| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inopab | Structured version Visualization version GIF version | ||
| Description: Intersection of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.) |
| Ref | Expression |
|---|---|
| inopab | ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝜓}) = {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝜓)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabv 5768 | . . 3 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | relin1 5759 | . . 3 ⊢ (Rel {〈𝑥, 𝑦〉 ∣ 𝜑} → Rel ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝜓})) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ Rel ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝜓}) |
| 4 | relopabv 5768 | . 2 ⊢ Rel {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝜓)} | |
| 5 | sban 2081 | . . . 4 ⊢ ([𝑧 / 𝑥]([𝑤 / 𝑦]𝜑 ∧ [𝑤 / 𝑦]𝜓) ↔ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓)) | |
| 6 | sban 2081 | . . . . 5 ⊢ ([𝑤 / 𝑦](𝜑 ∧ 𝜓) ↔ ([𝑤 / 𝑦]𝜑 ∧ [𝑤 / 𝑦]𝜓)) | |
| 7 | 6 | sbbii 2077 | . . . 4 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦](𝜑 ∧ 𝜓) ↔ [𝑧 / 𝑥]([𝑤 / 𝑦]𝜑 ∧ [𝑤 / 𝑦]𝜓)) |
| 8 | vopelopabsb 5476 | . . . . 5 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) | |
| 9 | vopelopabsb 5476 | . . . . 5 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓) | |
| 10 | 8, 9 | anbi12i 628 | . . . 4 ⊢ ((〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ∧ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓}) ↔ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓)) |
| 11 | 5, 7, 10 | 3bitr4ri 304 | . . 3 ⊢ ((〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ∧ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓}) ↔ [𝑧 / 𝑥][𝑤 / 𝑦](𝜑 ∧ 𝜓)) |
| 12 | elin 3921 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝜓}) ↔ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ∧ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓})) | |
| 13 | vopelopabsb 5476 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝜓)} ↔ [𝑧 / 𝑥][𝑤 / 𝑦](𝜑 ∧ 𝜓)) | |
| 14 | 11, 12, 13 | 3bitr4i 303 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝜓}) ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝜓)}) |
| 15 | 3, 4, 14 | eqrelriiv 5737 | 1 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝜓}) = {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝜓)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 [wsb 2065 ∈ wcel 2109 ∩ cin 3904 〈cop 4585 {copab 5157 Rel wrel 5628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-opab 5158 df-xp 5629 df-rel 5630 |
| This theorem is referenced by: inxpOLD 5779 resopab 5989 fndmin 6983 cnvoprab 8002 epinid0 9514 cnvepnep 9523 wemapwe 9612 dfiso2 17697 frgpuplem 19669 pjfval2 21634 ltbwe 21967 opsrtoslem1 21978 lgsquadlem3 27309 disjecxrn 38360 br1cosscnvxrn 38450 1cosscnvxrn 38451 dnwech 43021 fgraphopab 43176 |
| Copyright terms: Public domain | W3C validator |