Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relss | Structured version Visualization version GIF version |
Description: Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.) |
Ref | Expression |
---|---|
relss | ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3924 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ (V × V) → 𝐴 ⊆ (V × V))) | |
2 | df-rel 5587 | . 2 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
3 | df-rel 5587 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
4 | 1, 2, 3 | 3imtr4g 295 | 1 ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Vcvv 3422 ⊆ wss 3883 × cxp 5578 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-rel 5587 |
This theorem is referenced by: relin1 5711 relin2 5712 reldif 5714 relres 5909 iss 5932 cnvdif 6036 difxp 6056 sofld 6079 funss 6437 funssres 6462 fliftcnv 7162 fliftfun 7163 releldmdifi 7859 frxp 7938 reltpos 8018 swoer 8486 sbthcl 8835 fpwwe2lem8 10325 recmulnq 10651 prcdnq 10680 ltrel 10968 lerel 10970 dfle2 12810 dflt2 12811 isinv 17389 invsym2 17392 invfun 17393 oppcsect2 17408 oppcinv 17409 relfull 17540 relfth 17541 psss 18213 gicer 18807 gsum2d 19488 isunit 19814 txdis1cn 22694 hmpher 22843 tgphaus 23176 qustgplem 23180 tsmsxp 23214 xmeter 23494 ovoliunlem1 24571 taylf 25425 lgsquadlem1 26433 lgsquadlem2 26434 nvrel 28865 phrel 29078 bnrel 29130 hlrel 29153 gonan0 33254 frxp2 33718 frxp3 33724 sscoid 34142 trer 34432 fneer 34469 heicant 35739 iss2 36406 funALTVss 36737 disjss 36769 dvhopellsm 39058 diclspsn 39135 dih1dimatlem 39270 |
Copyright terms: Public domain | W3C validator |