MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relun Structured version   Visualization version   GIF version

Theorem relun 5746
Description: The union of two relations is a relation. Compare Exercise 5 of [TakeutiZaring] p. 25. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
relun (Rel (𝐴𝐵) ↔ (Rel 𝐴 ∧ Rel 𝐵))

Proof of Theorem relun
StepHypRef Expression
1 unss 4135 . 2 ((𝐴 ⊆ (V × V) ∧ 𝐵 ⊆ (V × V)) ↔ (𝐴𝐵) ⊆ (V × V))
2 df-rel 5618 . . 3 (Rel 𝐴𝐴 ⊆ (V × V))
3 df-rel 5618 . . 3 (Rel 𝐵𝐵 ⊆ (V × V))
42, 3anbi12i 628 . 2 ((Rel 𝐴 ∧ Rel 𝐵) ↔ (𝐴 ⊆ (V × V) ∧ 𝐵 ⊆ (V × V)))
5 df-rel 5618 . 2 (Rel (𝐴𝐵) ↔ (𝐴𝐵) ⊆ (V × V))
61, 4, 53bitr4ri 304 1 (Rel (𝐴𝐵) ↔ (Rel 𝐴 ∧ Rel 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  Vcvv 3436  cun 3895  wss 3897   × cxp 5609  Rel wrel 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-ss 3914  df-rel 5618
This theorem is referenced by:  difxp  6106  funun  6522  fununfun  6524  satfrel  35403
  Copyright terms: Public domain W3C validator