| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relss | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.) |
| Ref | Expression |
|---|---|
| relss | ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3950 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ (V × V) → 𝐴 ⊆ (V × V))) | |
| 2 | df-rel 5638 | . 2 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 3 | df-rel 5638 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 4 | 1, 2, 3 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Vcvv 3444 ⊆ wss 3911 × cxp 5629 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ss 3928 df-rel 5638 |
| This theorem is referenced by: relin1 5766 relin2 5767 reldif 5769 relres 5965 iss 5995 cnvdif 6104 difxp 6125 sofld 6148 funss 6519 funssres 6544 fliftcnv 7268 fliftfun 7269 releldmdifi 8003 frxp 8082 frxp2 8100 frxp3 8107 reltpos 8187 swoer 8679 sbthcl 9040 fpwwe2lem8 10567 recmulnq 10893 prcdnq 10922 ltrel 11212 lerel 11214 dfle2 13083 dflt2 13084 isinv 17702 invsym2 17705 invfun 17706 oppcsect2 17721 oppcinv 17722 relfull 17852 relfth 17853 psss 18521 gicer 19191 gsum2d 19886 isunit 20293 txdis1cn 23555 hmpher 23704 tgphaus 24037 qustgplem 24041 tsmsxp 24075 xmeter 24354 ovoliunlem1 25436 taylf 26301 lgsquadlem1 27324 lgsquadlem2 27325 noseqrdgfn 28240 nvrel 30581 phrel 30794 bnrel 30846 hlrel 30869 gsumfs2d 33038 elrgspnsubrunlem2 33215 gonan0 35372 sscoid 35894 trer 36297 fneer 36334 heicant 37642 iss2 38319 funALTVss 38684 disjss 38716 dvhopellsm 41104 diclspsn 41181 dih1dimatlem 41316 gricrel 47912 grlicrel 47991 |
| Copyright terms: Public domain | W3C validator |