Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relss | Structured version Visualization version GIF version |
Description: Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.) |
Ref | Expression |
---|---|
relss | ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3928 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ (V × V) → 𝐴 ⊆ (V × V))) | |
2 | df-rel 5596 | . 2 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
3 | df-rel 5596 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
4 | 1, 2, 3 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Vcvv 3432 ⊆ wss 3887 × cxp 5587 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-rel 5596 |
This theorem is referenced by: relin1 5722 relin2 5723 reldif 5725 relres 5920 iss 5943 cnvdif 6047 difxp 6067 sofld 6090 funss 6453 funssres 6478 fliftcnv 7182 fliftfun 7183 releldmdifi 7886 frxp 7967 reltpos 8047 swoer 8528 sbthcl 8882 fpwwe2lem8 10394 recmulnq 10720 prcdnq 10749 ltrel 11037 lerel 11039 dfle2 12881 dflt2 12882 isinv 17472 invsym2 17475 invfun 17476 oppcsect2 17491 oppcinv 17492 relfull 17624 relfth 17625 psss 18298 gicer 18892 gsum2d 19573 isunit 19899 txdis1cn 22786 hmpher 22935 tgphaus 23268 qustgplem 23272 tsmsxp 23306 xmeter 23586 ovoliunlem1 24666 taylf 25520 lgsquadlem1 26528 lgsquadlem2 26529 nvrel 28964 phrel 29177 bnrel 29229 hlrel 29252 gonan0 33354 frxp2 33791 frxp3 33797 sscoid 34215 trer 34505 fneer 34542 heicant 35812 iss2 36479 funALTVss 36810 disjss 36842 dvhopellsm 39131 diclspsn 39208 dih1dimatlem 39343 |
Copyright terms: Public domain | W3C validator |