | . 2 ⊢ Rel {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝜓)} | |
5 | sban 2083 | . . . 4 ⊢ ([𝑧 / 𝑥]([𝑤 / 𝑦]𝜑 ∧ [𝑤 / 𝑦]𝜓) ↔ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓)) | |
6 | sban 2083 | . . . . 5 ⊢ ([𝑤 / 𝑦](𝜑 ∧ 𝜓) ↔ ([𝑤 / 𝑦]𝜑 ∧ [𝑤 / 𝑦]𝜓)) | |
7 | 6 | sbbii 2079 | . . . 4 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦](𝜑 ∧ 𝜓) ↔ [𝑧 / 𝑥]([𝑤 / 𝑦]𝜑 ∧ [𝑤 / 𝑦]𝜓)) |
8 | vopelopabsb 5442 | . . . . 5 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) | |
9 | vopelopabsb 5442 | . . . . 5 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓) | |
10 | 8, 9 | anbi12i 627 | . . . 4 ⊢ ((〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ∧ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓}) ↔ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓)) |
11 | 5, 7, 10 | 3bitr4ri 304 | . . 3 ⊢ ((〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ∧ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓}) ↔ [𝑧 / 𝑥][𝑤 / 𝑦](𝜑 ∧ 𝜓)) |
12 | elin 3903 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝜓}) ↔ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ∧ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓})) | |
13 | vopelopabsb 5442 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝜓)} ↔ [𝑧 / 𝑥][𝑤 / 𝑦](𝜑 ∧ 𝜓)) | |
14 | 11, 12, 13 | 3bitr4i 303 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝜓}) ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝜓)}) |
15 | 3, 4, 14 | eqrelriiv 5700 | 1 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝜓}) = {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 [wsb 2067 ∈ wcel 2106 ∩ cin 3886 〈cop 4567 {copab 5136 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 df-xp 5595 df-rel 5596 |
This theorem is referenced by: inxp 5741 resopab 5942 fndmin 6922 cnvoprab 7900 epinid0 9359 cnvepnep 9366 wemapwe 9455 dfiso2 17484 frgpuplem 19378 pjfval2 20916 ltbwe 21245 opsrtoslem1 21262 lgsquadlem3 26530 br1cosscnvxrn 36592 1cosscnvxrn 36593 dnwech 40873 fgraphopab 41035 |
Copyright terms: Public domain | W3C validator |