MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relin2 Structured version   Visualization version   GIF version

Theorem relin2 5712
Description: The intersection with a relation is a relation. (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
relin2 (Rel 𝐵 → Rel (𝐴𝐵))

Proof of Theorem relin2
StepHypRef Expression
1 inss2 4160 . 2 (𝐴𝐵) ⊆ 𝐵
2 relss 5682 . 2 ((𝐴𝐵) ⊆ 𝐵 → (Rel 𝐵 → Rel (𝐴𝐵)))
31, 2ax-mp 5 1 (Rel 𝐵 → Rel (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cin 3882  wss 3883  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-rel 5587
This theorem is referenced by:  relinxp  5713  intasym  6009  asymref  6010  poirr2  6018  symgcom2  31255  clcnvlem  41120
  Copyright terms: Public domain W3C validator