![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inopab | Structured version Visualization version GIF version |
Description: Intersection of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.) |
Ref | Expression |
---|---|
inopab | ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝜓}) = {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopab 5582 | . . 3 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | relin1 5571 | . . 3 ⊢ (Rel {〈𝑥, 𝑦〉 ∣ 𝜑} → Rel ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝜓})) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Rel ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝜓}) |
4 | relopab 5582 | . 2 ⊢ Rel {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝜓)} | |
5 | sban 2059 | . . . 4 ⊢ ([𝑤 / 𝑦]([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝜓) ↔ ([𝑤 / 𝑦][𝑧 / 𝑥]𝜑 ∧ [𝑤 / 𝑦][𝑧 / 𝑥]𝜓)) | |
6 | sban 2059 | . . . . 5 ⊢ ([𝑧 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝜓)) | |
7 | 6 | sbbii 2054 | . . . 4 ⊢ ([𝑤 / 𝑦][𝑧 / 𝑥](𝜑 ∧ 𝜓) ↔ [𝑤 / 𝑦]([𝑧 / 𝑥]𝜑 ∧ [𝑧 / 𝑥]𝜓)) |
8 | opelopabsbALT 5306 | . . . . 5 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑) | |
9 | opelopabsbALT 5306 | . . . . 5 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜓) | |
10 | 8, 9 | anbi12i 626 | . . . 4 ⊢ ((〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ∧ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓}) ↔ ([𝑤 / 𝑦][𝑧 / 𝑥]𝜑 ∧ [𝑤 / 𝑦][𝑧 / 𝑥]𝜓)) |
11 | 5, 7, 10 | 3bitr4ri 305 | . . 3 ⊢ ((〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ∧ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓}) ↔ [𝑤 / 𝑦][𝑧 / 𝑥](𝜑 ∧ 𝜓)) |
12 | elin 4090 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝜓}) ↔ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ∧ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓})) | |
13 | opelopabsbALT 5306 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝜓)} ↔ [𝑤 / 𝑦][𝑧 / 𝑥](𝜑 ∧ 𝜓)) | |
14 | 11, 12, 13 | 3bitr4i 304 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝜓}) ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝜓)}) |
15 | 3, 4, 14 | eqrelriiv 5549 | 1 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ∩ {〈𝑥, 𝑦〉 ∣ 𝜓}) = {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1522 [wsb 2042 ∈ wcel 2081 ∩ cin 3858 〈cop 4478 {copab 5024 Rel wrel 5448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pr 5221 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-rab 3114 df-v 3439 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-opab 5025 df-xp 5449 df-rel 5450 |
This theorem is referenced by: inxp 5589 resopab 5783 fndmin 6680 cnvoprab 7614 epinid0 8910 cnvepnep 8917 wemapwe 9006 dfiso2 16871 frgpuplem 18625 ltbwe 19940 opsrtoslem1 19951 pjfval2 20535 lgsquadlem3 25640 br1cosscnvxrn 35245 1cosscnvxrn 35246 dnwech 39133 fgraphopab 39295 |
Copyright terms: Public domain | W3C validator |