Step | Hyp | Ref
| Expression |
1 | | simp1l 1196 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝐾 ∈ HL) |
2 | 1 | hllatd 37378 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝐾 ∈ Lat) |
3 | | simp2l 1198 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝑋 ∈ 𝐵) |
4 | | simp3l 1200 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝑌 ∈ 𝐵) |
5 | | dihglblem5a.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
6 | | dihglblem5a.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
7 | | dihglblem5a.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
8 | 5, 6, 7 | latmle1 18182 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑋) |
9 | 2, 3, 4, 8 | syl3anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝑋 ∧ 𝑌) ≤ 𝑋) |
10 | | simp1 1135 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
11 | 5, 7 | latmcl 18158 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
12 | 2, 3, 4, 11 | syl3anc 1370 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
13 | | dihglblem5a.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
14 | | dihglblem5a.i |
. . . . . 6
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
15 | 5, 6, 13, 14 | dihord 39278 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝐼‘(𝑋 ∧ 𝑌)) ⊆ (𝐼‘𝑋) ↔ (𝑋 ∧ 𝑌) ≤ 𝑋)) |
16 | 10, 12, 3, 15 | syl3anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((𝐼‘(𝑋 ∧ 𝑌)) ⊆ (𝐼‘𝑋) ↔ (𝑋 ∧ 𝑌) ≤ 𝑋)) |
17 | 9, 16 | mpbird 256 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝐼‘(𝑋 ∧ 𝑌)) ⊆ (𝐼‘𝑋)) |
18 | 5, 6, 7 | latmle2 18183 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
19 | 2, 3, 4, 18 | syl3anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
20 | 5, 6, 13, 14 | dihord 39278 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝐼‘(𝑋 ∧ 𝑌)) ⊆ (𝐼‘𝑌) ↔ (𝑋 ∧ 𝑌) ≤ 𝑌)) |
21 | 10, 12, 4, 20 | syl3anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((𝐼‘(𝑋 ∧ 𝑌)) ⊆ (𝐼‘𝑌) ↔ (𝑋 ∧ 𝑌) ≤ 𝑌)) |
22 | 19, 21 | mpbird 256 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝐼‘(𝑋 ∧ 𝑌)) ⊆ (𝐼‘𝑌)) |
23 | 17, 22 | ssind 4166 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝐼‘(𝑋 ∧ 𝑌)) ⊆ ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) |
24 | 13, 14 | dihvalrel 39293 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘𝑋)) |
25 | | relin1 5722 |
. . . . 5
⊢ (Rel
(𝐼‘𝑋) → Rel ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) |
26 | 24, 25 | syl 17 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Rel ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) |
27 | 26 | 3ad2ant1 1132 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → Rel ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) |
28 | | elin 3903 |
. . . 4
⊢
(〈𝑓, 𝑠〉 ∈ ((𝐼‘𝑋) ∩ (𝐼‘𝑌)) ↔ (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑋) ∧ 〈𝑓, 𝑠〉 ∈ (𝐼‘𝑌))) |
29 | | dihglblem5a.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
30 | | dihglblem5a.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
31 | 5, 6, 29, 7, 30, 13 | lhpmcvr2 38038 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
32 | 31 | 3adant3 1131 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
33 | | simpl1 1190 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
34 | | simpl2 1191 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) |
35 | | simprl 768 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → 𝑞 ∈ 𝐴) |
36 | | simprrl 778 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → ¬ 𝑞 ≤ 𝑊) |
37 | 35, 36 | jca 512 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) |
38 | | simprrr 779 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) |
39 | | dihglblem5a.p |
. . . . . . . . 9
⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
40 | | dihglblem5a.t |
. . . . . . . . 9
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
41 | | dihglblem5a.r |
. . . . . . . . 9
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
42 | | dihglblem5a.e |
. . . . . . . . 9
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
43 | | dihglblem5a.g |
. . . . . . . . 9
⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑞) |
44 | | vex 3436 |
. . . . . . . . 9
⊢ 𝑓 ∈ V |
45 | | vex 3436 |
. . . . . . . . 9
⊢ 𝑠 ∈ V |
46 | 5, 6, 29, 7, 30, 13, 39, 40, 41, 42, 14, 43, 44, 45 | dihopelvalc 39263 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊) ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑋) ↔ ((𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ (𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋))) |
47 | 33, 34, 37, 38, 46 | syl112anc 1373 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑋) ↔ ((𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ (𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋))) |
48 | | simpr 485 |
. . . . . . 7
⊢ (((𝑓 ∈ 𝑇 ∧ 𝑠 ∈ 𝐸) ∧ (𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋) → (𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋) |
49 | 47, 48 | syl6bi 252 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑋) → (𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋)) |
50 | | simpl3 1192 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) |
51 | | dihglblem5a.o |
. . . . . . . . 9
⊢ 0 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
52 | 5, 6, 13, 40, 41, 51, 14 | dihopelvalbN 39252 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑌) ↔ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) |
53 | 33, 50, 52 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑌) ↔ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) |
54 | 53 | biimpd 228 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑌) → ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) |
55 | | simprll 776 |
. . . . . . . . . 10
⊢ (((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 )) → 𝑓 ∈ 𝑇) |
56 | 55 | 3ad2ant3 1134 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → 𝑓 ∈ 𝑇) |
57 | | simp3rr 1246 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → 𝑠 = 0 ) |
58 | 57 | fveq1d 6776 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → (𝑠‘𝐺) = ( 0 ‘𝐺)) |
59 | | simp11 1202 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
60 | 6, 30, 13, 39 | lhpocnel2 38033 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
61 | 59, 60 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
62 | | simp2l 1198 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → 𝑞 ∈ 𝐴) |
63 | | simp2rl 1241 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → ¬ 𝑞 ≤ 𝑊) |
64 | 6, 30, 13, 40, 43 | ltrniotacl 38593 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) → 𝐺 ∈ 𝑇) |
65 | 59, 61, 62, 63, 64 | syl112anc 1373 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → 𝐺 ∈ 𝑇) |
66 | 51, 5 | tendo02 38801 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 ∈ 𝑇 → ( 0 ‘𝐺) = ( I ↾ 𝐵)) |
67 | 65, 66 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → ( 0 ‘𝐺) = ( I ↾ 𝐵)) |
68 | 58, 67 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → (𝑠‘𝐺) = ( I ↾ 𝐵)) |
69 | 68 | cnveqd 5784 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → ◡(𝑠‘𝐺) = ◡( I ↾ 𝐵)) |
70 | | cnvresid 6513 |
. . . . . . . . . . . . . . 15
⊢ ◡( I ↾ 𝐵) = ( I ↾ 𝐵) |
71 | 69, 70 | eqtrdi 2794 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → ◡(𝑠‘𝐺) = ( I ↾ 𝐵)) |
72 | 71 | coeq2d 5771 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → (𝑓 ∘ ◡(𝑠‘𝐺)) = (𝑓 ∘ ( I ↾ 𝐵))) |
73 | 5, 13, 40 | ltrn1o 38138 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → 𝑓:𝐵–1-1-onto→𝐵) |
74 | 59, 56, 73 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → 𝑓:𝐵–1-1-onto→𝐵) |
75 | | f1of 6716 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝐵–1-1-onto→𝐵 → 𝑓:𝐵⟶𝐵) |
76 | | fcoi1 6648 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝐵⟶𝐵 → (𝑓 ∘ ( I ↾ 𝐵)) = 𝑓) |
77 | 74, 75, 76 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → (𝑓 ∘ ( I ↾ 𝐵)) = 𝑓) |
78 | 72, 77 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → (𝑓 ∘ ◡(𝑠‘𝐺)) = 𝑓) |
79 | 78 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → (𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) = (𝑅‘𝑓)) |
80 | | simp3l 1200 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → (𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋) |
81 | 79, 80 | eqbrtrrd 5098 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → (𝑅‘𝑓) ≤ 𝑋) |
82 | | simprlr 777 |
. . . . . . . . . . 11
⊢ (((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 )) → (𝑅‘𝑓) ≤ 𝑌) |
83 | 82 | 3ad2ant3 1134 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → (𝑅‘𝑓) ≤ 𝑌) |
84 | | simp11l 1283 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → 𝐾 ∈ HL) |
85 | 84 | hllatd 37378 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → 𝐾 ∈ Lat) |
86 | 5, 13, 40, 41 | trlcl 38178 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ 𝑇) → (𝑅‘𝑓) ∈ 𝐵) |
87 | 59, 56, 86 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → (𝑅‘𝑓) ∈ 𝐵) |
88 | | simp12l 1285 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → 𝑋 ∈ 𝐵) |
89 | | simp13l 1287 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → 𝑌 ∈ 𝐵) |
90 | 5, 6, 7 | latlem12 18184 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ ((𝑅‘𝑓) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑅‘𝑓) ≤ 𝑋 ∧ (𝑅‘𝑓) ≤ 𝑌) ↔ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑌))) |
91 | 85, 87, 88, 89, 90 | syl13anc 1371 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → (((𝑅‘𝑓) ≤ 𝑋 ∧ (𝑅‘𝑓) ≤ 𝑌) ↔ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑌))) |
92 | 81, 83, 91 | mpbi2and 709 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑌)) |
93 | 56, 92 | jca 512 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → (𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑌))) |
94 | 85, 88, 89, 11 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
95 | | simp11r 1284 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → 𝑊 ∈ 𝐻) |
96 | 5, 13 | lhpbase 38012 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
97 | 95, 96 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → 𝑊 ∈ 𝐵) |
98 | 85, 88, 89, 18 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → (𝑋 ∧ 𝑌) ≤ 𝑌) |
99 | | simp13r 1288 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → 𝑌 ≤ 𝑊) |
100 | 5, 6, 85, 94, 89, 97, 98, 99 | lattrd 18164 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → (𝑋 ∧ 𝑌) ≤ 𝑊) |
101 | 5, 6, 13, 40, 41, 51, 14 | dihopelvalbN 39252 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (〈𝑓, 𝑠〉 ∈ (𝐼‘(𝑋 ∧ 𝑌)) ↔ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑌)) ∧ 𝑠 = 0 ))) |
102 | 59, 94, 100, 101 | syl12anc 834 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → (〈𝑓, 𝑠〉 ∈ (𝐼‘(𝑋 ∧ 𝑌)) ↔ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑌)) ∧ 𝑠 = 0 ))) |
103 | 93, 57, 102 | mpbir2and 710 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 ))) → 〈𝑓, 𝑠〉 ∈ (𝐼‘(𝑋 ∧ 𝑌))) |
104 | 103 | 3expia 1120 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (((𝑅‘(𝑓 ∘ ◡(𝑠‘𝐺))) ≤ 𝑋 ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ 𝑌) ∧ 𝑠 = 0 )) → 〈𝑓, 𝑠〉 ∈ (𝐼‘(𝑋 ∧ 𝑌)))) |
105 | 49, 54, 104 | syl2and 608 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → ((〈𝑓, 𝑠〉 ∈ (𝐼‘𝑋) ∧ 〈𝑓, 𝑠〉 ∈ (𝐼‘𝑌)) → 〈𝑓, 𝑠〉 ∈ (𝐼‘(𝑋 ∧ 𝑌)))) |
106 | 32, 105 | rexlimddv 3220 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((〈𝑓, 𝑠〉 ∈ (𝐼‘𝑋) ∧ 〈𝑓, 𝑠〉 ∈ (𝐼‘𝑌)) → 〈𝑓, 𝑠〉 ∈ (𝐼‘(𝑋 ∧ 𝑌)))) |
107 | 28, 106 | syl5bi 241 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (〈𝑓, 𝑠〉 ∈ ((𝐼‘𝑋) ∩ (𝐼‘𝑌)) → 〈𝑓, 𝑠〉 ∈ (𝐼‘(𝑋 ∧ 𝑌)))) |
108 | 27, 107 | relssdv 5698 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑋) ∩ (𝐼‘𝑌)) ⊆ (𝐼‘(𝑋 ∧ 𝑌))) |
109 | 23, 108 | eqssd 3938 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) |