Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglblem5apreN Structured version   Visualization version   GIF version

Theorem dihglblem5apreN 41293
Description: A conjunction property of isomorphism H. TODO: reduce antecedent size; general review for shorter proof. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem5a.b 𝐵 = (Base‘𝐾)
dihglblem5a.m = (meet‘𝐾)
dihglblem5a.h 𝐻 = (LHyp‘𝐾)
dihglblem5a.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihglblem5a.l = (le‘𝐾)
dihglblem5a.j = (join‘𝐾)
dihglblem5a.a 𝐴 = (Atoms‘𝐾)
dihglblem5a.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihglblem5a.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihglblem5a.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihglblem5a.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihglblem5a.g 𝐺 = (𝑇 (𝑃) = 𝑞)
dihglblem5a.o 0 = (𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
dihglblem5apreN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼‘(𝑋 𝑊)) = ((𝐼𝑋) ∩ (𝐼𝑊)))
Distinct variable groups:   ,𝑞   ,𝑞,   𝐴,,𝑞   𝐵,,𝑞   ,𝐻,𝑞   𝐼,𝑞   ,𝐾,𝑞   𝑃,   𝑇,   ,𝑊,𝑞   𝑋,𝑞
Allowed substitution hints:   𝑃(𝑞)   𝑅(,𝑞)   𝑇(𝑞)   𝐸(,𝑞)   𝐺(,𝑞)   𝐼()   (,𝑞)   ()   𝑋()   0 (,𝑞)

Proof of Theorem dihglblem5apreN
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hllat 39364 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
21ad2antrr 726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → 𝐾 ∈ Lat)
3 simprl 771 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → 𝑋𝐵)
4 dihglblem5a.b . . . . . . 7 𝐵 = (Base‘𝐾)
5 dihglblem5a.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
64, 5lhpbase 40000 . . . . . 6 (𝑊𝐻𝑊𝐵)
76ad2antlr 727 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → 𝑊𝐵)
8 dihglblem5a.l . . . . . 6 = (le‘𝐾)
9 dihglblem5a.m . . . . . 6 = (meet‘𝐾)
104, 8, 9latmle1 18509 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑋)
112, 3, 7, 10syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑋 𝑊) 𝑋)
12 simpl 482 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
134, 9latmcl 18485 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
142, 3, 7, 13syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑋 𝑊) ∈ 𝐵)
15 dihglblem5a.i . . . . . 6 𝐼 = ((DIsoH‘𝐾)‘𝑊)
164, 8, 5, 15dihord 41266 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 𝑊) ∈ 𝐵𝑋𝐵) → ((𝐼‘(𝑋 𝑊)) ⊆ (𝐼𝑋) ↔ (𝑋 𝑊) 𝑋))
1712, 14, 3, 16syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ((𝐼‘(𝑋 𝑊)) ⊆ (𝐼𝑋) ↔ (𝑋 𝑊) 𝑋))
1811, 17mpbird 257 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼‘(𝑋 𝑊)) ⊆ (𝐼𝑋))
194, 8, 9latmle2 18510 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑊)
202, 3, 7, 19syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑋 𝑊) 𝑊)
214, 8, 5, 15dihord 41266 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 𝑊) ∈ 𝐵𝑊𝐵) → ((𝐼‘(𝑋 𝑊)) ⊆ (𝐼𝑊) ↔ (𝑋 𝑊) 𝑊))
2212, 14, 7, 21syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ((𝐼‘(𝑋 𝑊)) ⊆ (𝐼𝑊) ↔ (𝑋 𝑊) 𝑊))
2320, 22mpbird 257 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼‘(𝑋 𝑊)) ⊆ (𝐼𝑊))
2418, 23ssind 4241 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼‘(𝑋 𝑊)) ⊆ ((𝐼𝑋) ∩ (𝐼𝑊)))
255, 15dihvalrel 41281 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑋))
26 relin1 5822 . . . . 5 (Rel (𝐼𝑋) → Rel ((𝐼𝑋) ∩ (𝐼𝑊)))
2725, 26syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel ((𝐼𝑋) ∩ (𝐼𝑊)))
2827adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → Rel ((𝐼𝑋) ∩ (𝐼𝑊)))
29 elin 3967 . . . 4 (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑋) ∩ (𝐼𝑊)) ↔ (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑊)))
30 dihglblem5a.j . . . . . 6 = (join‘𝐾)
31 dihglblem5a.a . . . . . 6 𝐴 = (Atoms‘𝐾)
324, 8, 30, 9, 31, 5lhpmcvr2 40026 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))
33 dihglblem5a.p . . . . . . . . . . . 12 𝑃 = ((oc‘𝐾)‘𝑊)
34 dihglblem5a.t . . . . . . . . . . . 12 𝑇 = ((LTrn‘𝐾)‘𝑊)
35 dihglblem5a.r . . . . . . . . . . . 12 𝑅 = ((trL‘𝐾)‘𝑊)
36 dihglblem5a.e . . . . . . . . . . . 12 𝐸 = ((TEndo‘𝐾)‘𝑊)
37 dihglblem5a.g . . . . . . . . . . . 12 𝐺 = (𝑇 (𝑃) = 𝑞)
38 vex 3484 . . . . . . . . . . . 12 𝑓 ∈ V
39 vex 3484 . . . . . . . . . . . 12 𝑠 ∈ V
404, 8, 30, 9, 31, 5, 33, 34, 35, 36, 15, 37, 38, 39dihopelvalc 41251 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋)))
41 id 22 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
426adantl 481 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊𝐵)
434, 8latref 18486 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑊𝐵) → 𝑊 𝑊)
441, 6, 43syl2an 596 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊 𝑊)
45 dihglblem5a.o . . . . . . . . . . . . . 14 0 = (𝑇 ↦ ( I ↾ 𝐵))
464, 8, 5, 34, 35, 45, 15dihopelvalbN 41240 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑊𝐵𝑊 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑊) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 )))
4741, 42, 44, 46syl12anc 837 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑊) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 )))
48473ad2ant1 1134 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑊) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 )))
4940, 48anbi12d 632 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑊)) ↔ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))))
50 simprll 779 . . . . . . . . . . . . . 14 ((((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 )) → 𝑓𝑇)
5150adantl 481 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → 𝑓𝑇)
52 simprrr 782 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → 𝑠 = 0 )
5352fveq1d 6908 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( 0𝐺))
54 simpl1 1192 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
558, 31, 5, 33lhpocnel2 40021 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5654, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
57 simpl3l 1229 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
588, 31, 5, 34, 37ltrniotacl 40581 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → 𝐺𝑇)
5954, 56, 57, 58syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → 𝐺𝑇)
6045, 4tendo02 40789 . . . . . . . . . . . . . . . . . . . . . 22 (𝐺𝑇 → ( 0𝐺) = ( I ↾ 𝐵))
6159, 60syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → ( 0𝐺) = ( I ↾ 𝐵))
6253, 61eqtrd 2777 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( I ↾ 𝐵))
6362cnveqd 5886 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( I ↾ 𝐵))
64 cnvresid 6645 . . . . . . . . . . . . . . . . . . 19 ( I ↾ 𝐵) = ( I ↾ 𝐵)
6563, 64eqtrdi 2793 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( I ↾ 𝐵))
6665coeq2d 5873 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑓(𝑠𝐺)) = (𝑓 ∘ ( I ↾ 𝐵)))
674, 5, 34ltrn1o 40126 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → 𝑓:𝐵1-1-onto𝐵)
6854, 51, 67syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → 𝑓:𝐵1-1-onto𝐵)
69 f1of 6848 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐵1-1-onto𝐵𝑓:𝐵𝐵)
70 fcoi1 6782 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐵𝐵 → (𝑓 ∘ ( I ↾ 𝐵)) = 𝑓)
7168, 69, 703syl 18 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑓 ∘ ( I ↾ 𝐵)) = 𝑓)
7266, 71eqtrd 2777 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑓(𝑠𝐺)) = 𝑓)
7372fveq2d 6910 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑅‘(𝑓(𝑠𝐺))) = (𝑅𝑓))
74 simprlr 780 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑅‘(𝑓(𝑠𝐺))) 𝑋)
7573, 74eqbrtrrd 5167 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑅𝑓) 𝑋)
768, 5, 34, 35trlle 40186 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑅𝑓) 𝑊)
7754, 51, 76syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑅𝑓) 𝑊)
78 simpl1l 1225 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → 𝐾 ∈ HL)
7978hllatd 39365 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → 𝐾 ∈ Lat)
804, 5, 34, 35trlcl 40166 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑅𝑓) ∈ 𝐵)
8154, 51, 80syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑅𝑓) ∈ 𝐵)
82 simpl2l 1227 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → 𝑋𝐵)
83 simpl1r 1226 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → 𝑊𝐻)
8483, 6syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → 𝑊𝐵)
854, 8, 9latlem12 18511 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ ((𝑅𝑓) ∈ 𝐵𝑋𝐵𝑊𝐵)) → (((𝑅𝑓) 𝑋 ∧ (𝑅𝑓) 𝑊) ↔ (𝑅𝑓) (𝑋 𝑊)))
8679, 81, 82, 84, 85syl13anc 1374 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (((𝑅𝑓) 𝑋 ∧ (𝑅𝑓) 𝑊) ↔ (𝑅𝑓) (𝑋 𝑊)))
8775, 77, 86mpbi2and 712 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑅𝑓) (𝑋 𝑊))
8851, 87jca 511 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)))
8979, 82, 84, 13syl3anc 1373 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑋 𝑊) ∈ 𝐵)
9079, 82, 84, 19syl3anc 1373 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (𝑋 𝑊) 𝑊)
914, 8, 5, 34, 35, 45, 15dihopelvalbN 41240 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑋 𝑊) 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 0 )))
9254, 89, 90, 91syl12anc 837 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 0 )))
9388, 52, 92mpbir2and 713 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 ))) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊)))
9493ex 412 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) → ((((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑊) ∧ 𝑠 = 0 )) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))))
9549, 94sylbid 240 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑊)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))))
96953expia 1122 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑊)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊)))))
9796exp4c 432 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑞𝐴 → (¬ 𝑞 𝑊 → ((𝑞 (𝑋 𝑊)) = 𝑋 → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑊)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊)))))))
9897imp4a 422 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑞𝐴 → ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑊)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))))))
9998rexlimdv 3153 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑊)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊)))))
10032, 99mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑊)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))))
10129, 100biimtrid 242 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑋) ∩ (𝐼𝑊)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))))
10228, 101relssdv 5798 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ((𝐼𝑋) ∩ (𝐼𝑊)) ⊆ (𝐼‘(𝑋 𝑊)))
10324, 102eqssd 4001 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼‘(𝑋 𝑊)) = ((𝐼𝑋) ∩ (𝐼𝑊)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wrex 3070  cin 3950  wss 3951  cop 4632   class class class wbr 5143  cmpt 5225   I cid 5577  ccnv 5684  cres 5687  ccom 5689  Rel wrel 5690  wf 6557  1-1-ontowf1o 6560  cfv 6561  crio 7387  (class class class)co 7431  Basecbs 17247  lecple 17304  occoc 17305  joincjn 18357  meetcmee 18358  Latclat 18476  Atomscatm 39264  HLchlt 39351  LHypclh 39986  LTrncltrn 40103  trLctrl 40160  TEndoctendo 40754  DIsoHcdih 41230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-riotaBAD 38954
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-undef 8298  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-0g 17486  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cntz 19335  df-lsm 19654  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-drng 20731  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lvec 21102  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500  df-lplanes 39501  df-lvols 39502  df-lines 39503  df-psubsp 39505  df-pmap 39506  df-padd 39798  df-lhyp 39990  df-laut 39991  df-ldil 40106  df-ltrn 40107  df-trl 40161  df-tendo 40757  df-edring 40759  df-disoa 41031  df-dvech 41081  df-dib 41141  df-dic 41175  df-dih 41231
This theorem is referenced by:  dihglblem5aN  41294
  Copyright terms: Public domain W3C validator