MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inopab Structured version   Visualization version   GIF version

Theorem inopab 5792
Description: Intersection of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
inopab ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem inopab
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopabv 5784 . . 3 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 relin1 5775 . . 3 (Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} → Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜓}))
31, 2ax-mp 5 . 2 Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜓})
4 relopabv 5784 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
5 sban 2081 . . . 4 ([𝑧 / 𝑥]([𝑤 / 𝑦]𝜑 ∧ [𝑤 / 𝑦]𝜓) ↔ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓))
6 sban 2081 . . . . 5 ([𝑤 / 𝑦](𝜑𝜓) ↔ ([𝑤 / 𝑦]𝜑 ∧ [𝑤 / 𝑦]𝜓))
76sbbii 2077 . . . 4 ([𝑧 / 𝑥][𝑤 / 𝑦](𝜑𝜓) ↔ [𝑧 / 𝑥]([𝑤 / 𝑦]𝜑 ∧ [𝑤 / 𝑦]𝜓))
8 vopelopabsb 5489 . . . . 5 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
9 vopelopabsb 5489 . . . . 5 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓)
108, 9anbi12i 628 . . . 4 ((⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓))
115, 7, 103bitr4ri 304 . . 3 ((⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ [𝑧 / 𝑥][𝑤 / 𝑦](𝜑𝜓))
12 elin 3930 . . 3 (⟨𝑧, 𝑤⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}))
13 vopelopabsb 5489 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)} ↔ [𝑧 / 𝑥][𝑤 / 𝑦](𝜑𝜓))
1411, 12, 133bitr4i 303 . 2 (⟨𝑧, 𝑤⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)})
153, 4, 14eqrelriiv 5753 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  [wsb 2065  wcel 2109  cin 3913  cop 4595  {copab 5169  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-opab 5170  df-xp 5644  df-rel 5645
This theorem is referenced by:  inxpOLD  5796  resopab  6005  fndmin  7017  cnvoprab  8039  epinid0  9553  cnvepnep  9561  wemapwe  9650  dfiso2  17734  frgpuplem  19702  pjfval2  21618  ltbwe  21951  opsrtoslem1  21962  lgsquadlem3  27293  disjecxrn  38375  br1cosscnvxrn  38465  1cosscnvxrn  38466  dnwech  43037  fgraphopab  43192
  Copyright terms: Public domain W3C validator