| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relin2 | Structured version Visualization version GIF version | ||
| Description: The intersection with a relation is a relation. (Contributed by NM, 17-Jan-2006.) |
| Ref | Expression |
|---|---|
| relin2 | ⊢ (Rel 𝐵 → Rel (𝐴 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss2 4188 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 2 | relss 5722 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐵 → (Rel 𝐵 → Rel (𝐴 ∩ 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐵 → Rel (𝐴 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3901 ⊆ wss 3902 Rel wrel 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3909 df-ss 3919 df-rel 5623 |
| This theorem is referenced by: relinxp 5754 intasym 6062 asymref 6063 poirr2 6071 symgcom2 33051 cnvref4 38384 dfantisymrel4 38805 dfantisymrel5 38806 clcnvlem 43662 |
| Copyright terms: Public domain | W3C validator |