| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relss | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.) |
| Ref | Expression |
|---|---|
| relss | ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3942 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ (V × V) → 𝐴 ⊆ (V × V))) | |
| 2 | df-rel 5626 | . 2 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 3 | df-rel 5626 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 4 | 1, 2, 3 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Vcvv 3436 ⊆ wss 3903 × cxp 5617 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ss 3920 df-rel 5626 |
| This theorem is referenced by: relin1 5755 relin2 5756 reldif 5758 relres 5956 iss 5986 cnvdif 6092 difxp 6113 sofld 6136 funss 6501 funssres 6526 fliftcnv 7248 fliftfun 7249 releldmdifi 7980 frxp 8059 frxp2 8077 frxp3 8084 reltpos 8164 swoer 8656 sbthcl 9016 fpwwe2lem8 10532 recmulnq 10858 prcdnq 10887 ltrel 11177 lerel 11179 dfle2 13049 dflt2 13050 isinv 17667 invsym2 17670 invfun 17671 oppcsect2 17686 oppcinv 17687 relfull 17817 relfth 17818 psss 18486 gicer 19156 gsum2d 19851 isunit 20258 txdis1cn 23520 hmpher 23669 tgphaus 24002 qustgplem 24006 tsmsxp 24040 xmeter 24319 ovoliunlem1 25401 taylf 26266 lgsquadlem1 27289 lgsquadlem2 27290 noseqrdgfn 28205 nvrel 30546 phrel 30759 bnrel 30811 hlrel 30834 gsumfs2d 33008 elrgspnsubrunlem2 33188 gonan0 35365 sscoid 35887 trer 36290 fneer 36327 heicant 37635 iss2 38312 funALTVss 38677 disjss 38709 dvhopellsm 41096 diclspsn 41173 dih1dimatlem 41308 gricrel 47903 grlicrel 47990 |
| Copyright terms: Public domain | W3C validator |