Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem1N Structured version   Visualization version   GIF version

Theorem dihmeetlem1N 39753
Description: Isomorphism H of a conjunction. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem5a.b 𝐵 = (Base‘𝐾)
dihglblem5a.m = (meet‘𝐾)
dihglblem5a.h 𝐻 = (LHyp‘𝐾)
dihglblem5a.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihglblem5a.l = (le‘𝐾)
dihglblem5a.j = (join‘𝐾)
dihglblem5a.a 𝐴 = (Atoms‘𝐾)
dihglblem5a.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihglblem5a.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihglblem5a.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihglblem5a.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihglblem5a.g 𝐺 = (𝑇 (𝑃) = 𝑞)
dihglblem5a.o 0 = (𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
dihmeetlem1N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
Distinct variable groups:   ,𝑞   ,𝑞,   𝐴,,𝑞   𝐵,,𝑞   ,𝐻,𝑞   𝐼,𝑞   ,𝐾,𝑞   𝑃,   𝑇,   ,𝑊,𝑞   𝑋,𝑞   𝑌,𝑞
Allowed substitution hints:   𝑃(𝑞)   𝑅(,𝑞)   𝑇(𝑞)   𝐸(,𝑞)   𝐺(,𝑞)   𝐼()   (,𝑞)   ()   𝑋()   𝑌()   0 (,𝑞)

Proof of Theorem dihmeetlem1N
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1l 1197 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ HL)
21hllatd 37826 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ Lat)
3 simp2l 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋𝐵)
4 simp3l 1201 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌𝐵)
5 dihglblem5a.b . . . . . 6 𝐵 = (Base‘𝐾)
6 dihglblem5a.l . . . . . 6 = (le‘𝐾)
7 dihglblem5a.m . . . . . 6 = (meet‘𝐾)
85, 6, 7latmle1 18353 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑋)
92, 3, 4, 8syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) 𝑋)
10 simp1 1136 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
115, 7latmcl 18329 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
122, 3, 4, 11syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) ∈ 𝐵)
13 dihglblem5a.h . . . . . 6 𝐻 = (LHyp‘𝐾)
14 dihglblem5a.i . . . . . 6 𝐼 = ((DIsoH‘𝐾)‘𝑊)
155, 6, 13, 14dihord 39727 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 𝑌) ∈ 𝐵𝑋𝐵) → ((𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑋) ↔ (𝑋 𝑌) 𝑋))
1610, 12, 3, 15syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑋) ↔ (𝑋 𝑌) 𝑋))
179, 16mpbird 256 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑋))
185, 6, 7latmle2 18354 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑌)
192, 3, 4, 18syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) 𝑌)
205, 6, 13, 14dihord 39727 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → ((𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑌) ↔ (𝑋 𝑌) 𝑌))
2110, 12, 4, 20syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑌) ↔ (𝑋 𝑌) 𝑌))
2219, 21mpbird 256 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑌))
2317, 22ssind 4192 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) ⊆ ((𝐼𝑋) ∩ (𝐼𝑌)))
2413, 14dihvalrel 39742 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑋))
25 relin1 5768 . . . . 5 (Rel (𝐼𝑋) → Rel ((𝐼𝑋) ∩ (𝐼𝑌)))
2624, 25syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel ((𝐼𝑋) ∩ (𝐼𝑌)))
27263ad2ant1 1133 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → Rel ((𝐼𝑋) ∩ (𝐼𝑌)))
28 elin 3926 . . . 4 (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑋) ∩ (𝐼𝑌)) ↔ (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌)))
29 dihglblem5a.j . . . . . . 7 = (join‘𝐾)
30 dihglblem5a.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
315, 6, 29, 7, 30, 13lhpmcvr2 38487 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))
32313adant3 1132 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))
33 simpl1 1191 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
34 simpl2 1192 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
35 simprl 769 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → 𝑞𝐴)
36 simprrl 779 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → ¬ 𝑞 𝑊)
3735, 36jca 512 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
38 simprrr 780 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝑞 (𝑋 𝑊)) = 𝑋)
39 dihglblem5a.p . . . . . . . . 9 𝑃 = ((oc‘𝐾)‘𝑊)
40 dihglblem5a.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
41 dihglblem5a.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
42 dihglblem5a.e . . . . . . . . 9 𝐸 = ((TEndo‘𝐾)‘𝑊)
43 dihglblem5a.g . . . . . . . . 9 𝐺 = (𝑇 (𝑃) = 𝑞)
44 vex 3449 . . . . . . . . 9 𝑓 ∈ V
45 vex 3449 . . . . . . . . 9 𝑠 ∈ V
465, 6, 29, 7, 30, 13, 39, 40, 41, 42, 14, 43, 44, 45dihopelvalc 39712 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋)))
4733, 34, 37, 38, 46syl112anc 1374 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋)))
48 simpr 485 . . . . . . 7 (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) → (𝑅‘(𝑓(𝑠𝐺))) 𝑋)
4947, 48syl6bi 252 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) → (𝑅‘(𝑓(𝑠𝐺))) 𝑋))
50 simpl3 1193 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝑌𝐵𝑌 𝑊))
51 dihglblem5a.o . . . . . . . . 9 0 = (𝑇 ↦ ( I ↾ 𝐵))
525, 6, 13, 40, 41, 51, 14dihopelvalbN 39701 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )))
5333, 50, 52syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )))
5453biimpd 228 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌) → ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )))
55 simprll 777 . . . . . . . . . 10 (((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )) → 𝑓𝑇)
56553ad2ant3 1135 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑓𝑇)
57 simp3rr 1247 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑠 = 0 )
5857fveq1d 6844 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( 0𝐺))
59 simp11 1203 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
606, 30, 13, 39lhpocnel2 38482 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
6159, 60syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
62 simp2l 1199 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑞𝐴)
63 simp2rl 1242 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → ¬ 𝑞 𝑊)
646, 30, 13, 40, 43ltrniotacl 39042 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → 𝐺𝑇)
6559, 61, 62, 63, 64syl112anc 1374 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝐺𝑇)
6651, 5tendo02 39250 . . . . . . . . . . . . . . . . . 18 (𝐺𝑇 → ( 0𝐺) = ( I ↾ 𝐵))
6765, 66syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → ( 0𝐺) = ( I ↾ 𝐵))
6858, 67eqtrd 2776 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( I ↾ 𝐵))
6968cnveqd 5831 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( I ↾ 𝐵))
70 cnvresid 6580 . . . . . . . . . . . . . . 15 ( I ↾ 𝐵) = ( I ↾ 𝐵)
7169, 70eqtrdi 2792 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( I ↾ 𝐵))
7271coeq2d 5818 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑓(𝑠𝐺)) = (𝑓 ∘ ( I ↾ 𝐵)))
735, 13, 40ltrn1o 38587 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → 𝑓:𝐵1-1-onto𝐵)
7459, 56, 73syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑓:𝐵1-1-onto𝐵)
75 f1of 6784 . . . . . . . . . . . . . 14 (𝑓:𝐵1-1-onto𝐵𝑓:𝐵𝐵)
76 fcoi1 6716 . . . . . . . . . . . . . 14 (𝑓:𝐵𝐵 → (𝑓 ∘ ( I ↾ 𝐵)) = 𝑓)
7774, 75, 763syl 18 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑓 ∘ ( I ↾ 𝐵)) = 𝑓)
7872, 77eqtrd 2776 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑓(𝑠𝐺)) = 𝑓)
7978fveq2d 6846 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅‘(𝑓(𝑠𝐺))) = (𝑅𝑓))
80 simp3l 1201 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅‘(𝑓(𝑠𝐺))) 𝑋)
8179, 80eqbrtrrd 5129 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅𝑓) 𝑋)
82 simprlr 778 . . . . . . . . . . 11 (((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )) → (𝑅𝑓) 𝑌)
83823ad2ant3 1135 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅𝑓) 𝑌)
84 simp11l 1284 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝐾 ∈ HL)
8584hllatd 37826 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝐾 ∈ Lat)
865, 13, 40, 41trlcl 38627 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑅𝑓) ∈ 𝐵)
8759, 56, 86syl2anc 584 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅𝑓) ∈ 𝐵)
88 simp12l 1286 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑋𝐵)
89 simp13l 1288 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑌𝐵)
905, 6, 7latlem12 18355 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ ((𝑅𝑓) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑅𝑓) 𝑋 ∧ (𝑅𝑓) 𝑌) ↔ (𝑅𝑓) (𝑋 𝑌)))
9185, 87, 88, 89, 90syl13anc 1372 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (((𝑅𝑓) 𝑋 ∧ (𝑅𝑓) 𝑌) ↔ (𝑅𝑓) (𝑋 𝑌)))
9281, 83, 91mpbi2and 710 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅𝑓) (𝑋 𝑌))
9356, 92jca 512 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑌)))
9485, 88, 89, 11syl3anc 1371 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑋 𝑌) ∈ 𝐵)
95 simp11r 1285 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑊𝐻)
965, 13lhpbase 38461 . . . . . . . . . . 11 (𝑊𝐻𝑊𝐵)
9795, 96syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑊𝐵)
9885, 88, 89, 18syl3anc 1371 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑋 𝑌) 𝑌)
99 simp13r 1289 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑌 𝑊)
1005, 6, 85, 94, 89, 97, 98, 99lattrd 18335 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑋 𝑌) 𝑊)
1015, 6, 13, 40, 41, 51, 14dihopelvalbN 39701 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑌) 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑌)) ∧ 𝑠 = 0 )))
10259, 94, 100, 101syl12anc 835 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑌)) ∧ 𝑠 = 0 )))
10393, 57, 102mpbir2and 711 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌)))
1041033expia 1121 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌))))
10549, 54, 104syl2and 608 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌))))
10632, 105rexlimddv 3158 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌))))
10728, 106biimtrid 241 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑋) ∩ (𝐼𝑌)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌))))
10827, 107relssdv 5744 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝐼𝑋) ∩ (𝐼𝑌)) ⊆ (𝐼‘(𝑋 𝑌)))
10923, 108eqssd 3961 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073  cin 3909  wss 3910  cop 4592   class class class wbr 5105  cmpt 5188   I cid 5530  ccnv 5632  cres 5635  ccom 5637  Rel wrel 5638  wf 6492  1-1-ontowf1o 6495  cfv 6496  crio 7312  (class class class)co 7357  Basecbs 17083  lecple 17140  occoc 17141  joincjn 18200  meetcmee 18201  Latclat 18320  Atomscatm 37725  HLchlt 37812  LHypclh 38447  LTrncltrn 38564  trLctrl 38621  TEndoctendo 39215  DIsoHcdih 39691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-riotaBAD 37415
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-undef 8204  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-0g 17323  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cntz 19097  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-drng 20187  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lvec 20564  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961  df-lplanes 37962  df-lvols 37963  df-lines 37964  df-psubsp 37966  df-pmap 37967  df-padd 38259  df-lhyp 38451  df-laut 38452  df-ldil 38567  df-ltrn 38568  df-trl 38622  df-tendo 39218  df-edring 39220  df-disoa 39492  df-dvech 39542  df-dib 39602  df-dic 39636  df-dih 39692
This theorem is referenced by:  dihmeetbN  39766
  Copyright terms: Public domain W3C validator