Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem13N Structured version   Visualization version   GIF version

Theorem dihmeetlem13N 41417
Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihmeetlem13.b 𝐵 = (Base‘𝐾)
dihmeetlem13.l = (le‘𝐾)
dihmeetlem13.j = (join‘𝐾)
dihmeetlem13.a 𝐴 = (Atoms‘𝐾)
dihmeetlem13.h 𝐻 = (LHyp‘𝐾)
dihmeetlem13.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihmeetlem13.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihmeetlem13.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihmeetlem13.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
dihmeetlem13.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihmeetlem13.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihmeetlem13.z 0 = (0g𝑈)
dihmeetlem13.f 𝐹 = (𝑇 (𝑃) = 𝑄)
dihmeetlem13.g 𝐺 = (𝑇 (𝑃) = 𝑅)
Assertion
Ref Expression
dihmeetlem13N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → ((𝐼𝑄) ∩ (𝐼𝑅)) = { 0 })
Distinct variable groups:   ,   𝐴,   𝐵,   ,𝐻   ,𝐾   𝑃,   𝑄,   𝑅,   𝑇,   ,𝑊
Allowed substitution hints:   𝑈()   𝐸()   𝐹()   𝐺()   𝐼()   ()   𝑂()   0 ()

Proof of Theorem dihmeetlem13N
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihmeetlem13.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 dihmeetlem13.i . . . . . 6 𝐼 = ((DIsoH‘𝐾)‘𝑊)
31, 2dihvalrel 41377 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑄))
433ad2ant1 1133 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → Rel (𝐼𝑄))
5 relin1 5751 . . . 4 (Rel (𝐼𝑄) → Rel ((𝐼𝑄) ∩ (𝐼𝑅)))
64, 5syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → Rel ((𝐼𝑄) ∩ (𝐼𝑅)))
7 elin 3913 . . . . . 6 (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑄) ∩ (𝐼𝑅)) ↔ (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑅)))
8 simp1 1136 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 simp2l 1200 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
10 dihmeetlem13.l . . . . . . . . 9 = (le‘𝐾)
11 dihmeetlem13.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
12 dihmeetlem13.p . . . . . . . . 9 𝑃 = ((oc‘𝐾)‘𝑊)
13 dihmeetlem13.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 dihmeetlem13.e . . . . . . . . 9 𝐸 = ((TEndo‘𝐾)‘𝑊)
15 dihmeetlem13.f . . . . . . . . 9 𝐹 = (𝑇 (𝑃) = 𝑄)
16 vex 3440 . . . . . . . . 9 𝑓 ∈ V
17 vex 3440 . . . . . . . . 9 𝑠 ∈ V
1810, 11, 1, 12, 13, 14, 2, 15, 16, 17dihopelvalcqat 41344 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ↔ (𝑓 = (𝑠𝐹) ∧ 𝑠𝐸)))
198, 9, 18syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ↔ (𝑓 = (𝑠𝐹) ∧ 𝑠𝐸)))
20 simp2r 1201 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
21 dihmeetlem13.g . . . . . . . . 9 𝐺 = (𝑇 (𝑃) = 𝑅)
2210, 11, 1, 12, 13, 14, 2, 21, 16, 17dihopelvalcqat 41344 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑅) ↔ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)))
238, 20, 22syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑅) ↔ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)))
2419, 23anbi12d 632 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼𝑅)) ↔ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸))))
257, 24bitrid 283 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑄) ∩ (𝐼𝑅)) ↔ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸))))
26 simprll 778 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸))) → 𝑓 = (𝑠𝐹))
27 simpl3 1194 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸))) → 𝑄𝑅)
28 fveq1 6821 . . . . . . . . . . . . 13 (𝐹 = 𝐺 → (𝐹𝑃) = (𝐺𝑃))
29 simpl1 1192 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3010, 11, 1, 12lhpocnel2 40117 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3129, 30syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
32 simpl2l 1227 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
3310, 11, 1, 13, 15ltrniotaval 40679 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐹𝑃) = 𝑄)
3429, 31, 32, 33syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸))) → (𝐹𝑃) = 𝑄)
35 simpl2r 1228 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
3610, 11, 1, 13, 21ltrniotaval 40679 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝐺𝑃) = 𝑅)
3729, 31, 35, 36syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸))) → (𝐺𝑃) = 𝑅)
3834, 37eqeq12d 2747 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸))) → ((𝐹𝑃) = (𝐺𝑃) ↔ 𝑄 = 𝑅))
3928, 38imbitrid 244 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸))) → (𝐹 = 𝐺𝑄 = 𝑅))
4039necon3d 2949 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸))) → (𝑄𝑅𝐹𝐺))
4127, 40mpd 15 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸))) → 𝐹𝐺)
42 simp2ll 1241 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ∧ 𝑠𝑂) → 𝑓 = (𝑠𝐹))
43 simp2rl 1243 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ∧ 𝑠𝑂) → 𝑓 = (𝑠𝐺))
4442, 43eqtr3d 2768 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ∧ 𝑠𝑂) → (𝑠𝐹) = (𝑠𝐺))
45 simp11 1204 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ∧ 𝑠𝑂) → (𝐾 ∈ HL ∧ 𝑊𝐻))
46 simp2rr 1244 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ∧ 𝑠𝑂) → 𝑠𝐸)
47 simp3 1138 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ∧ 𝑠𝑂) → 𝑠𝑂)
4845, 30syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ∧ 𝑠𝑂) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
49 simp12l 1287 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ∧ 𝑠𝑂) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
5010, 11, 1, 13, 15ltrniotacl 40677 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
5145, 48, 49, 50syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ∧ 𝑠𝑂) → 𝐹𝑇)
52 simp12r 1288 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ∧ 𝑠𝑂) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
5310, 11, 1, 13, 21ltrniotacl 40677 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → 𝐺𝑇)
5445, 48, 52, 53syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ∧ 𝑠𝑂) → 𝐺𝑇)
55 dihmeetlem13.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝐾)
56 dihmeetlem13.o . . . . . . . . . . . . . . 15 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
5755, 1, 13, 14, 56tendospcanN 41121 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑠𝑂) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑠𝐹) = (𝑠𝐺) ↔ 𝐹 = 𝐺))
5845, 46, 47, 51, 54, 57syl122anc 1381 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ∧ 𝑠𝑂) → ((𝑠𝐹) = (𝑠𝐺) ↔ 𝐹 = 𝐺))
5944, 58mpbid 232 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ∧ 𝑠𝑂) → 𝐹 = 𝐺)
60593expia 1121 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸))) → (𝑠𝑂𝐹 = 𝐺))
6160necon1d 2950 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸))) → (𝐹𝐺𝑠 = 𝑂))
6241, 61mpd 15 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸))) → 𝑠 = 𝑂)
6362fveq1d 6824 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸))) → (𝑠𝐹) = (𝑂𝐹))
6429, 31, 32, 50syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸))) → 𝐹𝑇)
6556, 55tendo02 40885 . . . . . . . . 9 (𝐹𝑇 → (𝑂𝐹) = ( I ↾ 𝐵))
6664, 65syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸))) → (𝑂𝐹) = ( I ↾ 𝐵))
6726, 63, 663eqtrd 2770 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸))) → 𝑓 = ( I ↾ 𝐵))
6867, 62jca 511 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) ∧ ((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸))) → (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂))
6968ex 412 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → (((𝑓 = (𝑠𝐹) ∧ 𝑠𝐸) ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) → (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)))
7025, 69sylbid 240 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑄) ∩ (𝐼𝑅)) → (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)))
71 opex 5402 . . . . . . 7 𝑓, 𝑠⟩ ∈ V
7271elsn 4588 . . . . . 6 (⟨𝑓, 𝑠⟩ ∈ {⟨( I ↾ 𝐵), 𝑂⟩} ↔ ⟨𝑓, 𝑠⟩ = ⟨( I ↾ 𝐵), 𝑂⟩)
7316, 17opth 5414 . . . . . 6 (⟨𝑓, 𝑠⟩ = ⟨( I ↾ 𝐵), 𝑂⟩ ↔ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂))
7472, 73bitr2i 276 . . . . 5 ((𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂) ↔ ⟨𝑓, 𝑠⟩ ∈ {⟨( I ↾ 𝐵), 𝑂⟩})
75 dihmeetlem13.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
76 dihmeetlem13.z . . . . . . . . 9 0 = (0g𝑈)
7755, 1, 13, 75, 76, 56dvh0g 41209 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 = ⟨( I ↾ 𝐵), 𝑂⟩)
78773ad2ant1 1133 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → 0 = ⟨( I ↾ 𝐵), 𝑂⟩)
7978sneqd 4585 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → { 0 } = {⟨( I ↾ 𝐵), 𝑂⟩})
8079eleq2d 2817 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → (⟨𝑓, 𝑠⟩ ∈ { 0 } ↔ ⟨𝑓, 𝑠⟩ ∈ {⟨( I ↾ 𝐵), 𝑂⟩}))
8174, 80bitr4id 290 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → ((𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂) ↔ ⟨𝑓, 𝑠⟩ ∈ { 0 }))
8270, 81sylibd 239 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑄) ∩ (𝐼𝑅)) → ⟨𝑓, 𝑠⟩ ∈ { 0 }))
836, 82relssdv 5727 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → ((𝐼𝑄) ∩ (𝐼𝑅)) ⊆ { 0 })
841, 75, 8dvhlmod 41208 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → 𝑈 ∈ LMod)
85 simp2ll 1241 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → 𝑄𝐴)
8655, 11atbase 39387 . . . . . 6 (𝑄𝐴𝑄𝐵)
8785, 86syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → 𝑄𝐵)
88 eqid 2731 . . . . . 6 (LSubSp‘𝑈) = (LSubSp‘𝑈)
8955, 1, 2, 75, 88dihlss 41348 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑄𝐵) → (𝐼𝑄) ∈ (LSubSp‘𝑈))
908, 87, 89syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → (𝐼𝑄) ∈ (LSubSp‘𝑈))
91 simp2rl 1243 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → 𝑅𝐴)
9255, 11atbase 39387 . . . . . 6 (𝑅𝐴𝑅𝐵)
9391, 92syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → 𝑅𝐵)
9455, 1, 2, 75, 88dihlss 41348 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐵) → (𝐼𝑅) ∈ (LSubSp‘𝑈))
958, 93, 94syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → (𝐼𝑅) ∈ (LSubSp‘𝑈))
9688lssincl 20898 . . . 4 ((𝑈 ∈ LMod ∧ (𝐼𝑄) ∈ (LSubSp‘𝑈) ∧ (𝐼𝑅) ∈ (LSubSp‘𝑈)) → ((𝐼𝑄) ∩ (𝐼𝑅)) ∈ (LSubSp‘𝑈))
9784, 90, 95, 96syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → ((𝐼𝑄) ∩ (𝐼𝑅)) ∈ (LSubSp‘𝑈))
9876, 88lss0ss 20882 . . 3 ((𝑈 ∈ LMod ∧ ((𝐼𝑄) ∩ (𝐼𝑅)) ∈ (LSubSp‘𝑈)) → { 0 } ⊆ ((𝐼𝑄) ∩ (𝐼𝑅)))
9984, 97, 98syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → { 0 } ⊆ ((𝐼𝑄) ∩ (𝐼𝑅)))
10083, 99eqssd 3947 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑄𝑅) → ((𝐼𝑄) ∩ (𝐼𝑅)) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cin 3896  wss 3897  {csn 4573  cop 4579   class class class wbr 5089  cmpt 5170   I cid 5508  cres 5616  Rel wrel 5619  cfv 6481  crio 7302  Basecbs 17120  lecple 17168  occoc 17169  0gc0g 17343  joincjn 18217  LModclmod 20793  LSubSpclss 20864  Atomscatm 39361  HLchlt 39448  LHypclh 40082  LTrncltrn 40199  TEndoctendo 40850  DVecHcdvh 41176  DIsoHcdih 41326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-riotaBAD 39051
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19229  df-lsm 19548  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-drng 20646  df-lmod 20795  df-lss 20865  df-lsp 20905  df-lvec 21037  df-oposet 39274  df-ol 39276  df-oml 39277  df-covers 39364  df-ats 39365  df-atl 39396  df-cvlat 39420  df-hlat 39449  df-llines 39596  df-lplanes 39597  df-lvols 39598  df-lines 39599  df-psubsp 39601  df-pmap 39602  df-padd 39894  df-lhyp 40086  df-laut 40087  df-ldil 40202  df-ltrn 40203  df-trl 40257  df-tendo 40853  df-edring 40855  df-disoa 41127  df-dvech 41177  df-dib 41237  df-dic 41271  df-dih 41327
This theorem is referenced by:  dihmeetlem15N  41419
  Copyright terms: Public domain W3C validator