Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem1N Structured version   Visualization version   GIF version

Theorem dihmeetlem1N 39041
Description: Isomorphism H of a conjunction. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem5a.b 𝐵 = (Base‘𝐾)
dihglblem5a.m = (meet‘𝐾)
dihglblem5a.h 𝐻 = (LHyp‘𝐾)
dihglblem5a.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihglblem5a.l = (le‘𝐾)
dihglblem5a.j = (join‘𝐾)
dihglblem5a.a 𝐴 = (Atoms‘𝐾)
dihglblem5a.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihglblem5a.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihglblem5a.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihglblem5a.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihglblem5a.g 𝐺 = (𝑇 (𝑃) = 𝑞)
dihglblem5a.o 0 = (𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
dihmeetlem1N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
Distinct variable groups:   ,𝑞   ,𝑞,   𝐴,,𝑞   𝐵,,𝑞   ,𝐻,𝑞   𝐼,𝑞   ,𝐾,𝑞   𝑃,   𝑇,   ,𝑊,𝑞   𝑋,𝑞   𝑌,𝑞
Allowed substitution hints:   𝑃(𝑞)   𝑅(,𝑞)   𝑇(𝑞)   𝐸(,𝑞)   𝐺(,𝑞)   𝐼()   (,𝑞)   ()   𝑋()   𝑌()   0 (,𝑞)

Proof of Theorem dihmeetlem1N
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1l 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ HL)
21hllatd 37115 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ Lat)
3 simp2l 1201 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋𝐵)
4 simp3l 1203 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌𝐵)
5 dihglblem5a.b . . . . . 6 𝐵 = (Base‘𝐾)
6 dihglblem5a.l . . . . . 6 = (le‘𝐾)
7 dihglblem5a.m . . . . . 6 = (meet‘𝐾)
85, 6, 7latmle1 17970 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑋)
92, 3, 4, 8syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) 𝑋)
10 simp1 1138 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
115, 7latmcl 17946 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
122, 3, 4, 11syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) ∈ 𝐵)
13 dihglblem5a.h . . . . . 6 𝐻 = (LHyp‘𝐾)
14 dihglblem5a.i . . . . . 6 𝐼 = ((DIsoH‘𝐾)‘𝑊)
155, 6, 13, 14dihord 39015 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 𝑌) ∈ 𝐵𝑋𝐵) → ((𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑋) ↔ (𝑋 𝑌) 𝑋))
1610, 12, 3, 15syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑋) ↔ (𝑋 𝑌) 𝑋))
179, 16mpbird 260 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑋))
185, 6, 7latmle2 17971 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑌)
192, 3, 4, 18syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) 𝑌)
205, 6, 13, 14dihord 39015 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → ((𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑌) ↔ (𝑋 𝑌) 𝑌))
2110, 12, 4, 20syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑌) ↔ (𝑋 𝑌) 𝑌))
2219, 21mpbird 260 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑌))
2317, 22ssind 4147 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) ⊆ ((𝐼𝑋) ∩ (𝐼𝑌)))
2413, 14dihvalrel 39030 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑋))
25 relin1 5682 . . . . 5 (Rel (𝐼𝑋) → Rel ((𝐼𝑋) ∩ (𝐼𝑌)))
2624, 25syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel ((𝐼𝑋) ∩ (𝐼𝑌)))
27263ad2ant1 1135 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → Rel ((𝐼𝑋) ∩ (𝐼𝑌)))
28 elin 3882 . . . 4 (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑋) ∩ (𝐼𝑌)) ↔ (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌)))
29 dihglblem5a.j . . . . . . 7 = (join‘𝐾)
30 dihglblem5a.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
315, 6, 29, 7, 30, 13lhpmcvr2 37775 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))
32313adant3 1134 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))
33 simpl1 1193 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
34 simpl2 1194 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
35 simprl 771 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → 𝑞𝐴)
36 simprrl 781 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → ¬ 𝑞 𝑊)
3735, 36jca 515 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
38 simprrr 782 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝑞 (𝑋 𝑊)) = 𝑋)
39 dihglblem5a.p . . . . . . . . 9 𝑃 = ((oc‘𝐾)‘𝑊)
40 dihglblem5a.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
41 dihglblem5a.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
42 dihglblem5a.e . . . . . . . . 9 𝐸 = ((TEndo‘𝐾)‘𝑊)
43 dihglblem5a.g . . . . . . . . 9 𝐺 = (𝑇 (𝑃) = 𝑞)
44 vex 3412 . . . . . . . . 9 𝑓 ∈ V
45 vex 3412 . . . . . . . . 9 𝑠 ∈ V
465, 6, 29, 7, 30, 13, 39, 40, 41, 42, 14, 43, 44, 45dihopelvalc 39000 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋)))
4733, 34, 37, 38, 46syl112anc 1376 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋)))
48 simpr 488 . . . . . . 7 (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) → (𝑅‘(𝑓(𝑠𝐺))) 𝑋)
4947, 48syl6bi 256 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) → (𝑅‘(𝑓(𝑠𝐺))) 𝑋))
50 simpl3 1195 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝑌𝐵𝑌 𝑊))
51 dihglblem5a.o . . . . . . . . 9 0 = (𝑇 ↦ ( I ↾ 𝐵))
525, 6, 13, 40, 41, 51, 14dihopelvalbN 38989 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )))
5333, 50, 52syl2anc 587 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )))
5453biimpd 232 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌) → ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )))
55 simprll 779 . . . . . . . . . 10 (((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )) → 𝑓𝑇)
56553ad2ant3 1137 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑓𝑇)
57 simp3rr 1249 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑠 = 0 )
5857fveq1d 6719 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( 0𝐺))
59 simp11 1205 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
606, 30, 13, 39lhpocnel2 37770 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
6159, 60syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
62 simp2l 1201 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑞𝐴)
63 simp2rl 1244 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → ¬ 𝑞 𝑊)
646, 30, 13, 40, 43ltrniotacl 38330 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → 𝐺𝑇)
6559, 61, 62, 63, 64syl112anc 1376 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝐺𝑇)
6651, 5tendo02 38538 . . . . . . . . . . . . . . . . . 18 (𝐺𝑇 → ( 0𝐺) = ( I ↾ 𝐵))
6765, 66syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → ( 0𝐺) = ( I ↾ 𝐵))
6858, 67eqtrd 2777 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( I ↾ 𝐵))
6968cnveqd 5744 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( I ↾ 𝐵))
70 cnvresid 6459 . . . . . . . . . . . . . . 15 ( I ↾ 𝐵) = ( I ↾ 𝐵)
7169, 70eqtrdi 2794 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( I ↾ 𝐵))
7271coeq2d 5731 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑓(𝑠𝐺)) = (𝑓 ∘ ( I ↾ 𝐵)))
735, 13, 40ltrn1o 37875 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → 𝑓:𝐵1-1-onto𝐵)
7459, 56, 73syl2anc 587 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑓:𝐵1-1-onto𝐵)
75 f1of 6661 . . . . . . . . . . . . . 14 (𝑓:𝐵1-1-onto𝐵𝑓:𝐵𝐵)
76 fcoi1 6593 . . . . . . . . . . . . . 14 (𝑓:𝐵𝐵 → (𝑓 ∘ ( I ↾ 𝐵)) = 𝑓)
7774, 75, 763syl 18 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑓 ∘ ( I ↾ 𝐵)) = 𝑓)
7872, 77eqtrd 2777 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑓(𝑠𝐺)) = 𝑓)
7978fveq2d 6721 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅‘(𝑓(𝑠𝐺))) = (𝑅𝑓))
80 simp3l 1203 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅‘(𝑓(𝑠𝐺))) 𝑋)
8179, 80eqbrtrrd 5077 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅𝑓) 𝑋)
82 simprlr 780 . . . . . . . . . . 11 (((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )) → (𝑅𝑓) 𝑌)
83823ad2ant3 1137 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅𝑓) 𝑌)
84 simp11l 1286 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝐾 ∈ HL)
8584hllatd 37115 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝐾 ∈ Lat)
865, 13, 40, 41trlcl 37915 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑅𝑓) ∈ 𝐵)
8759, 56, 86syl2anc 587 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅𝑓) ∈ 𝐵)
88 simp12l 1288 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑋𝐵)
89 simp13l 1290 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑌𝐵)
905, 6, 7latlem12 17972 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ ((𝑅𝑓) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑅𝑓) 𝑋 ∧ (𝑅𝑓) 𝑌) ↔ (𝑅𝑓) (𝑋 𝑌)))
9185, 87, 88, 89, 90syl13anc 1374 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (((𝑅𝑓) 𝑋 ∧ (𝑅𝑓) 𝑌) ↔ (𝑅𝑓) (𝑋 𝑌)))
9281, 83, 91mpbi2and 712 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅𝑓) (𝑋 𝑌))
9356, 92jca 515 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑌)))
9485, 88, 89, 11syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑋 𝑌) ∈ 𝐵)
95 simp11r 1287 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑊𝐻)
965, 13lhpbase 37749 . . . . . . . . . . 11 (𝑊𝐻𝑊𝐵)
9795, 96syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑊𝐵)
9885, 88, 89, 18syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑋 𝑌) 𝑌)
99 simp13r 1291 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑌 𝑊)
1005, 6, 85, 94, 89, 97, 98, 99lattrd 17952 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑋 𝑌) 𝑊)
1015, 6, 13, 40, 41, 51, 14dihopelvalbN 38989 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑌) 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑌)) ∧ 𝑠 = 0 )))
10259, 94, 100, 101syl12anc 837 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑌)) ∧ 𝑠 = 0 )))
10393, 57, 102mpbir2and 713 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌)))
1041033expia 1123 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌))))
10549, 54, 104syl2and 611 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌))))
10632, 105rexlimddv 3210 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌))))
10728, 106syl5bi 245 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑋) ∩ (𝐼𝑌)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌))))
10827, 107relssdv 5658 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝐼𝑋) ∩ (𝐼𝑌)) ⊆ (𝐼‘(𝑋 𝑌)))
10923, 108eqssd 3918 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wrex 3062  cin 3865  wss 3866  cop 4547   class class class wbr 5053  cmpt 5135   I cid 5454  ccnv 5550  cres 5553  ccom 5555  Rel wrel 5556  wf 6376  1-1-ontowf1o 6379  cfv 6380  crio 7169  (class class class)co 7213  Basecbs 16760  lecple 16809  occoc 16810  joincjn 17818  meetcmee 17819  Latclat 17937  Atomscatm 37014  HLchlt 37101  LHypclh 37735  LTrncltrn 37852  trLctrl 37909  TEndoctendo 38503  DIsoHcdih 38979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-riotaBAD 36704
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-tpos 7968  df-undef 8015  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-0g 16946  df-proset 17802  df-poset 17820  df-plt 17836  df-lub 17852  df-glb 17853  df-join 17854  df-meet 17855  df-p0 17931  df-p1 17932  df-lat 17938  df-clat 18005  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-subg 18540  df-cntz 18711  df-lsm 19025  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-oppr 19641  df-dvdsr 19659  df-unit 19660  df-invr 19690  df-dvr 19701  df-drng 19769  df-lmod 19901  df-lss 19969  df-lsp 20009  df-lvec 20140  df-oposet 36927  df-ol 36929  df-oml 36930  df-covers 37017  df-ats 37018  df-atl 37049  df-cvlat 37073  df-hlat 37102  df-llines 37249  df-lplanes 37250  df-lvols 37251  df-lines 37252  df-psubsp 37254  df-pmap 37255  df-padd 37547  df-lhyp 37739  df-laut 37740  df-ldil 37855  df-ltrn 37856  df-trl 37910  df-tendo 38506  df-edring 38508  df-disoa 38780  df-dvech 38830  df-dib 38890  df-dic 38924  df-dih 38980
This theorem is referenced by:  dihmeetbN  39054
  Copyright terms: Public domain W3C validator