| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relss | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.) |
| Ref | Expression |
|---|---|
| relss | ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3970 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ (V × V) → 𝐴 ⊆ (V × V))) | |
| 2 | df-rel 5666 | . 2 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 3 | df-rel 5666 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 4 | 1, 2, 3 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Vcvv 3464 ⊆ wss 3931 × cxp 5657 Rel wrel 5664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ss 3948 df-rel 5666 |
| This theorem is referenced by: relin1 5796 relin2 5797 reldif 5799 relres 5997 iss 6027 cnvdif 6137 difxp 6158 sofld 6181 funss 6560 funssres 6585 fliftcnv 7309 fliftfun 7310 releldmdifi 8049 frxp 8130 frxp2 8148 frxp3 8155 reltpos 8235 swoer 8755 sbthcl 9114 fpwwe2lem8 10657 recmulnq 10983 prcdnq 11012 ltrel 11302 lerel 11304 dfle2 13168 dflt2 13169 isinv 17778 invsym2 17781 invfun 17782 oppcsect2 17797 oppcinv 17798 relfull 17928 relfth 17929 psss 18595 gicer 19265 gsum2d 19958 isunit 20338 txdis1cn 23578 hmpher 23727 tgphaus 24060 qustgplem 24064 tsmsxp 24098 xmeter 24377 ovoliunlem1 25460 taylf 26325 lgsquadlem1 27348 lgsquadlem2 27349 noseqrdgfn 28257 nvrel 30588 phrel 30801 bnrel 30853 hlrel 30876 gsumfs2d 33054 elrgspnsubrunlem2 33248 gonan0 35419 sscoid 35936 trer 36339 fneer 36376 heicant 37684 iss2 38367 funALTVss 38722 disjss 38754 dvhopellsm 41141 diclspsn 41218 dih1dimatlem 41353 gricrel 47912 grlicrel 47991 |
| Copyright terms: Public domain | W3C validator |