Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relin2 | Structured version Visualization version GIF version |
Description: The intersection with a relation is a relation. (Contributed by NM, 17-Jan-2006.) |
Ref | Expression |
---|---|
relin2 | ⊢ (Rel 𝐵 → Rel (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 4160 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
2 | relss 5682 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐵 → (Rel 𝐵 → Rel (𝐴 ∩ 𝐵))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Rel 𝐵 → Rel (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3882 ⊆ wss 3883 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-rel 5587 |
This theorem is referenced by: relinxp 5713 intasym 6009 asymref 6010 poirr2 6018 symgcom2 31255 clcnvlem 41120 |
Copyright terms: Public domain | W3C validator |