| Step | Hyp | Ref
| Expression |
| 1 | | dihmeetlem4.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
| 2 | | dihmeetlem4.i |
. . . . 5
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| 3 | 1, 2 | dihvalrel 41222 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘𝑄)) |
| 4 | | relin1 5804 |
. . . 4
⊢ (Rel
(𝐼‘𝑄) → Rel ((𝐼‘𝑄) ∩ (𝐼‘(𝑋 ∧ 𝑊)))) |
| 5 | 3, 4 | syl 17 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Rel ((𝐼‘𝑄) ∩ (𝐼‘(𝑋 ∧ 𝑊)))) |
| 6 | 5 | 3ad2ant1 1133 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → Rel ((𝐼‘𝑄) ∩ (𝐼‘(𝑋 ∧ 𝑊)))) |
| 7 | 1, 2 | dihvalrel 41222 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘(0.‘𝐾))) |
| 8 | | eqid 2734 |
. . . . . 6
⊢
(0.‘𝐾) =
(0.‘𝐾) |
| 9 | | dihmeetlem4.u |
. . . . . 6
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 10 | | dihmeetlem4.z |
. . . . . 6
⊢ 0 =
(0g‘𝑈) |
| 11 | 8, 1, 2, 9, 10 | dih0 41223 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘(0.‘𝐾)) = { 0 }) |
| 12 | 11 | releqd 5770 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Rel (𝐼‘(0.‘𝐾)) ↔ Rel { 0 })) |
| 13 | 7, 12 | mpbid 232 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Rel { 0 }) |
| 14 | 13 | 3ad2ant1 1133 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → Rel { 0 }) |
| 15 | | id 22 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
| 16 | | elin 3949 |
. . . 4
⊢
(〈𝑓, 𝑠〉 ∈ ((𝐼‘𝑄) ∩ (𝐼‘(𝑋 ∧ 𝑊))) ↔ (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑄) ∧ 〈𝑓, 𝑠〉 ∈ (𝐼‘(𝑋 ∧ 𝑊)))) |
| 17 | | dihmeetlem4.l |
. . . . . . . . . 10
⊢ ≤ =
(le‘𝐾) |
| 18 | | dihmeetlem4.a |
. . . . . . . . . 10
⊢ 𝐴 = (Atoms‘𝐾) |
| 19 | | dihmeetlem4.p |
. . . . . . . . . 10
⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| 20 | | dihmeetlem4.t |
. . . . . . . . . 10
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 21 | | dihmeetlem4.e |
. . . . . . . . . 10
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| 22 | | dihmeetlem4.g |
. . . . . . . . . 10
⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) |
| 23 | | vex 3468 |
. . . . . . . . . 10
⊢ 𝑓 ∈ V |
| 24 | | vex 3468 |
. . . . . . . . . 10
⊢ 𝑠 ∈ V |
| 25 | 17, 18, 1, 19, 20, 21, 2, 22, 23, 24 | dihopelvalcqat 41189 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑄) ↔ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) |
| 26 | 25 | 3adant2 1131 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝑓, 𝑠〉 ∈ (𝐼‘𝑄) ↔ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) |
| 27 | | simp1 1136 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 28 | | simp1l 1197 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐾 ∈ HL) |
| 29 | 28 | hllatd 39306 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐾 ∈ Lat) |
| 30 | | simp2l 1199 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝑋 ∈ 𝐵) |
| 31 | | simp1r 1198 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝑊 ∈ 𝐻) |
| 32 | | dihmeetlem4.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝐾) |
| 33 | 32, 1 | lhpbase 39941 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 34 | 31, 33 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝑊 ∈ 𝐵) |
| 35 | | dihmeetlem4.m |
. . . . . . . . . . 11
⊢ ∧ =
(meet‘𝐾) |
| 36 | 32, 35 | latmcl 18459 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
| 37 | 29, 30, 34, 36 | syl3anc 1372 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
| 38 | 32, 17, 35 | latmle2 18484 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
| 39 | 29, 30, 34, 38 | syl3anc 1372 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
| 40 | | dihmeetlem4.r |
. . . . . . . . . 10
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| 41 | | dihmeetlem4.o |
. . . . . . . . . 10
⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| 42 | 32, 17, 1, 20, 40, 41, 2 | dihopelvalbN 41181 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑋 ∧ 𝑊) ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ≤ 𝑊)) → (〈𝑓, 𝑠〉 ∈ (𝐼‘(𝑋 ∧ 𝑊)) ↔ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) |
| 43 | 27, 37, 39, 42 | syl12anc 836 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝑓, 𝑠〉 ∈ (𝐼‘(𝑋 ∧ 𝑊)) ↔ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) |
| 44 | 26, 43 | anbi12d 632 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((〈𝑓, 𝑠〉 ∈ (𝐼‘𝑄) ∧ 〈𝑓, 𝑠〉 ∈ (𝐼‘(𝑋 ∧ 𝑊))) ↔ ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂)))) |
| 45 | | simprll 778 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) → 𝑓 = (𝑠‘𝐺)) |
| 46 | | simprrr 781 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) → 𝑠 = 𝑂) |
| 47 | 46 | fveq1d 6889 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑠‘𝐺) = (𝑂‘𝐺)) |
| 48 | | simpl1 1191 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 49 | 17, 18, 1, 19 | lhpocnel2 39962 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 50 | 48, 49 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 51 | | simpl3 1193 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
| 52 | 17, 18, 1, 20, 22 | ltrniotacl 40522 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐺 ∈ 𝑇) |
| 53 | 48, 50, 51, 52 | syl3anc 1372 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) → 𝐺 ∈ 𝑇) |
| 54 | 41, 32 | tendo02 40730 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ 𝑇 → (𝑂‘𝐺) = ( I ↾ 𝐵)) |
| 55 | 53, 54 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑂‘𝐺) = ( I ↾ 𝐵)) |
| 56 | 45, 47, 55 | 3eqtrd 2773 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) → 𝑓 = ( I ↾ 𝐵)) |
| 57 | 56, 46 | jca 511 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) |
| 58 | | simpl1 1191 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 59 | 58, 49 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 60 | | simpl3 1193 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
| 61 | 58, 59, 60, 52 | syl3anc 1372 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝐺 ∈ 𝑇) |
| 62 | 61, 54 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑂‘𝐺) = ( I ↾ 𝐵)) |
| 63 | | simprr 772 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑠 = 𝑂) |
| 64 | 63 | fveq1d 6889 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑠‘𝐺) = (𝑂‘𝐺)) |
| 65 | | simprl 770 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑓 = ( I ↾ 𝐵)) |
| 66 | 62, 64, 65 | 3eqtr4rd 2780 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑓 = (𝑠‘𝐺)) |
| 67 | 32, 1, 20, 21, 41 | tendo0cl 40733 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
| 68 | 58, 67 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑂 ∈ 𝐸) |
| 69 | 63, 68 | eqeltrd 2833 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑠 ∈ 𝐸) |
| 70 | 32, 1, 20 | idltrn 40093 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝑇) |
| 71 | 58, 70 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → ( I ↾ 𝐵) ∈ 𝑇) |
| 72 | 65, 71 | eqeltrd 2833 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑓 ∈ 𝑇) |
| 73 | 65 | fveq2d 6891 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑅‘𝑓) = (𝑅‘( I ↾ 𝐵))) |
| 74 | 32, 8, 1, 40 | trlid0 40119 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾)) |
| 75 | 58, 74 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾)) |
| 76 | 73, 75 | eqtrd 2769 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑅‘𝑓) = (0.‘𝐾)) |
| 77 | | simpl1l 1224 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝐾 ∈ HL) |
| 78 | | hlatl 39302 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| 79 | 77, 78 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝐾 ∈ AtLat) |
| 80 | 37 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
| 81 | 32, 17, 8 | atl0le 39246 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ AtLat ∧ (𝑋 ∧ 𝑊) ∈ 𝐵) → (0.‘𝐾) ≤ (𝑋 ∧ 𝑊)) |
| 82 | 79, 80, 81 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (0.‘𝐾) ≤ (𝑋 ∧ 𝑊)) |
| 83 | 76, 82 | eqbrtrd 5147 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) |
| 84 | 72, 83, 63 | jca31 514 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂)) |
| 85 | 66, 69, 84 | jca31 514 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂))) |
| 86 | 57, 85 | impbida 800 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ∧ ((𝑓 ∈ 𝑇 ∧ (𝑅‘𝑓) ≤ (𝑋 ∧ 𝑊)) ∧ 𝑠 = 𝑂)) ↔ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂))) |
| 87 | 44, 86 | bitrd 279 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((〈𝑓, 𝑠〉 ∈ (𝐼‘𝑄) ∧ 〈𝑓, 𝑠〉 ∈ (𝐼‘(𝑋 ∧ 𝑊))) ↔ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂))) |
| 88 | | opex 5451 |
. . . . . . . 8
⊢
〈𝑓, 𝑠〉 ∈ V |
| 89 | 88 | elsn 4623 |
. . . . . . 7
⊢
(〈𝑓, 𝑠〉 ∈ {〈( I ↾
𝐵), 𝑂〉} ↔ 〈𝑓, 𝑠〉 = 〈( I ↾ 𝐵), 𝑂〉) |
| 90 | 23, 24 | opth 5463 |
. . . . . . 7
⊢
(〈𝑓, 𝑠〉 = 〈( I ↾ 𝐵), 𝑂〉 ↔ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) |
| 91 | 89, 90 | bitr2i 276 |
. . . . . 6
⊢ ((𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂) ↔ 〈𝑓, 𝑠〉 ∈ {〈( I ↾ 𝐵), 𝑂〉}) |
| 92 | 87, 91 | bitrdi 287 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((〈𝑓, 𝑠〉 ∈ (𝐼‘𝑄) ∧ 〈𝑓, 𝑠〉 ∈ (𝐼‘(𝑋 ∧ 𝑊))) ↔ 〈𝑓, 𝑠〉 ∈ {〈( I ↾ 𝐵), 𝑂〉})) |
| 93 | 32, 1, 20, 9, 10, 41 | dvh0g 41054 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 = 〈( I ↾ 𝐵), 𝑂〉) |
| 94 | 93 | 3ad2ant1 1133 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 0 = 〈( I ↾ 𝐵), 𝑂〉) |
| 95 | 94 | sneqd 4620 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → { 0 } = {〈( I ↾
𝐵), 𝑂〉}) |
| 96 | 95 | eleq2d 2819 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝑓, 𝑠〉 ∈ { 0 } ↔ 〈𝑓, 𝑠〉 ∈ {〈( I ↾ 𝐵), 𝑂〉})) |
| 97 | 92, 96 | bitr4d 282 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((〈𝑓, 𝑠〉 ∈ (𝐼‘𝑄) ∧ 〈𝑓, 𝑠〉 ∈ (𝐼‘(𝑋 ∧ 𝑊))) ↔ 〈𝑓, 𝑠〉 ∈ { 0 })) |
| 98 | 16, 97 | bitrid 283 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝑓, 𝑠〉 ∈ ((𝐼‘𝑄) ∩ (𝐼‘(𝑋 ∧ 𝑊))) ↔ 〈𝑓, 𝑠〉 ∈ { 0 })) |
| 99 | 98 | eqrelrdv2 5787 |
. 2
⊢ (((Rel
((𝐼‘𝑄) ∩ (𝐼‘(𝑋 ∧ 𝑊))) ∧ Rel { 0 }) ∧ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → ((𝐼‘𝑄) ∩ (𝐼‘(𝑋 ∧ 𝑊))) = { 0 }) |
| 100 | 6, 14, 15, 99 | syl21anc 837 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝐼‘𝑄) ∩ (𝐼‘(𝑋 ∧ 𝑊))) = { 0 }) |