| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relun | Structured version Visualization version GIF version | ||
| Description: The union of two relations is a relation. Compare Exercise 5 of [TakeutiZaring] p. 25. (Contributed by NM, 12-Aug-1994.) |
| Ref | Expression |
|---|---|
| relun | ⊢ (Rel (𝐴 ∪ 𝐵) ↔ (Rel 𝐴 ∧ Rel 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unss 4165 | . 2 ⊢ ((𝐴 ⊆ (V × V) ∧ 𝐵 ⊆ (V × V)) ↔ (𝐴 ∪ 𝐵) ⊆ (V × V)) | |
| 2 | df-rel 5661 | . . 3 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 3 | df-rel 5661 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 4 | 2, 3 | anbi12i 628 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) ↔ (𝐴 ⊆ (V × V) ∧ 𝐵 ⊆ (V × V))) |
| 5 | df-rel 5661 | . 2 ⊢ (Rel (𝐴 ∪ 𝐵) ↔ (𝐴 ∪ 𝐵) ⊆ (V × V)) | |
| 6 | 1, 4, 5 | 3bitr4ri 304 | 1 ⊢ (Rel (𝐴 ∪ 𝐵) ↔ (Rel 𝐴 ∧ Rel 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 Vcvv 3459 ∪ cun 3924 ⊆ wss 3926 × cxp 5652 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-ss 3943 df-rel 5661 |
| This theorem is referenced by: difxp 6153 funun 6582 fununfun 6584 satfrel 35389 |
| Copyright terms: Public domain | W3C validator |