| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relss | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.) |
| Ref | Expression |
|---|---|
| relss | ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3953 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ (V × V) → 𝐴 ⊆ (V × V))) | |
| 2 | df-rel 5645 | . 2 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 3 | df-rel 5645 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 4 | 1, 2, 3 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Vcvv 3447 ⊆ wss 3914 × cxp 5636 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ss 3931 df-rel 5645 |
| This theorem is referenced by: relin1 5775 relin2 5776 reldif 5778 relres 5976 iss 6006 cnvdif 6116 difxp 6137 sofld 6160 funss 6535 funssres 6560 fliftcnv 7286 fliftfun 7287 releldmdifi 8024 frxp 8105 frxp2 8123 frxp3 8130 reltpos 8210 swoer 8702 sbthcl 9063 fpwwe2lem8 10591 recmulnq 10917 prcdnq 10946 ltrel 11236 lerel 11238 dfle2 13107 dflt2 13108 isinv 17722 invsym2 17725 invfun 17726 oppcsect2 17741 oppcinv 17742 relfull 17872 relfth 17873 psss 18539 gicer 19209 gsum2d 19902 isunit 20282 txdis1cn 23522 hmpher 23671 tgphaus 24004 qustgplem 24008 tsmsxp 24042 xmeter 24321 ovoliunlem1 25403 taylf 26268 lgsquadlem1 27291 lgsquadlem2 27292 noseqrdgfn 28200 nvrel 30531 phrel 30744 bnrel 30796 hlrel 30819 gsumfs2d 32995 elrgspnsubrunlem2 33199 gonan0 35379 sscoid 35901 trer 36304 fneer 36341 heicant 37649 iss2 38326 funALTVss 38691 disjss 38723 dvhopellsm 41111 diclspsn 41188 dih1dimatlem 41323 gricrel 47919 grlicrel 47998 |
| Copyright terms: Public domain | W3C validator |