Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relint | Structured version Visualization version GIF version |
Description: The intersection of a class is a relation if at least one member is a relation. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
relint | ⊢ (∃𝑥 ∈ 𝐴 Rel 𝑥 → Rel ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reliin 5727 | . 2 ⊢ (∃𝑥 ∈ 𝐴 Rel 𝑥 → Rel ∩ 𝑥 ∈ 𝐴 𝑥) | |
2 | intiin 4989 | . . 3 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
3 | 2 | releqi 5688 | . 2 ⊢ (Rel ∩ 𝐴 ↔ Rel ∩ 𝑥 ∈ 𝐴 𝑥) |
4 | 1, 3 | sylibr 233 | 1 ⊢ (∃𝑥 ∈ 𝐴 Rel 𝑥 → Rel ∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wrex 3065 ∩ cint 4879 ∩ ciin 4925 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-in 3894 df-ss 3904 df-int 4880 df-iin 4927 df-rel 5596 |
This theorem is referenced by: clrellem 41230 |
Copyright terms: Public domain | W3C validator |