Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem4preN Structured version   Visualization version   GIF version

Theorem dihmeetlem4preN 38436
Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihmeetlem4.b 𝐵 = (Base‘𝐾)
dihmeetlem4.l = (le‘𝐾)
dihmeetlem4.m = (meet‘𝐾)
dihmeetlem4.a 𝐴 = (Atoms‘𝐾)
dihmeetlem4.h 𝐻 = (LHyp‘𝐾)
dihmeetlem4.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihmeetlem4.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihmeetlem4.z 0 = (0g𝑈)
dihmeetlem4.g 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
dihmeetlem4.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihmeetlem4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihmeetlem4.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihmeetlem4.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihmeetlem4.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
dihmeetlem4preN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))) = { 0 })
Distinct variable groups:   ,𝑔   𝐴,𝑔   𝑔,,𝐻   𝐵,   𝑔,𝐾,   𝑄,𝑔   𝑇,𝑔,   𝑔,𝑊,   𝑃,𝑔
Allowed substitution hints:   𝐴()   𝐵(𝑔)   𝑃()   𝑄()   𝑅(𝑔,)   𝑈(𝑔,)   𝐸(𝑔,)   𝐺(𝑔,)   𝐼(𝑔,)   ()   (𝑔,)   𝑂(𝑔,)   𝑋(𝑔,)   0 (𝑔,)

Proof of Theorem dihmeetlem4preN
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihmeetlem4.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dihmeetlem4.i . . . . 5 𝐼 = ((DIsoH‘𝐾)‘𝑊)
31, 2dihvalrel 38409 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑄))
4 relin1 5679 . . . 4 (Rel (𝐼𝑄) → Rel ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))))
53, 4syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))))
653ad2ant1 1129 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → Rel ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))))
71, 2dihvalrel 38409 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼‘(0.‘𝐾)))
8 eqid 2821 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
9 dihmeetlem4.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
10 dihmeetlem4.z . . . . . 6 0 = (0g𝑈)
118, 1, 2, 9, 10dih0 38410 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼‘(0.‘𝐾)) = { 0 })
1211releqd 5647 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Rel (𝐼‘(0.‘𝐾)) ↔ Rel { 0 }))
137, 12mpbid 234 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel { 0 })
14133ad2ant1 1129 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → Rel { 0 })
15 id 22 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
16 elin 4168 . . . 4 (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))) ↔ (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))))
17 dihmeetlem4.l . . . . . . . . . 10 = (le‘𝐾)
18 dihmeetlem4.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
19 dihmeetlem4.p . . . . . . . . . 10 𝑃 = ((oc‘𝐾)‘𝑊)
20 dihmeetlem4.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
21 dihmeetlem4.e . . . . . . . . . 10 𝐸 = ((TEndo‘𝐾)‘𝑊)
22 dihmeetlem4.g . . . . . . . . . 10 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
23 vex 3497 . . . . . . . . . 10 𝑓 ∈ V
24 vex 3497 . . . . . . . . . 10 𝑠 ∈ V
2517, 18, 1, 19, 20, 21, 2, 22, 23, 24dihopelvalcqat 38376 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ↔ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)))
26253adant2 1127 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ↔ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)))
27 simp1 1132 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
28 simp1l 1193 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐾 ∈ HL)
2928hllatd 36494 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐾 ∈ Lat)
30 simp2l 1195 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑋𝐵)
31 simp1r 1194 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑊𝐻)
32 dihmeetlem4.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐾)
3332, 1lhpbase 37128 . . . . . . . . . . 11 (𝑊𝐻𝑊𝐵)
3431, 33syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑊𝐵)
35 dihmeetlem4.m . . . . . . . . . . 11 = (meet‘𝐾)
3632, 35latmcl 17656 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
3729, 30, 34, 36syl3anc 1367 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑋 𝑊) ∈ 𝐵)
3832, 17, 35latmle2 17681 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑊)
3929, 30, 34, 38syl3anc 1367 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑋 𝑊) 𝑊)
40 dihmeetlem4.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
41 dihmeetlem4.o . . . . . . . . . 10 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
4232, 17, 1, 20, 40, 41, 2dihopelvalbN 38368 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑋 𝑊) 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂)))
4327, 37, 39, 42syl12anc 834 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂)))
4426, 43anbi12d 632 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))) ↔ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))))
45 simprll 777 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → 𝑓 = (𝑠𝐺))
46 simprrr 780 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → 𝑠 = 𝑂)
4746fveq1d 6666 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑠𝐺) = (𝑂𝐺))
48 simpl1 1187 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4917, 18, 1, 19lhpocnel2 37149 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5048, 49syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
51 simpl3 1189 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
5217, 18, 1, 20, 22ltrniotacl 37709 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐺𝑇)
5348, 50, 51, 52syl3anc 1367 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → 𝐺𝑇)
5441, 32tendo02 37917 . . . . . . . . . . 11 (𝐺𝑇 → (𝑂𝐺) = ( I ↾ 𝐵))
5553, 54syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑂𝐺) = ( I ↾ 𝐵))
5645, 47, 553eqtrd 2860 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → 𝑓 = ( I ↾ 𝐵))
5756, 46jca 514 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂))
58 simpl1 1187 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5958, 49syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
60 simpl3 1189 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
6158, 59, 60, 52syl3anc 1367 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝐺𝑇)
6261, 54syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑂𝐺) = ( I ↾ 𝐵))
63 simprr 771 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑠 = 𝑂)
6463fveq1d 6666 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑠𝐺) = (𝑂𝐺))
65 simprl 769 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑓 = ( I ↾ 𝐵))
6662, 64, 653eqtr4rd 2867 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑓 = (𝑠𝐺))
6732, 1, 20, 21, 41tendo0cl 37920 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
6858, 67syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑂𝐸)
6963, 68eqeltrd 2913 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑠𝐸)
7032, 1, 20idltrn 37280 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
7158, 70syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → ( I ↾ 𝐵) ∈ 𝑇)
7265, 71eqeltrd 2913 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑓𝑇)
7365fveq2d 6668 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑅𝑓) = (𝑅‘( I ↾ 𝐵)))
7432, 8, 1, 40trlid0 37306 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾))
7558, 74syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾))
7673, 75eqtrd 2856 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑅𝑓) = (0.‘𝐾))
77 simpl1l 1220 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝐾 ∈ HL)
78 hlatl 36490 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
7977, 78syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝐾 ∈ AtLat)
8037adantr 483 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑋 𝑊) ∈ 𝐵)
8132, 17, 8atl0le 36434 . . . . . . . . . . . 12 ((𝐾 ∈ AtLat ∧ (𝑋 𝑊) ∈ 𝐵) → (0.‘𝐾) (𝑋 𝑊))
8279, 80, 81syl2anc 586 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (0.‘𝐾) (𝑋 𝑊))
8376, 82eqbrtrd 5080 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑅𝑓) (𝑋 𝑊))
8472, 83, 63jca31 517 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))
8566, 69, 84jca31 517 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂)))
8657, 85impbida 799 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂)) ↔ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)))
8744, 86bitrd 281 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))) ↔ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)))
88 opex 5348 . . . . . . . 8 𝑓, 𝑠⟩ ∈ V
8988elsn 4575 . . . . . . 7 (⟨𝑓, 𝑠⟩ ∈ {⟨( I ↾ 𝐵), 𝑂⟩} ↔ ⟨𝑓, 𝑠⟩ = ⟨( I ↾ 𝐵), 𝑂⟩)
9023, 24opth 5360 . . . . . . 7 (⟨𝑓, 𝑠⟩ = ⟨( I ↾ 𝐵), 𝑂⟩ ↔ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂))
9189, 90bitr2i 278 . . . . . 6 ((𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂) ↔ ⟨𝑓, 𝑠⟩ ∈ {⟨( I ↾ 𝐵), 𝑂⟩})
9287, 91syl6bb 289 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))) ↔ ⟨𝑓, 𝑠⟩ ∈ {⟨( I ↾ 𝐵), 𝑂⟩}))
9332, 1, 20, 9, 10, 41dvh0g 38241 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 = ⟨( I ↾ 𝐵), 𝑂⟩)
94933ad2ant1 1129 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 0 = ⟨( I ↾ 𝐵), 𝑂⟩)
9594sneqd 4572 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → { 0 } = {⟨( I ↾ 𝐵), 𝑂⟩})
9695eleq2d 2898 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ { 0 } ↔ ⟨𝑓, 𝑠⟩ ∈ {⟨( I ↾ 𝐵), 𝑂⟩}))
9792, 96bitr4d 284 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))) ↔ ⟨𝑓, 𝑠⟩ ∈ { 0 }))
9816, 97syl5bb 285 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))) ↔ ⟨𝑓, 𝑠⟩ ∈ { 0 }))
9998eqrelrdv2 5662 . 2 (((Rel ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))) ∧ Rel { 0 }) ∧ ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))) = { 0 })
1006, 14, 15, 99syl21anc 835 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  cin 3934  {csn 4560  cop 4566   class class class wbr 5058  cmpt 5138   I cid 5453  cres 5551  Rel wrel 5554  cfv 6349  crio 7107  (class class class)co 7150  Basecbs 16477  lecple 16566  occoc 16567  0gc0g 16707  meetcmee 17549  0.cp0 17641  Latclat 17649  Atomscatm 36393  AtLatcal 36394  HLchlt 36480  LHypclh 37114  LTrncltrn 37231  trLctrl 37288  TEndoctendo 37882  DVecHcdvh 38208  DIsoHcdih 38358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-riotaBAD 36083
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-undef 7933  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-0g 16709  df-proset 17532  df-poset 17550  df-plt 17562  df-lub 17578  df-glb 17579  df-join 17580  df-meet 17581  df-p0 17643  df-p1 17644  df-lat 17650  df-clat 17712  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-cntz 18441  df-lsm 18755  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-drng 19498  df-lmod 19630  df-lss 19698  df-lsp 19738  df-lvec 19869  df-oposet 36306  df-ol 36308  df-oml 36309  df-covers 36396  df-ats 36397  df-atl 36428  df-cvlat 36452  df-hlat 36481  df-llines 36628  df-lplanes 36629  df-lvols 36630  df-lines 36631  df-psubsp 36633  df-pmap 36634  df-padd 36926  df-lhyp 37118  df-laut 37119  df-ldil 37234  df-ltrn 37235  df-trl 37289  df-tendo 37885  df-edring 37887  df-disoa 38159  df-dvech 38209  df-dib 38269  df-dic 38303  df-dih 38359
This theorem is referenced by:  dihmeetlem4N  38437
  Copyright terms: Public domain W3C validator