Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem1N Structured version   Visualization version   GIF version

Theorem dihmeetlem1N 38605
 Description: Isomorphism H of a conjunction. (Contributed by NM, 21-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem5a.b 𝐵 = (Base‘𝐾)
dihglblem5a.m = (meet‘𝐾)
dihglblem5a.h 𝐻 = (LHyp‘𝐾)
dihglblem5a.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihglblem5a.l = (le‘𝐾)
dihglblem5a.j = (join‘𝐾)
dihglblem5a.a 𝐴 = (Atoms‘𝐾)
dihglblem5a.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihglblem5a.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihglblem5a.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihglblem5a.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihglblem5a.g 𝐺 = (𝑇 (𝑃) = 𝑞)
dihglblem5a.o 0 = (𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
dihmeetlem1N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
Distinct variable groups:   ,𝑞   ,𝑞,   𝐴,,𝑞   𝐵,,𝑞   ,𝐻,𝑞   𝐼,𝑞   ,𝐾,𝑞   𝑃,   𝑇,   ,𝑊,𝑞   𝑋,𝑞   𝑌,𝑞
Allowed substitution hints:   𝑃(𝑞)   𝑅(,𝑞)   𝑇(𝑞)   𝐸(,𝑞)   𝐺(,𝑞)   𝐼()   (,𝑞)   ()   𝑋()   𝑌()   0 (,𝑞)

Proof of Theorem dihmeetlem1N
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1l 1194 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ HL)
21hllatd 36679 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝐾 ∈ Lat)
3 simp2l 1196 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑋𝐵)
4 simp3l 1198 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → 𝑌𝐵)
5 dihglblem5a.b . . . . . 6 𝐵 = (Base‘𝐾)
6 dihglblem5a.l . . . . . 6 = (le‘𝐾)
7 dihglblem5a.m . . . . . 6 = (meet‘𝐾)
85, 6, 7latmle1 17681 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑋)
92, 3, 4, 8syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) 𝑋)
10 simp1 1133 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
115, 7latmcl 17657 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
122, 3, 4, 11syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) ∈ 𝐵)
13 dihglblem5a.h . . . . . 6 𝐻 = (LHyp‘𝐾)
14 dihglblem5a.i . . . . . 6 𝐼 = ((DIsoH‘𝐾)‘𝑊)
155, 6, 13, 14dihord 38579 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 𝑌) ∈ 𝐵𝑋𝐵) → ((𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑋) ↔ (𝑋 𝑌) 𝑋))
1610, 12, 3, 15syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑋) ↔ (𝑋 𝑌) 𝑋))
179, 16mpbird 260 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑋))
185, 6, 7latmle2 17682 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑌)
192, 3, 4, 18syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝑋 𝑌) 𝑌)
205, 6, 13, 14dihord 38579 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → ((𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑌) ↔ (𝑋 𝑌) 𝑌))
2110, 12, 4, 20syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑌) ↔ (𝑋 𝑌) 𝑌))
2219, 21mpbird 260 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) ⊆ (𝐼𝑌))
2317, 22ssind 4159 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) ⊆ ((𝐼𝑋) ∩ (𝐼𝑌)))
2413, 14dihvalrel 38594 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑋))
25 relin1 5650 . . . . 5 (Rel (𝐼𝑋) → Rel ((𝐼𝑋) ∩ (𝐼𝑌)))
2624, 25syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel ((𝐼𝑋) ∩ (𝐼𝑌)))
27263ad2ant1 1130 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → Rel ((𝐼𝑋) ∩ (𝐼𝑌)))
28 elin 3897 . . . 4 (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑋) ∩ (𝐼𝑌)) ↔ (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌)))
29 dihglblem5a.j . . . . . . 7 = (join‘𝐾)
30 dihglblem5a.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
315, 6, 29, 7, 30, 13lhpmcvr2 37339 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))
32313adant3 1129 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))
33 simpl1 1188 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
34 simpl2 1189 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
35 simprl 770 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → 𝑞𝐴)
36 simprrl 780 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → ¬ 𝑞 𝑊)
3735, 36jca 515 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
38 simprrr 781 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝑞 (𝑋 𝑊)) = 𝑋)
39 dihglblem5a.p . . . . . . . . 9 𝑃 = ((oc‘𝐾)‘𝑊)
40 dihglblem5a.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
41 dihglblem5a.r . . . . . . . . 9 𝑅 = ((trL‘𝐾)‘𝑊)
42 dihglblem5a.e . . . . . . . . 9 𝐸 = ((TEndo‘𝐾)‘𝑊)
43 dihglblem5a.g . . . . . . . . 9 𝐺 = (𝑇 (𝑃) = 𝑞)
44 vex 3444 . . . . . . . . 9 𝑓 ∈ V
45 vex 3444 . . . . . . . . 9 𝑠 ∈ V
465, 6, 29, 7, 30, 13, 39, 40, 41, 42, 14, 43, 44, 45dihopelvalc 38564 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋)))
4733, 34, 37, 38, 46syl112anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ↔ ((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋)))
48 simpr 488 . . . . . . 7 (((𝑓𝑇𝑠𝐸) ∧ (𝑅‘(𝑓(𝑠𝐺))) 𝑋) → (𝑅‘(𝑓(𝑠𝐺))) 𝑋)
4947, 48syl6bi 256 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) → (𝑅‘(𝑓(𝑠𝐺))) 𝑋))
50 simpl3 1190 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (𝑌𝐵𝑌 𝑊))
51 dihglblem5a.o . . . . . . . . 9 0 = (𝑇 ↦ ( I ↾ 𝐵))
525, 6, 13, 40, 41, 51, 14dihopelvalbN 38553 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )))
5333, 50, 52syl2anc 587 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )))
5453biimpd 232 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌) → ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )))
55 simprll 778 . . . . . . . . . 10 (((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )) → 𝑓𝑇)
56553ad2ant3 1132 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑓𝑇)
57 simp3rr 1244 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑠 = 0 )
5857fveq1d 6648 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( 0𝐺))
59 simp11 1200 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
606, 30, 13, 39lhpocnel2 37334 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
6159, 60syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
62 simp2l 1196 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑞𝐴)
63 simp2rl 1239 . . . . . . . . . . . . . . . . . . 19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → ¬ 𝑞 𝑊)
646, 30, 13, 40, 43ltrniotacl 37894 . . . . . . . . . . . . . . . . . . 19 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → 𝐺𝑇)
6559, 61, 62, 63, 64syl112anc 1371 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝐺𝑇)
6651, 5tendo02 38102 . . . . . . . . . . . . . . . . . 18 (𝐺𝑇 → ( 0𝐺) = ( I ↾ 𝐵))
6765, 66syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → ( 0𝐺) = ( I ↾ 𝐵))
6858, 67eqtrd 2833 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( I ↾ 𝐵))
6968cnveqd 5711 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( I ↾ 𝐵))
70 cnvresid 6404 . . . . . . . . . . . . . . 15 ( I ↾ 𝐵) = ( I ↾ 𝐵)
7169, 70eqtrdi 2849 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑠𝐺) = ( I ↾ 𝐵))
7271coeq2d 5698 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑓(𝑠𝐺)) = (𝑓 ∘ ( I ↾ 𝐵)))
735, 13, 40ltrn1o 37439 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → 𝑓:𝐵1-1-onto𝐵)
7459, 56, 73syl2anc 587 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑓:𝐵1-1-onto𝐵)
75 f1of 6591 . . . . . . . . . . . . . 14 (𝑓:𝐵1-1-onto𝐵𝑓:𝐵𝐵)
76 fcoi1 6527 . . . . . . . . . . . . . 14 (𝑓:𝐵𝐵 → (𝑓 ∘ ( I ↾ 𝐵)) = 𝑓)
7774, 75, 763syl 18 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑓 ∘ ( I ↾ 𝐵)) = 𝑓)
7872, 77eqtrd 2833 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑓(𝑠𝐺)) = 𝑓)
7978fveq2d 6650 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅‘(𝑓(𝑠𝐺))) = (𝑅𝑓))
80 simp3l 1198 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅‘(𝑓(𝑠𝐺))) 𝑋)
8179, 80eqbrtrrd 5055 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅𝑓) 𝑋)
82 simprlr 779 . . . . . . . . . . 11 (((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )) → (𝑅𝑓) 𝑌)
83823ad2ant3 1132 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅𝑓) 𝑌)
84 simp11l 1281 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝐾 ∈ HL)
8584hllatd 36679 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝐾 ∈ Lat)
865, 13, 40, 41trlcl 37479 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑅𝑓) ∈ 𝐵)
8759, 56, 86syl2anc 587 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅𝑓) ∈ 𝐵)
88 simp12l 1283 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑋𝐵)
89 simp13l 1285 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑌𝐵)
905, 6, 7latlem12 17683 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ ((𝑅𝑓) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑅𝑓) 𝑋 ∧ (𝑅𝑓) 𝑌) ↔ (𝑅𝑓) (𝑋 𝑌)))
9185, 87, 88, 89, 90syl13anc 1369 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (((𝑅𝑓) 𝑋 ∧ (𝑅𝑓) 𝑌) ↔ (𝑅𝑓) (𝑋 𝑌)))
9281, 83, 91mpbi2and 711 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑅𝑓) (𝑋 𝑌))
9356, 92jca 515 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑌)))
9485, 88, 89, 11syl3anc 1368 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑋 𝑌) ∈ 𝐵)
95 simp11r 1282 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑊𝐻)
965, 13lhpbase 37313 . . . . . . . . . . 11 (𝑊𝐻𝑊𝐵)
9795, 96syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑊𝐵)
9885, 88, 89, 18syl3anc 1368 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑋 𝑌) 𝑌)
99 simp13r 1286 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → 𝑌 𝑊)
1005, 6, 85, 94, 89, 97, 98, 99lattrd 17663 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (𝑋 𝑌) 𝑊)
1015, 6, 13, 40, 41, 51, 14dihopelvalbN 38553 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑌) 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑌)) ∧ 𝑠 = 0 )))
10259, 94, 100, 101syl12anc 835 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑌)) ∧ 𝑠 = 0 )))
10393, 57, 102mpbir2and 712 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋)) ∧ ((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 ))) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌)))
1041033expia 1118 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → (((𝑅‘(𝑓(𝑠𝐺))) 𝑋 ∧ ((𝑓𝑇 ∧ (𝑅𝑓) 𝑌) ∧ 𝑠 = 0 )) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌))))
10549, 54, 104syl2and 610 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌))))
10632, 105rexlimddv 3250 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑋) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑌)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌))))
10728, 106syl5bi 245 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑋) ∩ (𝐼𝑌)) → ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑌))))
10827, 107relssdv 5626 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝐼𝑋) ∩ (𝐼𝑌)) ⊆ (𝐼‘(𝑋 𝑌)))
10923, 108eqssd 3932 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼‘(𝑋 𝑌)) = ((𝐼𝑋) ∩ (𝐼𝑌)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∃wrex 3107   ∩ cin 3880   ⊆ wss 3881  ⟨cop 4531   class class class wbr 5031   ↦ cmpt 5111   I cid 5425  ◡ccnv 5519   ↾ cres 5522   ∘ ccom 5524  Rel wrel 5525  ⟶wf 6321  –1-1-onto→wf1o 6324  ‘cfv 6325  ℩crio 7093  (class class class)co 7136  Basecbs 16478  lecple 16567  occoc 16568  joincjn 17549  meetcmee 17550  Latclat 17650  Atomscatm 36578  HLchlt 36665  LHypclh 37299  LTrncltrn 37416  trLctrl 37473  TEndoctendo 38067  DIsoHcdih 38543 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-riotaBAD 36268 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-tpos 7878  df-undef 7925  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-2 11691  df-3 11692  df-4 11693  df-5 11694  df-6 11695  df-n0 11889  df-z 11973  df-uz 12235  df-fz 12889  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-0g 16710  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-p0 17644  df-p1 17645  df-lat 17651  df-clat 17713  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-subg 18272  df-cntz 18443  df-lsm 18757  df-cmn 18904  df-abl 18905  df-mgp 19237  df-ur 19249  df-ring 19296  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-drng 19501  df-lmod 19633  df-lss 19701  df-lsp 19741  df-lvec 19872  df-oposet 36491  df-ol 36493  df-oml 36494  df-covers 36581  df-ats 36582  df-atl 36613  df-cvlat 36637  df-hlat 36666  df-llines 36813  df-lplanes 36814  df-lvols 36815  df-lines 36816  df-psubsp 36818  df-pmap 36819  df-padd 37111  df-lhyp 37303  df-laut 37304  df-ldil 37419  df-ltrn 37420  df-trl 37474  df-tendo 38070  df-edring 38072  df-disoa 38344  df-dvech 38394  df-dib 38454  df-dic 38488  df-dih 38544 This theorem is referenced by:  dihmeetbN  38618
 Copyright terms: Public domain W3C validator