Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inopab | Structured version Visualization version GIF version |
Description: Intersection of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.) |
Ref | Expression |
---|---|
inopab | ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝜓}) = {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopabv 5720 | . . 3 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | relin1 5711 | . . 3 ⊢ (Rel {〈𝑥, 𝑦〉 ∣ 𝜑} → Rel ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝜓})) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Rel ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝜓}) |
4 | relopabv 5720 | . 2 ⊢ Rel {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝜓)} | |
5 | sban 2084 | . . . 4 ⊢ ([𝑧 / 𝑥]([𝑤 / 𝑦]𝜑 ∧ [𝑤 / 𝑦]𝜓) ↔ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓)) | |
6 | sban 2084 | . . . . 5 ⊢ ([𝑤 / 𝑦](𝜑 ∧ 𝜓) ↔ ([𝑤 / 𝑦]𝜑 ∧ [𝑤 / 𝑦]𝜓)) | |
7 | 6 | sbbii 2080 | . . . 4 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦](𝜑 ∧ 𝜓) ↔ [𝑧 / 𝑥]([𝑤 / 𝑦]𝜑 ∧ [𝑤 / 𝑦]𝜓)) |
8 | vopelopabsb 5435 | . . . . 5 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) | |
9 | vopelopabsb 5435 | . . . . 5 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓) | |
10 | 8, 9 | anbi12i 626 | . . . 4 ⊢ ((〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ∧ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓}) ↔ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓)) |
11 | 5, 7, 10 | 3bitr4ri 303 | . . 3 ⊢ ((〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ∧ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓}) ↔ [𝑧 / 𝑥][𝑤 / 𝑦](𝜑 ∧ 𝜓)) |
12 | elin 3899 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝜓}) ↔ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ∧ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓})) | |
13 | vopelopabsb 5435 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝜓)} ↔ [𝑧 / 𝑥][𝑤 / 𝑦](𝜑 ∧ 𝜓)) | |
14 | 11, 12, 13 | 3bitr4i 302 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝜓}) ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝜓)}) |
15 | 3, 4, 14 | eqrelriiv 5689 | 1 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝜓}) = {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 [wsb 2068 ∈ wcel 2108 ∩ cin 3882 〈cop 4564 {copab 5132 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-xp 5586 df-rel 5587 |
This theorem is referenced by: inxp 5730 resopab 5931 fndmin 6904 cnvoprab 7873 epinid0 9289 cnvepnep 9296 wemapwe 9385 dfiso2 17401 frgpuplem 19293 pjfval2 20826 ltbwe 21155 opsrtoslem1 21172 lgsquadlem3 26435 br1cosscnvxrn 36519 1cosscnvxrn 36520 dnwech 40789 fgraphopab 40951 |
Copyright terms: Public domain | W3C validator |