| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dihmeetlem13.h | . . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) | 
| 2 |  | dihmeetlem13.i | . . . . . 6
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | 
| 3 | 1, 2 | dihvalrel 41281 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘𝑄)) | 
| 4 | 3 | 3ad2ant1 1134 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → Rel (𝐼‘𝑄)) | 
| 5 |  | relin1 5822 | . . . 4
⊢ (Rel
(𝐼‘𝑄) → Rel ((𝐼‘𝑄) ∩ (𝐼‘𝑅))) | 
| 6 | 4, 5 | syl 17 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → Rel ((𝐼‘𝑄) ∩ (𝐼‘𝑅))) | 
| 7 |  | elin 3967 | . . . . . 6
⊢
(〈𝑓, 𝑠〉 ∈ ((𝐼‘𝑄) ∩ (𝐼‘𝑅)) ↔ (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑄) ∧ 〈𝑓, 𝑠〉 ∈ (𝐼‘𝑅))) | 
| 8 |  | simp1 1137 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 9 |  | simp2l 1200 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | 
| 10 |  | dihmeetlem13.l | . . . . . . . . 9
⊢  ≤ =
(le‘𝐾) | 
| 11 |  | dihmeetlem13.a | . . . . . . . . 9
⊢ 𝐴 = (Atoms‘𝐾) | 
| 12 |  | dihmeetlem13.p | . . . . . . . . 9
⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | 
| 13 |  | dihmeetlem13.t | . . . . . . . . 9
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 14 |  | dihmeetlem13.e | . . . . . . . . 9
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | 
| 15 |  | dihmeetlem13.f | . . . . . . . . 9
⊢ 𝐹 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑄) | 
| 16 |  | vex 3484 | . . . . . . . . 9
⊢ 𝑓 ∈ V | 
| 17 |  | vex 3484 | . . . . . . . . 9
⊢ 𝑠 ∈ V | 
| 18 | 10, 11, 1, 12, 13, 14, 2, 15, 16, 17 | dihopelvalcqat 41248 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑄) ↔ (𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸))) | 
| 19 | 8, 9, 18 | syl2anc 584 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑄) ↔ (𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸))) | 
| 20 |  | simp2r 1201 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) | 
| 21 |  | dihmeetlem13.g | . . . . . . . . 9
⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑅) | 
| 22 | 10, 11, 1, 12, 13, 14, 2, 21, 16, 17 | dihopelvalcqat 41248 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑅) ↔ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) | 
| 23 | 8, 20, 22 | syl2anc 584 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑅) ↔ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) | 
| 24 | 19, 23 | anbi12d 632 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → ((〈𝑓, 𝑠〉 ∈ (𝐼‘𝑄) ∧ 〈𝑓, 𝑠〉 ∈ (𝐼‘𝑅)) ↔ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)))) | 
| 25 | 7, 24 | bitrid 283 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → (〈𝑓, 𝑠〉 ∈ ((𝐼‘𝑄) ∩ (𝐼‘𝑅)) ↔ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)))) | 
| 26 |  | simprll 779 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → 𝑓 = (𝑠‘𝐹)) | 
| 27 |  | simpl3 1194 | . . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → 𝑄 ≠ 𝑅) | 
| 28 |  | fveq1 6905 | . . . . . . . . . . . . 13
⊢ (𝐹 = 𝐺 → (𝐹‘𝑃) = (𝐺‘𝑃)) | 
| 29 |  | simpl1 1192 | . . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 30 | 10, 11, 1, 12 | lhpocnel2 40021 | . . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 31 | 29, 30 | syl 17 | . . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 32 |  | simpl2l 1227 | . . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | 
| 33 | 10, 11, 1, 13, 15 | ltrniotaval 40583 | . . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐹‘𝑃) = 𝑄) | 
| 34 | 29, 31, 32, 33 | syl3anc 1373 | . . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝐹‘𝑃) = 𝑄) | 
| 35 |  | simpl2r 1228 | . . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) | 
| 36 | 10, 11, 1, 13, 21 | ltrniotaval 40583 | . . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝐺‘𝑃) = 𝑅) | 
| 37 | 29, 31, 35, 36 | syl3anc 1373 | . . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝐺‘𝑃) = 𝑅) | 
| 38 | 34, 37 | eqeq12d 2753 | . . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → ((𝐹‘𝑃) = (𝐺‘𝑃) ↔ 𝑄 = 𝑅)) | 
| 39 | 28, 38 | imbitrid 244 | . . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝐹 = 𝐺 → 𝑄 = 𝑅)) | 
| 40 | 39 | necon3d 2961 | . . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝑄 ≠ 𝑅 → 𝐹 ≠ 𝐺)) | 
| 41 | 27, 40 | mpd 15 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → 𝐹 ≠ 𝐺) | 
| 42 |  | simp2ll 1241 | . . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → 𝑓 = (𝑠‘𝐹)) | 
| 43 |  | simp2rl 1243 | . . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → 𝑓 = (𝑠‘𝐺)) | 
| 44 | 42, 43 | eqtr3d 2779 | . . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → (𝑠‘𝐹) = (𝑠‘𝐺)) | 
| 45 |  | simp11 1204 | . . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 46 |  | simp2rr 1244 | . . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → 𝑠 ∈ 𝐸) | 
| 47 |  | simp3 1139 | . . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → 𝑠 ≠ 𝑂) | 
| 48 | 45, 30 | syl 17 | . . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 49 |  | simp12l 1287 | . . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | 
| 50 | 10, 11, 1, 13, 15 | ltrniotacl 40581 | . . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ 𝑇) | 
| 51 | 45, 48, 49, 50 | syl3anc 1373 | . . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → 𝐹 ∈ 𝑇) | 
| 52 |  | simp12r 1288 | . . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) | 
| 53 | 10, 11, 1, 13, 21 | ltrniotacl 40581 | . . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝐺 ∈ 𝑇) | 
| 54 | 45, 48, 52, 53 | syl3anc 1373 | . . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → 𝐺 ∈ 𝑇) | 
| 55 |  | dihmeetlem13.b | . . . . . . . . . . . . . . 15
⊢ 𝐵 = (Base‘𝐾) | 
| 56 |  | dihmeetlem13.o | . . . . . . . . . . . . . . 15
⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) | 
| 57 | 55, 1, 13, 14, 56 | tendospcanN 41025 | . . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑠 ≠ 𝑂) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑠‘𝐹) = (𝑠‘𝐺) ↔ 𝐹 = 𝐺)) | 
| 58 | 45, 46, 47, 51, 54, 57 | syl122anc 1381 | . . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → ((𝑠‘𝐹) = (𝑠‘𝐺) ↔ 𝐹 = 𝐺)) | 
| 59 | 44, 58 | mpbid 232 | . . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ∧ 𝑠 ≠ 𝑂) → 𝐹 = 𝐺) | 
| 60 | 59 | 3expia 1122 | . . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝑠 ≠ 𝑂 → 𝐹 = 𝐺)) | 
| 61 | 60 | necon1d 2962 | . . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝐹 ≠ 𝐺 → 𝑠 = 𝑂)) | 
| 62 | 41, 61 | mpd 15 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → 𝑠 = 𝑂) | 
| 63 | 62 | fveq1d 6908 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝑠‘𝐹) = (𝑂‘𝐹)) | 
| 64 | 29, 31, 32, 50 | syl3anc 1373 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → 𝐹 ∈ 𝑇) | 
| 65 | 56, 55 | tendo02 40789 | . . . . . . . . 9
⊢ (𝐹 ∈ 𝑇 → (𝑂‘𝐹) = ( I ↾ 𝐵)) | 
| 66 | 64, 65 | syl 17 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝑂‘𝐹) = ( I ↾ 𝐵)) | 
| 67 | 26, 63, 66 | 3eqtrd 2781 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → 𝑓 = ( I ↾ 𝐵)) | 
| 68 | 67, 62 | jca 511 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) ∧ ((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) → (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) | 
| 69 | 68 | ex 412 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → (((𝑓 = (𝑠‘𝐹) ∧ 𝑠 ∈ 𝐸) ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) → (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂))) | 
| 70 | 25, 69 | sylbid 240 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → (〈𝑓, 𝑠〉 ∈ ((𝐼‘𝑄) ∩ (𝐼‘𝑅)) → (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂))) | 
| 71 |  | opex 5469 | . . . . . . 7
⊢
〈𝑓, 𝑠〉 ∈ V | 
| 72 | 71 | elsn 4641 | . . . . . 6
⊢
(〈𝑓, 𝑠〉 ∈ {〈( I ↾
𝐵), 𝑂〉} ↔ 〈𝑓, 𝑠〉 = 〈( I ↾ 𝐵), 𝑂〉) | 
| 73 | 16, 17 | opth 5481 | . . . . . 6
⊢
(〈𝑓, 𝑠〉 = 〈( I ↾ 𝐵), 𝑂〉 ↔ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) | 
| 74 | 72, 73 | bitr2i 276 | . . . . 5
⊢ ((𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂) ↔ 〈𝑓, 𝑠〉 ∈ {〈( I ↾ 𝐵), 𝑂〉}) | 
| 75 |  | dihmeetlem13.u | . . . . . . . . 9
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| 76 |  | dihmeetlem13.z | . . . . . . . . 9
⊢  0 =
(0g‘𝑈) | 
| 77 | 55, 1, 13, 75, 76, 56 | dvh0g 41113 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 = 〈( I ↾ 𝐵), 𝑂〉) | 
| 78 | 77 | 3ad2ant1 1134 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → 0 = 〈( I ↾ 𝐵), 𝑂〉) | 
| 79 | 78 | sneqd 4638 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → { 0 } = {〈( I ↾
𝐵), 𝑂〉}) | 
| 80 | 79 | eleq2d 2827 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → (〈𝑓, 𝑠〉 ∈ { 0 } ↔ 〈𝑓, 𝑠〉 ∈ {〈( I ↾ 𝐵), 𝑂〉})) | 
| 81 | 74, 80 | bitr4id 290 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → ((𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂) ↔ 〈𝑓, 𝑠〉 ∈ { 0 })) | 
| 82 | 70, 81 | sylibd 239 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → (〈𝑓, 𝑠〉 ∈ ((𝐼‘𝑄) ∩ (𝐼‘𝑅)) → 〈𝑓, 𝑠〉 ∈ { 0 })) | 
| 83 | 6, 82 | relssdv 5798 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → ((𝐼‘𝑄) ∩ (𝐼‘𝑅)) ⊆ { 0 }) | 
| 84 | 1, 75, 8 | dvhlmod 41112 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → 𝑈 ∈ LMod) | 
| 85 |  | simp2ll 1241 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → 𝑄 ∈ 𝐴) | 
| 86 | 55, 11 | atbase 39290 | . . . . . 6
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) | 
| 87 | 85, 86 | syl 17 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → 𝑄 ∈ 𝐵) | 
| 88 |  | eqid 2737 | . . . . . 6
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) | 
| 89 | 55, 1, 2, 75, 88 | dihlss 41252 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐵) → (𝐼‘𝑄) ∈ (LSubSp‘𝑈)) | 
| 90 | 8, 87, 89 | syl2anc 584 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → (𝐼‘𝑄) ∈ (LSubSp‘𝑈)) | 
| 91 |  | simp2rl 1243 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → 𝑅 ∈ 𝐴) | 
| 92 | 55, 11 | atbase 39290 | . . . . . 6
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ 𝐵) | 
| 93 | 91, 92 | syl 17 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → 𝑅 ∈ 𝐵) | 
| 94 | 55, 1, 2, 75, 88 | dihlss 41252 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑅 ∈ 𝐵) → (𝐼‘𝑅) ∈ (LSubSp‘𝑈)) | 
| 95 | 8, 93, 94 | syl2anc 584 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → (𝐼‘𝑅) ∈ (LSubSp‘𝑈)) | 
| 96 | 88 | lssincl 20963 | . . . 4
⊢ ((𝑈 ∈ LMod ∧ (𝐼‘𝑄) ∈ (LSubSp‘𝑈) ∧ (𝐼‘𝑅) ∈ (LSubSp‘𝑈)) → ((𝐼‘𝑄) ∩ (𝐼‘𝑅)) ∈ (LSubSp‘𝑈)) | 
| 97 | 84, 90, 95, 96 | syl3anc 1373 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → ((𝐼‘𝑄) ∩ (𝐼‘𝑅)) ∈ (LSubSp‘𝑈)) | 
| 98 | 76, 88 | lss0ss 20947 | . . 3
⊢ ((𝑈 ∈ LMod ∧ ((𝐼‘𝑄) ∩ (𝐼‘𝑅)) ∈ (LSubSp‘𝑈)) → { 0 } ⊆ ((𝐼‘𝑄) ∩ (𝐼‘𝑅))) | 
| 99 | 84, 97, 98 | syl2anc 584 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → { 0 } ⊆ ((𝐼‘𝑄) ∩ (𝐼‘𝑅))) | 
| 100 | 83, 99 | eqssd 4001 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑄 ≠ 𝑅) → ((𝐼‘𝑄) ∩ (𝐼‘𝑅)) = { 0 }) |