![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relss | Structured version Visualization version GIF version |
Description: Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.) |
Ref | Expression |
---|---|
relss | ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 4015 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ (V × V) → 𝐴 ⊆ (V × V))) | |
2 | df-rel 5707 | . 2 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
3 | df-rel 5707 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
4 | 1, 2, 3 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Vcvv 3488 ⊆ wss 3976 × cxp 5698 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ss 3993 df-rel 5707 |
This theorem is referenced by: relin1 5836 relin2 5837 reldif 5839 relres 6035 iss 6064 cnvdif 6175 difxp 6195 sofld 6218 funss 6597 funssres 6622 fliftcnv 7347 fliftfun 7348 releldmdifi 8086 frxp 8167 frxp2 8185 frxp3 8192 reltpos 8272 swoer 8794 sbthcl 9161 fpwwe2lem8 10707 recmulnq 11033 prcdnq 11062 ltrel 11352 lerel 11354 dfle2 13209 dflt2 13210 isinv 17821 invsym2 17824 invfun 17825 oppcsect2 17840 oppcinv 17841 relfull 17975 relfth 17976 psss 18650 gicer 19317 gsum2d 20014 isunit 20399 txdis1cn 23664 hmpher 23813 tgphaus 24146 qustgplem 24150 tsmsxp 24184 xmeter 24464 ovoliunlem1 25556 taylf 26420 lgsquadlem1 27442 lgsquadlem2 27443 noseqrdgfn 28330 nvrel 30634 phrel 30847 bnrel 30899 hlrel 30922 gonan0 35360 sscoid 35877 trer 36282 fneer 36319 heicant 37615 iss2 38300 funALTVss 38655 disjss 38687 dvhopellsm 41074 diclspsn 41151 dih1dimatlem 41286 gricrel 47772 grlicrel 47823 |
Copyright terms: Public domain | W3C validator |