Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem1N Structured version   Visualization version   GIF version

Theorem dihmeetlem1N 41247
Description: Isomorphism H of a conjunction. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem5a.b 𝐵 = (Base‘𝐾)
dihglblem5a.m = (meet‘𝐾)
dihglblem5a.h 𝐻 = (LHyp‘𝐾)
dihglblem5a.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihglblem5a.l = (le‘𝐾)
dihglblem5a.j = (join‘𝐾)
dihglblem5a.a 𝐴 = (Atoms‘𝐾)
dihglblem5a.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihglblem5a.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihglblem5a.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihglblem5a.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihglblem5a.g 𝐺 = (𝑇 (𝑃) = 𝑞)
dihglblem5a.o 0 = (𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
dihmeetlem1N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
Distinct variable groups:   ,𝑞   ,𝑞,   𝐴,,𝑞   𝐵,,𝑞   ,𝐻,𝑞   𝐼,𝑞   ,𝐾,𝑞   𝑃,   𝑇,   ,𝑊,𝑞   𝑋,𝑞   𝑌,𝑞
Allowed substitution hints:   𝑃(𝑞)   𝑅(,𝑞)   𝑇(𝑞)   𝐸(,𝑞)   𝐺(,𝑞)   𝐼()   (,𝑞)   ()   𝑋()   𝑌()   0 (,𝑞)

Proof of Theorem dihmeetlem1N
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1l 1197 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ HL)
21hllatd 39320 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ Lat)
3 simp2l 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋𝐵)
4 simp3l 1201 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌𝐵)
5 dihglblem5a.b . . . . . 6 𝐵 = (Base‘𝐾)
6 dihglblem5a.l . . . . . 6 = (le‘𝐾)
7 dihglblem5a.m . . . . . 6 = (meet‘𝐾)
85, 6, 7latmle1 18534 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑋)
92, 3, 4, 8syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) 𝑋)
10 simp1 1136 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
115, 7latmcl 18510 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
122, 3, 4, 11syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) ∈ 𝐵)
13 dihglblem5a.h . . . . . 6 𝐻 = (LHyp‘𝐾)
14 dihglblem5a.i . . . . . 6 𝐼 = ((DIsoH‘𝐾)‘𝑊)
155, 6, 13, 14dihord 41221 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 𝑌) ∈ 𝐵𝑋𝐵) → ((𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑋) ↔ (𝑋 𝑌) 𝑋))
1610, 12, 3, 15syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑋) ↔ (𝑋 𝑌) 𝑋))
179, 16mpbird 257 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑋))
185, 6, 7latmle2 18535 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑌)
192, 3, 4, 18syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) 𝑌)
205, 6, 13, 14dihord 41221 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → ((𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑌) ↔ (𝑋 𝑌) 𝑌))
2110, 12, 4, 20syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑌) ↔ (𝑋 𝑌) 𝑌))
2219, 21mpbird 257 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑌))
2317, 22ssind 4262 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) ⊆ ((𝐼𝑋) ∩ (𝐼𝑌)))
2413, 14dihvalrel 41236 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑋))
25 relin1 5836 . . . . 5 (Rel (𝐼𝑋) → Rel ((𝐼𝑋) ∩ (𝐼𝑌)))
2624, 25syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel ((𝐼𝑋) ∩ (𝐼𝑌)))
27263ad2ant1 1133 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → Rel ((𝐼𝑋) ∩ (𝐼𝑌)))
28 elin 3992 . . . 4 (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑋) ∩ (𝐼𝑌)) ↔ (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌)))
29 dihglblem5a.j . . . . . . 7 = (join‘𝐾)
30 dihglblem5a.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
315, 6, 29, 7, 30, 13lhpmcvr2 39981 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))
32313adant3 1132 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))
33 simpl1 1191 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
34 simpl2 1192 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
35 simprl 770 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → 𝑞𝐴)
36 simprrl 780 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → ¬ 𝑞 𝑊)
3735, 36jca 511 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
38 simprrr 781 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝑞 (𝑋 𝑊)) = 𝑋)
39 dihglblem5a.p . . . . . . . . 9 𝑃 = ((oc‘𝐾)‘𝑊)
40 dihglblem5a.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
41 dihglblem5a.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
42 dihglblem5a.e . . . . . . . . 9 𝐸 = ((TEndo‘𝐾)‘𝑊)
43 dihglblem5a.g . . . . . . . . 9 𝐺 = (𝑇 (𝑃) = 𝑞)
44 vex 3492 . . . . . . . . 9 𝑓 ∈ V
45 vex 3492 . . . . . . . . 9 𝑠 ∈ V
465, 6, 29, 7, 30, 13, 39, 40, 41, 42, 14, 43, 44, 45dihopelvalc 41206 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋)))
4733, 34, 37, 38, 46syl112anc 1374 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋)))
48 simpr 484 . . . . . . 7 (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) → (𝑅‘(𝑓(𝑠𝐺))) 𝑋)
4947, 48biimtrdi 253 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) → (𝑅‘(𝑓(𝑠𝐺))) 𝑋))
50 simpl3 1193 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝑌𝐵𝑌 𝑊))
51 dihglblem5a.o . . . . . . . . 9 0 = (𝑇 ↦ ( I ↾ 𝐵))
525, 6, 13, 40, 41, 51, 14dihopelvalbN 41195 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )))
5333, 50, 52syl2anc 583 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )))
5453biimpd 229 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌) → ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )))
55 simprll 778 . . . . . . . . . 10 (((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )) → 𝑓𝑇)
56553ad2ant3 1135 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑓𝑇)
57 simp3rr 1247 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑠 = 0 )
5857fveq1d 6922 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( 0𝐺))
59 simp11 1203 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
606, 30, 13, 39lhpocnel2 39976 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
6159, 60syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
62 simp2l 1199 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑞𝐴)
63 simp2rl 1242 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → ¬ 𝑞 𝑊)
646, 30, 13, 40, 43ltrniotacl 40536 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → 𝐺𝑇)
6559, 61, 62, 63, 64syl112anc 1374 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝐺𝑇)
6651, 5tendo02 40744 . . . . . . . . . . . . . . . . . 18 (𝐺𝑇 → ( 0𝐺) = ( I ↾ 𝐵))
6765, 66syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → ( 0𝐺) = ( I ↾ 𝐵))
6858, 67eqtrd 2780 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( I ↾ 𝐵))
6968cnveqd 5900 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( I ↾ 𝐵))
70 cnvresid 6657 . . . . . . . . . . . . . . 15 ( I ↾ 𝐵) = ( I ↾ 𝐵)
7169, 70eqtrdi 2796 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( I ↾ 𝐵))
7271coeq2d 5887 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑓(𝑠𝐺)) = (𝑓 ∘ ( I ↾ 𝐵)))
735, 13, 40ltrn1o 40081 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → 𝑓:𝐵1-1-onto𝐵)
7459, 56, 73syl2anc 583 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑓:𝐵1-1-onto𝐵)
75 f1of 6862 . . . . . . . . . . . . . 14 (𝑓:𝐵1-1-onto𝐵𝑓:𝐵𝐵)
76 fcoi1 6795 . . . . . . . . . . . . . 14 (𝑓:𝐵𝐵 → (𝑓 ∘ ( I ↾ 𝐵)) = 𝑓)
7774, 75, 763syl 18 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑓 ∘ ( I ↾ 𝐵)) = 𝑓)
7872, 77eqtrd 2780 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑓(𝑠𝐺)) = 𝑓)
7978fveq2d 6924 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅‘(𝑓(𝑠𝐺))) = (𝑅𝑓))
80 simp3l 1201 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅‘(𝑓(𝑠𝐺))) 𝑋)
8179, 80eqbrtrrd 5190 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅𝑓) 𝑋)
82 simprlr 779 . . . . . . . . . . 11 (((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )) → (𝑅𝑓) 𝑌)
83823ad2ant3 1135 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅𝑓) 𝑌)
84 simp11l 1284 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝐾 ∈ HL)
8584hllatd 39320 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝐾 ∈ Lat)
865, 13, 40, 41trlcl 40121 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑅𝑓) ∈ 𝐵)
8759, 56, 86syl2anc 583 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅𝑓) ∈ 𝐵)
88 simp12l 1286 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑋𝐵)
89 simp13l 1288 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑌𝐵)
905, 6, 7latlem12 18536 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ ((𝑅𝑓) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑅𝑓) 𝑋 ∧ (𝑅𝑓) 𝑌) ↔ (𝑅𝑓) (𝑋 𝑌)))
9185, 87, 88, 89, 90syl13anc 1372 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (((𝑅𝑓) 𝑋 ∧ (𝑅𝑓) 𝑌) ↔ (𝑅𝑓) (𝑋 𝑌)))
9281, 83, 91mpbi2and 711 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅𝑓) (𝑋 𝑌))
9356, 92jca 511 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑌)))
9485, 88, 89, 11syl3anc 1371 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑋 𝑌) ∈ 𝐵)
95 simp11r 1285 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑊𝐻)
965, 13lhpbase 39955 . . . . . . . . . . 11 (𝑊𝐻𝑊𝐵)
9795, 96syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑊𝐵)
9885, 88, 89, 18syl3anc 1371 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑋 𝑌) 𝑌)
99 simp13r 1289 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑌 𝑊)
1005, 6, 85, 94, 89, 97, 98, 99lattrd 18516 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑋 𝑌) 𝑊)
1015, 6, 13, 40, 41, 51, 14dihopelvalbN 41195 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑌) 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑌)) ∧ 𝑠 = 0 )))
10259, 94, 100, 101syl12anc 836 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑌)) ∧ 𝑠 = 0 )))
10393, 57, 102mpbir2and 712 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌)))
1041033expia 1121 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌))))
10549, 54, 104syl2and 607 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌))))
10632, 105rexlimddv 3167 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌))))
10728, 106biimtrid 242 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑋) ∩ (𝐼𝑌)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌))))
10827, 107relssdv 5812 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝐼𝑋) ∩ (𝐼𝑌)) ⊆ (𝐼‘(𝑋 𝑌)))
10923, 108eqssd 4026 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  cin 3975  wss 3976  cop 4654   class class class wbr 5166  cmpt 5249   I cid 5592  ccnv 5699  cres 5702  ccom 5704  Rel wrel 5705  wf 6569  1-1-ontowf1o 6572  cfv 6573  crio 7403  (class class class)co 7448  Basecbs 17258  lecple 17318  occoc 17319  joincjn 18381  meetcmee 18382  Latclat 18501  Atomscatm 39219  HLchlt 39306  LHypclh 39941  LTrncltrn 40058  trLctrl 40115  TEndoctendo 40709  DIsoHcdih 41185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-undef 8314  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-0g 17501  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cntz 19357  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lvec 21125  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457  df-lines 39458  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116  df-tendo 40712  df-edring 40714  df-disoa 40986  df-dvech 41036  df-dib 41096  df-dic 41130  df-dih 41186
This theorem is referenced by:  dihmeetbN  41260
  Copyright terms: Public domain W3C validator