![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relint | Structured version Visualization version GIF version |
Description: The intersection of a class is a relation if at least one member is a relation. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
relint | ⊢ (∃𝑥 ∈ 𝐴 Rel 𝑥 → Rel ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reliin 5841 | . 2 ⊢ (∃𝑥 ∈ 𝐴 Rel 𝑥 → Rel ∩ 𝑥 ∈ 𝐴 𝑥) | |
2 | intiin 5082 | . . 3 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
3 | 2 | releqi 5801 | . 2 ⊢ (Rel ∩ 𝐴 ↔ Rel ∩ 𝑥 ∈ 𝐴 𝑥) |
4 | 1, 3 | sylibr 234 | 1 ⊢ (∃𝑥 ∈ 𝐴 Rel 𝑥 → Rel ∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wrex 3076 ∩ cint 4970 ∩ ciin 5016 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-ss 3993 df-int 4971 df-iin 5018 df-rel 5707 |
This theorem is referenced by: clrellem 43584 |
Copyright terms: Public domain | W3C validator |