Step | Hyp | Ref
| Expression |
1 | | dihmeetlem4.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | dihmeetlem4.i |
. . . . 5
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
3 | 1, 2 | dihvalrel 39220 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘𝑄)) |
4 | | relin1 5711 |
. . . 4
⊢ (Rel
(𝐼‘𝑄) → Rel ((𝐼‘𝑄) ∩ (𝐼‘(𝑋 ∧ 𝑊)))) |
5 | 3, 4 | syl 17 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Rel ((𝐼‘𝑄) ∩ (𝐼‘(𝑋 ∧ 𝑊)))) |
6 | 5 | 3ad2ant1 1131 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → Rel ((𝐼‘𝑄) ∩ (𝐼‘(𝑋 ∧ 𝑊)))) |
7 | 1, 2 | dihvalrel 39220 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘(0.‘𝐾))) |
8 | | eqid 2738 |
. . . . . 6
⊢
(0.‘𝐾) =
(0.‘𝐾) |
9 | | dihmeetlem4.u |
. . . . . 6
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
10 | | dihmeetlem4.z |
. . . . . 6
⊢ 0 =
(0g‘𝑈) |
11 | 8, 1, 2, 9, 10 | dih0 39221 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘(0.‘𝐾)) = { 0 }) |
12 | 11 | releqd 5679 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Rel (𝐼‘(0.‘𝐾)) ↔ Rel { 0 })) |
13 | 7, 12 | mpbid 231 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Rel { 0 }) |
14 | 13 | 3ad2ant1 1131 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → Rel { 0 }) |
15 | | id 22 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
16 | | elin 3899 |
. . . 4
⊢
(〈𝑓, 𝑠〉 ∈ ((𝐼‘𝑄) ∩ (𝐼‘(𝑋 ∧ 𝑊))) ↔ (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑄) ∧ 〈𝑓, 𝑠〉 ∈ (𝐼‘(𝑋 ∧ 𝑊)))) |
17 | | dihmeetlem4.l |
. . . . . . . . . 10
⊢ ≤ =
(le‘𝐾) |
18 | | dihmeetlem4.a |
. . . . . . . . . 10
⊢ 𝐴 = (Atoms‘𝐾) |
19 | | dihmeetlem4.p |
. . . . . . . . . 10
⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
20 | | dihmeetlem4.t |
. . . . . . . . . 10
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
21 | | dihmeetlem4.e |
. . . . . . . . . 10
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
22 | | dihmeetlem4.g |
. . . . . . . . . 10
⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) |
23 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑓 ∈ V |
24 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑠 ∈ V |
25 | 17, 18, 1, 19, 20, 21, 2, 22, 23, 24 | dihopelvalcqat 39187 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑄) ↔ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) |
26 | 25 | 3adant2 1129 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑄) ↔ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) |
27 | | simp1 1134 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
28 | | simp1l 1195 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐾 ∈ HL) |
29 | 28 | hllatd 37305 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐾 ∈ Lat) |
30 | | simp2l 1197 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝑋 ∈ 𝐵) |
31 | | simp1r 1196 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝑊 ∈ 𝐻) |
32 | | dihmeetlem4.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝐾) |
33 | 32, 1 | lhpbase 37939 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
34 | 31, 33 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝑊 ∈ 𝐵) |
35 | | dihmeetlem4.m |
. . . . . . . . . . 11
⊢ ∧ =
(meet‘𝐾) |
36 | 32, 35 | latmcl 18073 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
37 | 29, 30, 34, 36 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
38 | 32, 17, 35 | latmle2 18098 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
39 | 29, 30, 34, 38 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
40 | | dihmeetlem4.r |
. . . . . . . . . 10
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
41 | | dihmeetlem4.o |
. . . . . . . . . 10
⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
42 | 32, 17, 1, 20, 40, 41, 2 | dihopelvalbN 39179 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑋 ∧ 𝑊) ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ≤ 𝑊)) → (〈𝑓, 𝑠〉 ∈ (𝐼‘(𝑋 ∧ 𝑊)) ↔ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) |
43 | 27, 37, 39, 42 | syl12anc 833 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝑓, 𝑠〉 ∈ (𝐼‘(𝑋 ∧ 𝑊)) ↔ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) |
44 | 26, 43 | anbi12d 630 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((〈𝑓, 𝑠〉 ∈ (𝐼‘𝑄) ∧ 〈𝑓, 𝑠〉 ∈ (𝐼‘(𝑋 ∧ 𝑊))) ↔ ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂)))) |
45 | | simprll 775 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) → 𝑓 = (𝑠‘𝐺)) |
46 | | simprrr 778 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) → 𝑠 = 𝑂) |
47 | 46 | fveq1d 6758 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑠‘𝐺) = (𝑂‘𝐺)) |
48 | | simpl1 1189 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
49 | 17, 18, 1, 19 | lhpocnel2 37960 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
50 | 48, 49 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
51 | | simpl3 1191 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
52 | 17, 18, 1, 20, 22 | ltrniotacl 38520 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐺 ∈ 𝑇) |
53 | 48, 50, 51, 52 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) → 𝐺 ∈ 𝑇) |
54 | 41, 32 | tendo02 38728 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ 𝑇 → (𝑂‘𝐺) = ( I ↾ 𝐵)) |
55 | 53, 54 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑂‘𝐺) = ( I ↾ 𝐵)) |
56 | 45, 47, 55 | 3eqtrd 2782 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) → 𝑓 = ( I ↾ 𝐵)) |
57 | 56, 46 | jca 511 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) |
58 | | simpl1 1189 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
59 | 58, 49 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
60 | | simpl3 1191 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
61 | 58, 59, 60, 52 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝐺 ∈ 𝑇) |
62 | 61, 54 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑂‘𝐺) = ( I ↾ 𝐵)) |
63 | | simprr 769 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑠 = 𝑂) |
64 | 63 | fveq1d 6758 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑠‘𝐺) = (𝑂‘𝐺)) |
65 | | simprl 767 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑓 = ( I ↾ 𝐵)) |
66 | 62, 64, 65 | 3eqtr4rd 2789 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑓 = (𝑠‘𝐺)) |
67 | 32, 1, 20, 21, 41 | tendo0cl 38731 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
68 | 58, 67 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑂 ∈ 𝐸) |
69 | 63, 68 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑠 ∈ 𝐸) |
70 | 32, 1, 20 | idltrn 38091 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝑇) |
71 | 58, 70 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → ( I ↾ 𝐵) ∈ 𝑇) |
72 | 65, 71 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑓 ∈ 𝑇) |
73 | 65 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑅‘𝑓) = (𝑅‘( I ↾ 𝐵))) |
74 | 32, 8, 1, 40 | trlid0 38117 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾)) |
75 | 58, 74 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾)) |
76 | 73, 75 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑅‘𝑓) = (0.‘𝐾)) |
77 | | simpl1l 1222 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝐾 ∈ HL) |
78 | | hlatl 37301 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
79 | 77, 78 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝐾 ∈ AtLat) |
80 | 37 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
81 | 32, 17, 8 | atl0le 37245 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ AtLat ∧ (𝑋 ∧ 𝑊) ∈ 𝐵) → (0.‘𝐾) ≤ (𝑋 ∧ 𝑊)) |
82 | 79, 80, 81 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (0.‘𝐾) ≤ (𝑋 ∧ 𝑊)) |
83 | 76, 82 | eqbrtrd 5092 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) |
84 | 72, 83, 63 | jca31 514 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂)) |
85 | 66, 69, 84 | jca31 514 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) |
86 | 57, 85 | impbida 797 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂)) ↔ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂))) |
87 | 44, 86 | bitrd 278 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((〈𝑓, 𝑠〉 ∈ (𝐼‘𝑄) ∧ 〈𝑓, 𝑠〉 ∈ (𝐼‘(𝑋 ∧ 𝑊))) ↔ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂))) |
88 | | opex 5373 |
. . . . . . . 8
⊢
〈𝑓, 𝑠〉 ∈ V |
89 | 88 | elsn 4573 |
. . . . . . 7
⊢
(〈𝑓, 𝑠〉 ∈ {〈( I ↾
𝐵), 𝑂〉} ↔ 〈𝑓, 𝑠〉 = 〈( I ↾ 𝐵), 𝑂〉) |
90 | 23, 24 | opth 5385 |
. . . . . . 7
⊢
(〈𝑓, 𝑠〉 = 〈( I ↾ 𝐵), 𝑂〉 ↔ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) |
91 | 89, 90 | bitr2i 275 |
. . . . . 6
⊢ ((𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂) ↔ 〈𝑓, 𝑠〉 ∈ {〈( I ↾ 𝐵), 𝑂〉}) |
92 | 87, 91 | bitrdi 286 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((〈𝑓, 𝑠〉 ∈ (𝐼‘𝑄) ∧ 〈𝑓, 𝑠〉 ∈ (𝐼‘(𝑋 ∧ 𝑊))) ↔ 〈𝑓, 𝑠〉 ∈ {〈( I ↾ 𝐵), 𝑂〉})) |
93 | 32, 1, 20, 9, 10, 41 | dvh0g 39052 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 = 〈( I ↾ 𝐵), 𝑂〉) |
94 | 93 | 3ad2ant1 1131 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 0 = 〈( I ↾ 𝐵), 𝑂〉) |
95 | 94 | sneqd 4570 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → { 0 } = {〈( I ↾
𝐵), 𝑂〉}) |
96 | 95 | eleq2d 2824 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝑓, 𝑠〉 ∈ { 0 } ↔ 〈𝑓, 𝑠〉 ∈ {〈( I ↾ 𝐵), 𝑂〉})) |
97 | 92, 96 | bitr4d 281 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((〈𝑓, 𝑠〉 ∈ (𝐼‘𝑄) ∧ 〈𝑓, 𝑠〉 ∈ (𝐼‘(𝑋 ∧ 𝑊))) ↔ 〈𝑓, 𝑠〉 ∈ { 0 })) |
98 | 16, 97 | syl5bb 282 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝑓, 𝑠〉 ∈ ((𝐼‘𝑄) ∩ (𝐼‘(𝑋 ∧ 𝑊))) ↔ 〈𝑓, 𝑠〉 ∈ { 0 })) |
99 | 98 | eqrelrdv2 5694 |
. 2
⊢ (((Rel
((𝐼‘𝑄) ∩ (𝐼‘(𝑋 ∧ 𝑊))) ∧ Rel { 0 }) ∧ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → ((𝐼‘𝑄) ∩ (𝐼‘(𝑋 ∧ 𝑊))) = { 0 }) |
100 | 6, 14, 15, 99 | syl21anc 834 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝐼‘𝑄) ∩ (𝐼‘(𝑋 ∧ 𝑊))) = { 0 }) |