Step | Hyp | Ref
| Expression |
1 | | dihmeetlem13.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | dihmeetlem13.i |
. . . . . 6
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
3 | 1, 2 | dihvalrel 39220 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘𝑄)) |
4 | 3 | 3ad2ant1 1131 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → Rel (𝐼‘𝑄)) |
5 | | relin1 5711 |
. . . 4
⊢ (Rel
(𝐼‘𝑄) → Rel ((𝐼‘𝑄) ∩ (𝐼‘𝑅))) |
6 | 4, 5 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → Rel ((𝐼‘𝑄) ∩ (𝐼‘𝑅))) |
7 | | elin 3899 |
. . . . . 6
⊢
(〈𝑓, 𝑠〉 ∈ ((𝐼‘𝑄) ∩ (𝐼‘𝑅)) ↔ (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑄) ∧ 〈𝑓, 𝑠〉 ∈ (𝐼‘𝑅))) |
8 | | simp1 1134 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
9 | | simp2l 1197 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
10 | | dihmeetlem13.l |
. . . . . . . . 9
⊢ ≤ =
(le‘𝐾) |
11 | | dihmeetlem13.a |
. . . . . . . . 9
⊢ 𝐴 = (Atoms‘𝐾) |
12 | | dihmeetlem13.p |
. . . . . . . . 9
⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
13 | | dihmeetlem13.t |
. . . . . . . . 9
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
14 | | dihmeetlem13.e |
. . . . . . . . 9
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
15 | | dihmeetlem13.f |
. . . . . . . . 9
⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) |
16 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑓 ∈ V |
17 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑠 ∈ V |
18 | 10, 11, 1, 12, 13, 14, 2, 15, 16, 17 | dihopelvalcqat 39187 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑄) ↔ (𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸))) |
19 | 8, 9, 18 | syl2anc 583 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑄) ↔ (𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸))) |
20 | | simp2r 1198 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
21 | | dihmeetlem13.g |
. . . . . . . . 9
⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑅) |
22 | 10, 11, 1, 12, 13, 14, 2, 21, 16, 17 | dihopelvalcqat 39187 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑅) ↔ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) |
23 | 8, 20, 22 | syl2anc 583 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑅) ↔ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) |
24 | 19, 23 | anbi12d 630 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → ((〈𝑓, 𝑠〉 ∈ (𝐼‘𝑄) ∧ 〈𝑓, 𝑠〉 ∈ (𝐼‘𝑅)) ↔ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)))) |
25 | 7, 24 | syl5bb 282 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → (〈𝑓, 𝑠〉 ∈ ((𝐼‘𝑄) ∩ (𝐼‘𝑅)) ↔ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)))) |
26 | | simprll 775 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → 𝑓 = (𝑠‘𝐹)) |
27 | | simpl3 1191 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → 𝑄 ≠ 𝑅) |
28 | | fveq1 6755 |
. . . . . . . . . . . . 13
⊢ (𝐹 = 𝐺 → (𝐹‘𝑃) = (𝐺‘𝑃)) |
29 | | simpl1 1189 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
30 | 10, 11, 1, 12 | lhpocnel2 37960 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
31 | 29, 30 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
32 | | simpl2l 1224 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
33 | 10, 11, 1, 13, 15 | ltrniotaval 38522 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐹‘𝑃) = 𝑄) |
34 | 29, 31, 32, 33 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝐹‘𝑃) = 𝑄) |
35 | | simpl2r 1225 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
36 | 10, 11, 1, 13, 21 | ltrniotaval 38522 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐺‘𝑃) = 𝑅) |
37 | 29, 31, 35, 36 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝐺‘𝑃) = 𝑅) |
38 | 34, 37 | eqeq12d 2754 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → ((𝐹‘𝑃) = (𝐺‘𝑃) ↔ 𝑄 = 𝑅)) |
39 | 28, 38 | syl5ib 243 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝐹 = 𝐺 → 𝑄 = 𝑅)) |
40 | 39 | necon3d 2963 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝑄 ≠ 𝑅 → 𝐹 ≠ 𝐺)) |
41 | 27, 40 | mpd 15 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → 𝐹 ≠ 𝐺) |
42 | | simp2ll 1238 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → 𝑓 = (𝑠‘𝐹)) |
43 | | simp2rl 1240 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → 𝑓 = (𝑠‘𝐺)) |
44 | 42, 43 | eqtr3d 2780 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → (𝑠‘𝐹) = (𝑠‘𝐺)) |
45 | | simp11 1201 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
46 | | simp2rr 1241 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → 𝑠 ∈ 𝐸) |
47 | | simp3 1136 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → 𝑠 ≠ 𝑂) |
48 | 45, 30 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
49 | | simp12l 1284 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
50 | 10, 11, 1, 13, 15 | ltrniotacl 38520 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |
51 | 45, 48, 49, 50 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → 𝐹 ∈ 𝑇) |
52 | | simp12r 1285 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
53 | 10, 11, 1, 13, 21 | ltrniotacl 38520 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝐺 ∈ 𝑇) |
54 | 45, 48, 52, 53 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → 𝐺 ∈ 𝑇) |
55 | | dihmeetlem13.b |
. . . . . . . . . . . . . . 15
⊢ 𝐵 = (Base‘𝐾) |
56 | | dihmeetlem13.o |
. . . . . . . . . . . . . . 15
⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
57 | 55, 1, 13, 14, 56 | tendospcanN 38964 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑠‘𝐹) = (𝑠‘𝐺) ↔ 𝐹 = 𝐺)) |
58 | 45, 46, 47, 51, 54, 57 | syl122anc 1377 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → ((𝑠‘𝐹) = (𝑠‘𝐺) ↔ 𝐹 = 𝐺)) |
59 | 44, 58 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → 𝐹 = 𝐺) |
60 | 59 | 3expia 1119 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝑠 ≠ 𝑂 → 𝐹 = 𝐺)) |
61 | 60 | necon1d 2964 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝐹 ≠ 𝐺 → 𝑠 = 𝑂)) |
62 | 41, 61 | mpd 15 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → 𝑠 = 𝑂) |
63 | 62 | fveq1d 6758 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝑠‘𝐹) = (𝑂‘𝐹)) |
64 | 29, 31, 32, 50 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → 𝐹 ∈ 𝑇) |
65 | 56, 55 | tendo02 38728 |
. . . . . . . . 9
⊢ (𝐹 ∈ 𝑇 → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
66 | 64, 65 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
67 | 26, 63, 66 | 3eqtrd 2782 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → 𝑓 = ( I ↾ 𝐵)) |
68 | 67, 62 | jca 511 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) |
69 | 68 | ex 412 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → (((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) → (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂))) |
70 | 25, 69 | sylbid 239 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → (〈𝑓, 𝑠〉 ∈ ((𝐼‘𝑄) ∩ (𝐼‘𝑅)) → (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂))) |
71 | | opex 5373 |
. . . . . . 7
⊢
〈𝑓, 𝑠〉 ∈ V |
72 | 71 | elsn 4573 |
. . . . . 6
⊢
(〈𝑓, 𝑠〉 ∈ {〈( I ↾
𝐵), 𝑂〉} ↔ 〈𝑓, 𝑠〉 = 〈( I ↾ 𝐵), 𝑂〉) |
73 | 16, 17 | opth 5385 |
. . . . . 6
⊢
(〈𝑓, 𝑠〉 = 〈( I ↾ 𝐵), 𝑂〉 ↔ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) |
74 | 72, 73 | bitr2i 275 |
. . . . 5
⊢ ((𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂) ↔ 〈𝑓, 𝑠〉 ∈ {〈( I ↾ 𝐵), 𝑂〉}) |
75 | | dihmeetlem13.u |
. . . . . . . . 9
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
76 | | dihmeetlem13.z |
. . . . . . . . 9
⊢ 0 =
(0g‘𝑈) |
77 | 55, 1, 13, 75, 76, 56 | dvh0g 39052 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 = 〈( I ↾ 𝐵), 𝑂〉) |
78 | 77 | 3ad2ant1 1131 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → 0 = 〈( I ↾ 𝐵), 𝑂〉) |
79 | 78 | sneqd 4570 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → { 0 } = {〈( I ↾
𝐵), 𝑂〉}) |
80 | 79 | eleq2d 2824 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → (〈𝑓, 𝑠〉 ∈ { 0 } ↔ 〈𝑓, 𝑠〉 ∈ {〈( I ↾ 𝐵), 𝑂〉})) |
81 | 74, 80 | bitr4id 289 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → ((𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂) ↔ 〈𝑓, 𝑠〉 ∈ { 0 })) |
82 | 70, 81 | sylibd 238 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → (〈𝑓, 𝑠〉 ∈ ((𝐼‘𝑄) ∩ (𝐼‘𝑅)) → 〈𝑓, 𝑠〉 ∈ { 0 })) |
83 | 6, 82 | relssdv 5687 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → ((𝐼‘𝑄) ∩ (𝐼‘𝑅)) ⊆ { 0 }) |
84 | 1, 75, 8 | dvhlmod 39051 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → 𝑈 ∈ LMod) |
85 | | simp2ll 1238 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → 𝑄 ∈ 𝐴) |
86 | 55, 11 | atbase 37230 |
. . . . . 6
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
87 | 85, 86 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → 𝑄 ∈ 𝐵) |
88 | | eqid 2738 |
. . . . . 6
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
89 | 55, 1, 2, 75, 88 | dihlss 39191 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐵) → (𝐼‘𝑄) ∈ (LSubSp‘𝑈)) |
90 | 8, 87, 89 | syl2anc 583 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → (𝐼‘𝑄) ∈ (LSubSp‘𝑈)) |
91 | | simp2rl 1240 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → 𝑅 ∈ 𝐴) |
92 | 55, 11 | atbase 37230 |
. . . . . 6
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ 𝐵) |
93 | 91, 92 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → 𝑅 ∈ 𝐵) |
94 | 55, 1, 2, 75, 88 | dihlss 39191 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑅 ∈ 𝐵) → (𝐼‘𝑅) ∈ (LSubSp‘𝑈)) |
95 | 8, 93, 94 | syl2anc 583 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → (𝐼‘𝑅) ∈ (LSubSp‘𝑈)) |
96 | 88 | lssincl 20142 |
. . . 4
⊢ ((𝑈 ∈ LMod ∧ (𝐼‘𝑄) ∈ (LSubSp‘𝑈) ∧ (𝐼‘𝑅) ∈ (LSubSp‘𝑈)) → ((𝐼‘𝑄) ∩ (𝐼‘𝑅)) ∈ (LSubSp‘𝑈)) |
97 | 84, 90, 95, 96 | syl3anc 1369 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → ((𝐼‘𝑄) ∩ (𝐼‘𝑅)) ∈ (LSubSp‘𝑈)) |
98 | 76, 88 | lss0ss 20125 |
. . 3
⊢ ((𝑈 ∈ LMod ∧ ((𝐼‘𝑄) ∩ (𝐼‘𝑅)) ∈ (LSubSp‘𝑈)) → { 0 } ⊆ ((𝐼‘𝑄) ∩ (𝐼‘𝑅))) |
99 | 84, 97, 98 | syl2anc 583 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → { 0 } ⊆ ((𝐼‘𝑄) ∩ (𝐼‘𝑅))) |
100 | 83, 99 | eqssd 3934 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → ((𝐼‘𝑄) ∩ (𝐼‘𝑅)) = { 0 }) |