![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relss | Structured version Visualization version GIF version |
Description: Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.) |
Ref | Expression |
---|---|
relss | ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 4002 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ (V × V) → 𝐴 ⊆ (V × V))) | |
2 | df-rel 5696 | . 2 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
3 | df-rel 5696 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
4 | 1, 2, 3 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Vcvv 3478 ⊆ wss 3963 × cxp 5687 Rel wrel 5694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 |
This theorem depends on definitions: df-bi 207 df-ss 3980 df-rel 5696 |
This theorem is referenced by: relin1 5825 relin2 5826 reldif 5828 relres 6026 iss 6055 cnvdif 6166 difxp 6186 sofld 6209 funss 6587 funssres 6612 fliftcnv 7331 fliftfun 7332 releldmdifi 8069 frxp 8150 frxp2 8168 frxp3 8175 reltpos 8255 swoer 8775 sbthcl 9134 fpwwe2lem8 10676 recmulnq 11002 prcdnq 11031 ltrel 11321 lerel 11323 dfle2 13186 dflt2 13187 isinv 17808 invsym2 17811 invfun 17812 oppcsect2 17827 oppcinv 17828 relfull 17962 relfth 17963 psss 18638 gicer 19308 gsum2d 20005 isunit 20390 txdis1cn 23659 hmpher 23808 tgphaus 24141 qustgplem 24145 tsmsxp 24179 xmeter 24459 ovoliunlem1 25551 taylf 26417 lgsquadlem1 27439 lgsquadlem2 27440 noseqrdgfn 28327 nvrel 30631 phrel 30844 bnrel 30896 hlrel 30919 gsumfs2d 33041 gonan0 35377 sscoid 35895 trer 36299 fneer 36336 heicant 37642 iss2 38326 funALTVss 38681 disjss 38713 dvhopellsm 41100 diclspsn 41177 dih1dimatlem 41312 gricrel 47826 grlicrel 47902 |
Copyright terms: Public domain | W3C validator |