Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relin2 | Structured version Visualization version GIF version |
Description: The intersection with a relation is a relation. (Contributed by NM, 17-Jan-2006.) |
Ref | Expression |
---|---|
relin2 | ⊢ (Rel 𝐵 → Rel (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 4136 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
2 | relss 5629 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐵 → (Rel 𝐵 → Rel (𝐴 ∩ 𝐵))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐵 → Rel (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3859 ⊆ wss 3860 Rel wrel 5532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-rab 3079 df-v 3411 df-in 3867 df-ss 3877 df-rel 5534 |
This theorem is referenced by: relinxp 5660 intasym 5951 asymref 5952 poirr2 5960 symgcom2 30883 clcnvlem 40724 |
Copyright terms: Public domain | W3C validator |