| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relin2 | Structured version Visualization version GIF version | ||
| Description: The intersection with a relation is a relation. (Contributed by NM, 17-Jan-2006.) |
| Ref | Expression |
|---|---|
| relin2 | ⊢ (Rel 𝐵 → Rel (𝐴 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 4213 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 2 | relss 5760 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐵 → (Rel 𝐵 → Rel (𝐴 ∩ 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐵 → Rel (𝐴 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3925 ⊆ wss 3926 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-in 3933 df-ss 3943 df-rel 5661 |
| This theorem is referenced by: relinxp 5793 intasym 6104 asymref 6105 poirr2 6113 symgcom2 33095 cnvref4 38368 dfantisymrel4 38779 dfantisymrel5 38780 clcnvlem 43647 |
| Copyright terms: Public domain | W3C validator |