Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem4preN Structured version   Visualization version   GIF version

Theorem dihmeetlem4preN 38918
Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihmeetlem4.b 𝐵 = (Base‘𝐾)
dihmeetlem4.l = (le‘𝐾)
dihmeetlem4.m = (meet‘𝐾)
dihmeetlem4.a 𝐴 = (Atoms‘𝐾)
dihmeetlem4.h 𝐻 = (LHyp‘𝐾)
dihmeetlem4.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihmeetlem4.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihmeetlem4.z 0 = (0g𝑈)
dihmeetlem4.g 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
dihmeetlem4.p 𝑃 = ((oc‘𝐾)‘𝑊)
dihmeetlem4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihmeetlem4.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihmeetlem4.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihmeetlem4.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
dihmeetlem4preN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))) = { 0 })
Distinct variable groups:   ,𝑔   𝐴,𝑔   𝑔,,𝐻   𝐵,   𝑔,𝐾,   𝑄,𝑔   𝑇,𝑔,   𝑔,𝑊,   𝑃,𝑔
Allowed substitution hints:   𝐴()   𝐵(𝑔)   𝑃()   𝑄()   𝑅(𝑔,)   𝑈(𝑔,)   𝐸(𝑔,)   𝐺(𝑔,)   𝐼(𝑔,)   ()   (𝑔,)   𝑂(𝑔,)   𝑋(𝑔,)   0 (𝑔,)

Proof of Theorem dihmeetlem4preN
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihmeetlem4.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dihmeetlem4.i . . . . 5 𝐼 = ((DIsoH‘𝐾)‘𝑊)
31, 2dihvalrel 38891 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼𝑄))
4 relin1 5660 . . . 4 (Rel (𝐼𝑄) → Rel ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))))
53, 4syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))))
653ad2ant1 1131 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → Rel ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))))
71, 2dihvalrel 38891 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼‘(0.‘𝐾)))
8 eqid 2759 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
9 dihmeetlem4.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
10 dihmeetlem4.z . . . . . 6 0 = (0g𝑈)
118, 1, 2, 9, 10dih0 38892 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼‘(0.‘𝐾)) = { 0 })
1211releqd 5628 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Rel (𝐼‘(0.‘𝐾)) ↔ Rel { 0 }))
137, 12mpbid 235 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel { 0 })
14133ad2ant1 1131 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → Rel { 0 })
15 id 22 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
16 elin 3877 . . . 4 (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))) ↔ (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))))
17 dihmeetlem4.l . . . . . . . . . 10 = (le‘𝐾)
18 dihmeetlem4.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
19 dihmeetlem4.p . . . . . . . . . 10 𝑃 = ((oc‘𝐾)‘𝑊)
20 dihmeetlem4.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
21 dihmeetlem4.e . . . . . . . . . 10 𝐸 = ((TEndo‘𝐾)‘𝑊)
22 dihmeetlem4.g . . . . . . . . . 10 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
23 vex 3414 . . . . . . . . . 10 𝑓 ∈ V
24 vex 3414 . . . . . . . . . 10 𝑠 ∈ V
2517, 18, 1, 19, 20, 21, 2, 22, 23, 24dihopelvalcqat 38858 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ↔ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)))
26253adant2 1129 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ↔ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)))
27 simp1 1134 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
28 simp1l 1195 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐾 ∈ HL)
2928hllatd 36976 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐾 ∈ Lat)
30 simp2l 1197 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑋𝐵)
31 simp1r 1196 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑊𝐻)
32 dihmeetlem4.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐾)
3332, 1lhpbase 37610 . . . . . . . . . . 11 (𝑊𝐻𝑊𝐵)
3431, 33syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑊𝐵)
35 dihmeetlem4.m . . . . . . . . . . 11 = (meet‘𝐾)
3632, 35latmcl 17743 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
3729, 30, 34, 36syl3anc 1369 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑋 𝑊) ∈ 𝐵)
3832, 17, 35latmle2 17768 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑊)
3929, 30, 34, 38syl3anc 1369 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑋 𝑊) 𝑊)
40 dihmeetlem4.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
41 dihmeetlem4.o . . . . . . . . . 10 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
4232, 17, 1, 20, 40, 41, 2dihopelvalbN 38850 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑋 𝑊) 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂)))
4327, 37, 39, 42syl12anc 835 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊)) ↔ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂)))
4426, 43anbi12d 633 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))) ↔ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))))
45 simprll 778 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → 𝑓 = (𝑠𝐺))
46 simprrr 781 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → 𝑠 = 𝑂)
4746fveq1d 6666 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑠𝐺) = (𝑂𝐺))
48 simpl1 1189 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4917, 18, 1, 19lhpocnel2 37631 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5048, 49syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
51 simpl3 1191 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
5217, 18, 1, 20, 22ltrniotacl 38191 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐺𝑇)
5348, 50, 51, 52syl3anc 1369 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → 𝐺𝑇)
5441, 32tendo02 38399 . . . . . . . . . . 11 (𝐺𝑇 → (𝑂𝐺) = ( I ↾ 𝐵))
5553, 54syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑂𝐺) = ( I ↾ 𝐵))
5645, 47, 553eqtrd 2798 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → 𝑓 = ( I ↾ 𝐵))
5756, 46jca 515 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))) → (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂))
58 simpl1 1189 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5958, 49syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
60 simpl3 1191 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
6158, 59, 60, 52syl3anc 1369 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝐺𝑇)
6261, 54syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑂𝐺) = ( I ↾ 𝐵))
63 simprr 772 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑠 = 𝑂)
6463fveq1d 6666 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑠𝐺) = (𝑂𝐺))
65 simprl 770 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑓 = ( I ↾ 𝐵))
6662, 64, 653eqtr4rd 2805 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑓 = (𝑠𝐺))
6732, 1, 20, 21, 41tendo0cl 38402 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
6858, 67syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑂𝐸)
6963, 68eqeltrd 2853 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑠𝐸)
7032, 1, 20idltrn 37762 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
7158, 70syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → ( I ↾ 𝐵) ∈ 𝑇)
7265, 71eqeltrd 2853 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝑓𝑇)
7365fveq2d 6668 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑅𝑓) = (𝑅‘( I ↾ 𝐵)))
7432, 8, 1, 40trlid0 37788 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾))
7558, 74syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑅‘( I ↾ 𝐵)) = (0.‘𝐾))
7673, 75eqtrd 2794 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑅𝑓) = (0.‘𝐾))
77 simpl1l 1222 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝐾 ∈ HL)
78 hlatl 36972 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
7977, 78syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → 𝐾 ∈ AtLat)
8037adantr 484 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑋 𝑊) ∈ 𝐵)
8132, 17, 8atl0le 36916 . . . . . . . . . . . 12 ((𝐾 ∈ AtLat ∧ (𝑋 𝑊) ∈ 𝐵) → (0.‘𝐾) (𝑋 𝑊))
8279, 80, 81syl2anc 587 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (0.‘𝐾) (𝑋 𝑊))
8376, 82eqbrtrd 5059 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → (𝑅𝑓) (𝑋 𝑊))
8472, 83, 63jca31 518 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂))
8566, 69, 84jca31 518 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)) → ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂)))
8657, 85impbida 800 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ∧ ((𝑓𝑇 ∧ (𝑅𝑓) (𝑋 𝑊)) ∧ 𝑠 = 𝑂)) ↔ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)))
8744, 86bitrd 282 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))) ↔ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂)))
88 opex 5329 . . . . . . . 8 𝑓, 𝑠⟩ ∈ V
8988elsn 4541 . . . . . . 7 (⟨𝑓, 𝑠⟩ ∈ {⟨( I ↾ 𝐵), 𝑂⟩} ↔ ⟨𝑓, 𝑠⟩ = ⟨( I ↾ 𝐵), 𝑂⟩)
9023, 24opth 5341 . . . . . . 7 (⟨𝑓, 𝑠⟩ = ⟨( I ↾ 𝐵), 𝑂⟩ ↔ (𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂))
9189, 90bitr2i 279 . . . . . 6 ((𝑓 = ( I ↾ 𝐵) ∧ 𝑠 = 𝑂) ↔ ⟨𝑓, 𝑠⟩ ∈ {⟨( I ↾ 𝐵), 𝑂⟩})
9287, 91bitrdi 290 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))) ↔ ⟨𝑓, 𝑠⟩ ∈ {⟨( I ↾ 𝐵), 𝑂⟩}))
9332, 1, 20, 9, 10, 41dvh0g 38723 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 = ⟨( I ↾ 𝐵), 𝑂⟩)
94933ad2ant1 1131 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 0 = ⟨( I ↾ 𝐵), 𝑂⟩)
9594sneqd 4538 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → { 0 } = {⟨( I ↾ 𝐵), 𝑂⟩})
9695eleq2d 2838 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ { 0 } ↔ ⟨𝑓, 𝑠⟩ ∈ {⟨( I ↾ 𝐵), 𝑂⟩}))
9792, 96bitr4d 285 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((⟨𝑓, 𝑠⟩ ∈ (𝐼𝑄) ∧ ⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑋 𝑊))) ↔ ⟨𝑓, 𝑠⟩ ∈ { 0 }))
9816, 97syl5bb 286 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))) ↔ ⟨𝑓, 𝑠⟩ ∈ { 0 }))
9998eqrelrdv2 5643 . 2 (((Rel ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))) ∧ Rel { 0 }) ∧ ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))) = { 0 })
1006, 14, 15, 99syl21anc 836 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝐼𝑄) ∩ (𝐼‘(𝑋 𝑊))) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1085   = wceq 1539  wcel 2112  cin 3860  {csn 4526  cop 4532   class class class wbr 5037  cmpt 5117   I cid 5434  cres 5531  Rel wrel 5534  cfv 6341  crio 7114  (class class class)co 7157  Basecbs 16556  lecple 16645  occoc 16646  0gc0g 16786  meetcmee 17636  0.cp0 17728  Latclat 17736  Atomscatm 36875  AtLatcal 36876  HLchlt 36962  LHypclh 37596  LTrncltrn 37713  trLctrl 37770  TEndoctendo 38364  DVecHcdvh 38690  DIsoHcdih 38840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666  ax-riotaBAD 36565
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-iin 4890  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-om 7587  df-1st 7700  df-2nd 7701  df-tpos 7909  df-undef 7956  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-1o 8119  df-er 8306  df-map 8425  df-en 8542  df-dom 8543  df-sdom 8544  df-fin 8545  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-nn 11689  df-2 11751  df-3 11752  df-4 11753  df-5 11754  df-6 11755  df-n0 11949  df-z 12035  df-uz 12297  df-fz 12954  df-struct 16558  df-ndx 16559  df-slot 16560  df-base 16562  df-sets 16563  df-ress 16564  df-plusg 16651  df-mulr 16652  df-sca 16654  df-vsca 16655  df-0g 16788  df-proset 17619  df-poset 17637  df-plt 17649  df-lub 17665  df-glb 17666  df-join 17667  df-meet 17668  df-p0 17730  df-p1 17731  df-lat 17737  df-clat 17799  df-mgm 17933  df-sgrp 17982  df-mnd 17993  df-submnd 18038  df-grp 18187  df-minusg 18188  df-sbg 18189  df-subg 18358  df-cntz 18529  df-lsm 18843  df-cmn 18990  df-abl 18991  df-mgp 19323  df-ur 19335  df-ring 19382  df-oppr 19459  df-dvdsr 19477  df-unit 19478  df-invr 19508  df-dvr 19519  df-drng 19587  df-lmod 19719  df-lss 19787  df-lsp 19827  df-lvec 19958  df-oposet 36788  df-ol 36790  df-oml 36791  df-covers 36878  df-ats 36879  df-atl 36910  df-cvlat 36934  df-hlat 36963  df-llines 37110  df-lplanes 37111  df-lvols 37112  df-lines 37113  df-psubsp 37115  df-pmap 37116  df-padd 37408  df-lhyp 37600  df-laut 37601  df-ldil 37716  df-ltrn 37717  df-trl 37771  df-tendo 38367  df-edring 38369  df-disoa 38641  df-dvech 38691  df-dib 38751  df-dic 38785  df-dih 38841
This theorem is referenced by:  dihmeetlem4N  38919
  Copyright terms: Public domain W3C validator