| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relss | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.) |
| Ref | Expression |
|---|---|
| relss | ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3936 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ (V × V) → 𝐴 ⊆ (V × V))) | |
| 2 | df-rel 5621 | . 2 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 3 | df-rel 5621 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 4 | 1, 2, 3 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (Rel 𝐵 → Rel 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Vcvv 3436 ⊆ wss 3897 × cxp 5612 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ss 3914 df-rel 5621 |
| This theorem is referenced by: relin1 5751 relin2 5752 reldif 5754 relres 5953 iss 5983 cnvdif 6090 difxp 6111 sofld 6134 funss 6500 funssres 6525 fliftcnv 7245 fliftfun 7246 releldmdifi 7977 frxp 8056 frxp2 8074 frxp3 8081 reltpos 8161 swoer 8653 sbthcl 9012 fpwwe2lem8 10529 recmulnq 10855 prcdnq 10884 ltrel 11174 lerel 11176 dfle2 13046 dflt2 13047 isinv 17667 invsym2 17670 invfun 17671 oppcsect2 17686 oppcinv 17687 relfull 17817 relfth 17818 psss 18486 gicer 19189 gsum2d 19884 isunit 20291 txdis1cn 23550 hmpher 23699 tgphaus 24032 qustgplem 24036 tsmsxp 24070 xmeter 24348 ovoliunlem1 25430 taylf 26295 lgsquadlem1 27318 lgsquadlem2 27319 noseqrdgfn 28236 nvrel 30582 phrel 30795 bnrel 30847 hlrel 30870 gsumfs2d 33035 elrgspnsubrunlem2 33215 gonan0 35436 sscoid 35955 trer 36358 fneer 36395 heicant 37703 iss2 38380 funALTVss 38745 disjss 38777 dvhopellsm 41164 diclspsn 41241 dih1dimatlem 41376 gricrel 47958 grlicrel 48045 |
| Copyright terms: Public domain | W3C validator |