MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relin2 Structured version   Visualization version   GIF version

Theorem relin2 5757
Description: The intersection with a relation is a relation. (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
relin2 (Rel 𝐵 → Rel (𝐴𝐵))

Proof of Theorem relin2
StepHypRef Expression
1 inss2 4187 . 2 (𝐴𝐵) ⊆ 𝐵
2 relss 5726 . 2 ((𝐴𝐵) ⊆ 𝐵 → (Rel 𝐵 → Rel (𝐴𝐵)))
31, 2ax-mp 5 1 (Rel 𝐵 → Rel (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cin 3897  wss 3898  Rel wrel 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-in 3905  df-ss 3915  df-rel 5626
This theorem is referenced by:  relinxp  5758  intasym  6066  asymref  6067  poirr2  6075  symgcom2  33060  cnvref4  38403  dfantisymrel4  38880  dfantisymrel5  38881  clcnvlem  43741
  Copyright terms: Public domain W3C validator