| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relss | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.) |
| Ref | Expression |
|---|---|
| relss | ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3950 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ (V × V) → 𝐴 ⊆ (V × V))) | |
| 2 | df-rel 5638 | . 2 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 3 | df-rel 5638 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 4 | 1, 2, 3 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Vcvv 3444 ⊆ wss 3911 × cxp 5629 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ss 3928 df-rel 5638 |
| This theorem is referenced by: relin1 5766 relin2 5767 reldif 5769 relres 5965 iss 5995 cnvdif 6104 difxp 6125 sofld 6148 funss 6519 funssres 6544 fliftcnv 7268 fliftfun 7269 releldmdifi 8003 frxp 8082 frxp2 8100 frxp3 8107 reltpos 8187 swoer 8679 sbthcl 9040 fpwwe2lem8 10567 recmulnq 10893 prcdnq 10922 ltrel 11212 lerel 11214 dfle2 13083 dflt2 13084 isinv 17698 invsym2 17701 invfun 17702 oppcsect2 17717 oppcinv 17718 relfull 17848 relfth 17849 psss 18515 gicer 19185 gsum2d 19878 isunit 20258 txdis1cn 23498 hmpher 23647 tgphaus 23980 qustgplem 23984 tsmsxp 24018 xmeter 24297 ovoliunlem1 25379 taylf 26244 lgsquadlem1 27267 lgsquadlem2 27268 noseqrdgfn 28176 nvrel 30504 phrel 30717 bnrel 30769 hlrel 30792 gsumfs2d 32968 elrgspnsubrunlem2 33172 gonan0 35352 sscoid 35874 trer 36277 fneer 36314 heicant 37622 iss2 38299 funALTVss 38664 disjss 38696 dvhopellsm 41084 diclspsn 41161 dih1dimatlem 41296 gricrel 47892 grlicrel 47971 |
| Copyright terms: Public domain | W3C validator |