MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relun Structured version   Visualization version   GIF version

Theorem relun 5809
Description: The union of two relations is a relation. Compare Exercise 5 of [TakeutiZaring] p. 25. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
relun (Rel (𝐴𝐵) ↔ (Rel 𝐴 ∧ Rel 𝐵))

Proof of Theorem relun
StepHypRef Expression
1 unss 4183 . 2 ((𝐴 ⊆ (V × V) ∧ 𝐵 ⊆ (V × V)) ↔ (𝐴𝐵) ⊆ (V × V))
2 df-rel 5682 . . 3 (Rel 𝐴𝐴 ⊆ (V × V))
3 df-rel 5682 . . 3 (Rel 𝐵𝐵 ⊆ (V × V))
42, 3anbi12i 627 . 2 ((Rel 𝐴 ∧ Rel 𝐵) ↔ (𝐴 ⊆ (V × V) ∧ 𝐵 ⊆ (V × V)))
5 df-rel 5682 . 2 (Rel (𝐴𝐵) ↔ (𝐴𝐵) ⊆ (V × V))
61, 4, 53bitr4ri 303 1 (Rel (𝐴𝐵) ↔ (Rel 𝐴 ∧ Rel 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  Vcvv 3474  cun 3945  wss 3947   × cxp 5673  Rel wrel 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-un 3952  df-in 3954  df-ss 3964  df-rel 5682
This theorem is referenced by:  difxp  6160  funun  6591  fununfun  6593  satfrel  34346
  Copyright terms: Public domain W3C validator