Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglblem5apreN Structured version   Visualization version   GIF version

Theorem dihglblem5apreN 38414
Description: A conjunction property of isomorphism H. TODO: reduce antecedent size; general review for shorter proof. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem5a.b 𝐵 = (Base‘𝐾)
dihglblem5a.m = (meet‘𝐾)
dihglblem5a.h 𝐻 = (LHyp‘𝐾)
dihglblem5a.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihglblem5a.l = (le‘𝐾)
dihglblem5a.j = (join‘𝐾)
dihglblem5a.a 𝐴 = (Atoms‘𝐾)
dihglblem5a.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihglblem5a.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihglblem5a.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihglblem5a.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihglblem5a.g 𝐺 = (𝑇 (𝑃) = 𝑞)
dihglblem5a.o 0 = (𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
dihglblem5apreN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼‘(𝑋 𝑊)) = ((𝐼𝑋) ∩ (𝐼𝑊)))
Distinct variable groups:   ,𝑞   ,𝑞,   𝐴,,𝑞   𝐵,,𝑞   ,𝐻,𝑞   𝐼,𝑞   ,𝐾,𝑞   𝑃,   𝑇,   ,𝑊,𝑞   𝑋,𝑞
Allowed substitution hints:   𝑃(𝑞)   𝑅(,𝑞)   𝑇(𝑞)   𝐸(,𝑞)   𝐺(,𝑞)   𝐼()   (,𝑞)   ()   𝑋()   0 (,𝑞)

Proof of Theorem dihglblem5apreN
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hllat 36486 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
21ad2antrr 724 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → 𝐾 ∈ Lat)
3 simprl 769 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → 𝑋𝐵)
4 dihglblem5a.b . . . . . . 7 𝐵 = (Base‘𝐾)
5 dihglblem5a.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
64, 5lhpbase 37121 . . . . . 6 (𝑊𝐻𝑊𝐵)
76ad2antlr 725 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → 𝑊𝐵)
8 dihglblem5a.l . . . . . 6 = (le‘𝐾)
9 dihglblem5a.m . . . . . 6 = (meet‘𝐾)
104, 8, 9latmle1 17678 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑋)
112, 3, 7, 10syl3anc 1365 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑋 𝑊) 𝑋)
12 simpl 485 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
134, 9latmcl 17654 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
142, 3, 7, 13syl3anc 1365 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑋 𝑊) ∈ 𝐵)
15 dihglblem5a.i . . . . . 6 𝐼 = ((DIsoH‘𝐾)‘𝑊)
164, 8, 5, 15dihord 38387 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 𝑊) ∈ 𝐵𝑋𝐵) → ((𝐼‘(𝑋 𝑊)) ⊆ (𝐼𝑋) ↔ (𝑋 𝑊) 𝑋))
1712, 14, 3, 16syl3anc 1365 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ((𝐼‘(𝑋 𝑊)) ⊆ (𝐼𝑋) ↔ (𝑋 𝑊) 𝑋))
1811, 17mpbird 259 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼‘(𝑋 𝑊)) ⊆ (𝐼𝑋))
194, 8, 9latmle2 17679 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑊)
202, 3, 7, 19syl3anc 1365 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑋 𝑊) 𝑊)
214, 8, 5, 15dihord 38387 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 𝑊) ∈ 𝐵𝑊𝐵) → ((𝐼‘(𝑋 𝑊)) ⊆ (𝐼𝑊) ↔ (𝑋 𝑊) 𝑊))
2212, 14, 7, 21syl3anc 1365 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ((𝐼‘(𝑋 𝑊)) ⊆ (𝐼𝑊) ↔ (𝑋 𝑊) 𝑊))
2320, 22mpbird 259 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼‘(𝑋 𝑊)) ⊆ (𝐼𝑊))
2418, 23ssind 4207 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼‘(𝑋 𝑊)) ⊆ ((𝐼𝑋) ∩ (𝐼𝑊)))
255, 15dihvalrel 38402 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑋))
26 relin1 5678 . . . . 5 (Rel (𝐼𝑋) → Rel ((𝐼𝑋) ∩ (𝐼𝑊)))
2725, 26syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel ((𝐼𝑋) ∩ (𝐼𝑊)))
2827adantr 483 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → Rel ((𝐼𝑋) ∩ (𝐼𝑊)))
29 elin 4167 . . . 4 (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑋) ∩ (𝐼𝑊)) ↔ (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑊)))
30 dihglblem5a.j . . . . . 6 = (join‘𝐾)
31 dihglblem5a.a . . . . . 6 𝐴 = (Atoms‘𝐾)
324, 8, 30, 9, 31, 5lhpmcvr2 37147 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))
33 dihglblem5a.p . . . . . . . . . . . 12 𝑃 = ((oc‘𝐾)‘𝑊)
34 dihglblem5a.t . . . . . . . . . . . 12 𝑇 = ((LTrn‘𝐾)‘𝑊)
35 dihglblem5a.r . . . . . . . . . . . 12 𝑅 = ((trL‘𝐾)‘𝑊)
36 dihglblem5a.e . . . . . . . . . . . 12 𝐸 = ((TEndo‘𝐾)‘𝑊)
37 dihglblem5a.g . . . . . . . . . . . 12 𝐺 = (𝑇 (𝑃) = 𝑞)
38 vex 3496 . . . . . . . . . . . 12 𝑓 ∈ V
39 vex 3496 . . . . . . . . . . . 12 𝑠 ∈ V
404, 8, 30, 9, 31, 5, 33, 34, 35, 36, 15, 37, 38, 39dihopelvalc 38372 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋)))
41 id 22 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
426adantl 484 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊𝐵)
434, 8latref 17655 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑊𝐵) → 𝑊 𝑊)
441, 6, 43syl2an 597 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊 𝑊)
45 dihglblem5a.o . . . . . . . . . . . . . 14 0 = (𝑇 ↦ ( I ↾ 𝐵))
464, 8, 5, 34, 35, 45, 15dihopelvalbN 38361 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑊𝐵𝑊 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑊) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 )))
4741, 42, 44, 46syl12anc 834 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑊) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 )))
48473ad2ant1 1127 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑊) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 )))
4940, 48anbi12d 632 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑊)) ↔ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))))
50 simprll 777 . . . . . . . . . . . . . 14 ((((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 )) → 𝑓𝑇)
5150adantl 484 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → 𝑓𝑇)
52 simprrr 780 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → 𝑠 = 0 )
5352fveq1d 6665 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( 0𝐺))
54 simpl1 1185 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
558, 31, 5, 33lhpocnel2 37142 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5654, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
57 simpl3l 1222 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
588, 31, 5, 34, 37ltrniotacl 37702 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → 𝐺𝑇)
5954, 56, 57, 58syl3anc 1365 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → 𝐺𝑇)
6045, 4tendo02 37910 . . . . . . . . . . . . . . . . . . . . . 22 (𝐺𝑇 → ( 0𝐺) = ( I ↾ 𝐵))
6159, 60syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → ( 0𝐺) = ( I ↾ 𝐵))
6253, 61eqtrd 2854 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( I ↾ 𝐵))
6362cnveqd 5739 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( I ↾ 𝐵))
64 cnvresid 6426 . . . . . . . . . . . . . . . . . . 19 ( I ↾ 𝐵) = ( I ↾ 𝐵)
6563, 64syl6eq 2870 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( I ↾ 𝐵))
6665coeq2d 5726 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑓(𝑠𝐺)) = (𝑓 ∘ ( I ↾ 𝐵)))
674, 5, 34ltrn1o 37247 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → 𝑓:𝐵1-1-onto𝐵)
6854, 51, 67syl2anc 586 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → 𝑓:𝐵1-1-onto𝐵)
69 f1of 6608 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐵1-1-onto𝐵𝑓:𝐵𝐵)
70 fcoi1 6545 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐵𝐵 → (𝑓 ∘ ( I ↾ 𝐵)) = 𝑓)
7168, 69, 703syl 18 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑓 ∘ ( I ↾ 𝐵)) = 𝑓)
7266, 71eqtrd 2854 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑓(𝑠𝐺)) = 𝑓)
7372fveq2d 6667 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑅‘(𝑓(𝑠𝐺))) = (𝑅𝑓))
74 simprlr 778 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑅‘(𝑓(𝑠𝐺))) 𝑋)
7573, 74eqbrtrrd 5081 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑅𝑓) 𝑋)
768, 5, 34, 35trlle 37307 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑅𝑓) 𝑊)
7754, 51, 76syl2anc 586 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑅𝑓) 𝑊)
78 simpl1l 1218 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → 𝐾 ∈ HL)
7978hllatd 36487 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → 𝐾 ∈ Lat)
804, 5, 34, 35trlcl 37287 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑅𝑓) ∈ 𝐵)
8154, 51, 80syl2anc 586 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑅𝑓) ∈ 𝐵)
82 simpl2l 1220 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → 𝑋𝐵)
83 simpl1r 1219 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → 𝑊𝐻)
8483, 6syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → 𝑊𝐵)
854, 8, 9latlem12 17680 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ ((𝑅𝑓) ∈ 𝐵𝑋𝐵𝑊𝐵)) → (((𝑅𝑓) 𝑋 ∧ (𝑅𝑓) 𝑊) ↔ (𝑅𝑓) (𝑋 𝑊)))
8679, 81, 82, 84, 85syl13anc 1366 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (((𝑅𝑓) 𝑋 ∧ (𝑅𝑓) 𝑊) ↔ (𝑅𝑓) (𝑋 𝑊)))
8775, 77, 86mpbi2and 710 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑅𝑓) (𝑋 𝑊))
8851, 87jca 514 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)))
8979, 82, 84, 13syl3anc 1365 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑋 𝑊) ∈ 𝐵)
9079, 82, 84, 19syl3anc 1365 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑋 𝑊) 𝑊)
914, 8, 5, 34, 35, 45, 15dihopelvalbN 38361 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑋 𝑊) 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 0 )))
9254, 89, 90, 91syl12anc 834 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 0 )))
9388, 52, 92mpbir2and 711 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊)))
9493ex 415 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) → ((((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 )) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))))
9549, 94sylbid 242 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑊)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))))
96953expia 1115 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑊)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊)))))
9796exp4c 435 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑞𝐴 → (¬ 𝑞 𝑊 → ((𝑞 (𝑋 𝑊)) = 𝑋 → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑊)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊)))))))
9897imp4a 425 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑞𝐴 → ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑊)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))))))
9998rexlimdv 3281 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑊)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊)))))
10032, 99mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑊)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))))
10129, 100syl5bi 244 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑋) ∩ (𝐼𝑊)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))))
10228, 101relssdv 5654 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ((𝐼𝑋) ∩ (𝐼𝑊)) ⊆ (𝐼‘(𝑋 𝑊)))
10324, 102eqssd 3982 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼‘(𝑋 𝑊)) = ((𝐼𝑋) ∩ (𝐼𝑊)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1081   = wceq 1530  wcel 2107  wrex 3137  cin 3933  wss 3934  cop 4565   class class class wbr 5057  cmpt 5137   I cid 5452  ccnv 5547  cres 5550  ccom 5552  Rel wrel 5553  wf 6344  1-1-ontowf1o 6347  cfv 6348  crio 7105  (class class class)co 7148  Basecbs 16475  lecple 16564  occoc 16565  joincjn 17546  meetcmee 17547  Latclat 17647  Atomscatm 36386  HLchlt 36473  LHypclh 37107  LTrncltrn 37224  trLctrl 37281  TEndoctendo 37875  DIsoHcdih 38351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-riotaBAD 36076
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-tpos 7884  df-undef 7931  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19232  df-ur 19244  df-ring 19291  df-oppr 19365  df-dvdsr 19383  df-unit 19384  df-invr 19414  df-dvr 19425  df-drng 19496  df-lmod 19628  df-lss 19696  df-lsp 19736  df-lvec 19867  df-oposet 36299  df-ol 36301  df-oml 36302  df-covers 36389  df-ats 36390  df-atl 36421  df-cvlat 36445  df-hlat 36474  df-llines 36621  df-lplanes 36622  df-lvols 36623  df-lines 36624  df-psubsp 36626  df-pmap 36627  df-padd 36919  df-lhyp 37111  df-laut 37112  df-ldil 37227  df-ltrn 37228  df-trl 37282  df-tendo 37878  df-edring 37880  df-disoa 38152  df-dvech 38202  df-dib 38262  df-dic 38296  df-dih 38352
This theorem is referenced by:  dihglblem5aN  38415
  Copyright terms: Public domain W3C validator