Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relss | Structured version Visualization version GIF version |
Description: Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.) |
Ref | Expression |
---|---|
relss | ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3939 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ (V × V) → 𝐴 ⊆ (V × V))) | |
2 | df-rel 5627 | . 2 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
3 | df-rel 5627 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
4 | 1, 2, 3 | 3imtr4g 295 | 1 ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Vcvv 3441 ⊆ wss 3898 × cxp 5618 Rel wrel 5625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-in 3905 df-ss 3915 df-rel 5627 |
This theorem is referenced by: relin1 5754 relin2 5755 reldif 5757 relres 5952 iss 5975 cnvdif 6082 difxp 6102 sofld 6125 funss 6503 funssres 6528 fliftcnv 7238 fliftfun 7239 releldmdifi 7954 frxp 8034 reltpos 8117 swoer 8599 sbthcl 8960 fpwwe2lem8 10495 recmulnq 10821 prcdnq 10850 ltrel 11138 lerel 11140 dfle2 12982 dflt2 12983 isinv 17569 invsym2 17572 invfun 17573 oppcsect2 17588 oppcinv 17589 relfull 17721 relfth 17722 psss 18395 gicer 18988 gsum2d 19668 isunit 19994 txdis1cn 22892 hmpher 23041 tgphaus 23374 qustgplem 23378 tsmsxp 23412 xmeter 23692 ovoliunlem1 24772 taylf 25626 lgsquadlem1 26634 lgsquadlem2 26635 nvrel 29252 phrel 29465 bnrel 29517 hlrel 29540 gonan0 33653 frxp2 34073 frxp3 34079 sscoid 34311 trer 34601 fneer 34638 heicant 35925 iss2 36618 funALTVss 36974 disjss 37006 dvhopellsm 39393 diclspsn 39470 dih1dimatlem 39605 |
Copyright terms: Public domain | W3C validator |