![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relun | Structured version Visualization version GIF version |
Description: The union of two relations is a relation. Compare Exercise 5 of [TakeutiZaring] p. 25. (Contributed by NM, 12-Aug-1994.) |
Ref | Expression |
---|---|
relun | ⊢ (Rel (𝐴 ∪ 𝐵) ↔ (Rel 𝐴 ∧ Rel 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unss 4200 | . 2 ⊢ ((𝐴 ⊆ (V × V) ∧ 𝐵 ⊆ (V × V)) ↔ (𝐴 ∪ 𝐵) ⊆ (V × V)) | |
2 | df-rel 5696 | . . 3 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
3 | df-rel 5696 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
4 | 2, 3 | anbi12i 628 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) ↔ (𝐴 ⊆ (V × V) ∧ 𝐵 ⊆ (V × V))) |
5 | df-rel 5696 | . 2 ⊢ (Rel (𝐴 ∪ 𝐵) ↔ (𝐴 ∪ 𝐵) ⊆ (V × V)) | |
6 | 1, 4, 5 | 3bitr4ri 304 | 1 ⊢ (Rel (𝐴 ∪ 𝐵) ↔ (Rel 𝐴 ∧ Rel 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 Vcvv 3478 ∪ cun 3961 ⊆ wss 3963 × cxp 5687 Rel wrel 5694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 df-rel 5696 |
This theorem is referenced by: difxp 6186 funun 6614 fununfun 6616 satfrel 35352 |
Copyright terms: Public domain | W3C validator |