![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relint | Structured version Visualization version GIF version |
Description: The intersection of a class is a relation if at least one member is a relation. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
relint | ⊢ (∃𝑥 ∈ 𝐴 Rel 𝑥 → Rel ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reliin 5819 | . 2 ⊢ (∃𝑥 ∈ 𝐴 Rel 𝑥 → Rel ∩ 𝑥 ∈ 𝐴 𝑥) | |
2 | intiin 5062 | . . 3 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 | |
3 | 2 | releqi 5779 | . 2 ⊢ (Rel ∩ 𝐴 ↔ Rel ∩ 𝑥 ∈ 𝐴 𝑥) |
4 | 1, 3 | sylibr 233 | 1 ⊢ (∃𝑥 ∈ 𝐴 Rel 𝑥 → Rel ∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wrex 3067 ∩ cint 4949 ∩ ciin 4997 Rel wrel 5683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-v 3473 df-in 3954 df-ss 3964 df-int 4950 df-iin 4999 df-rel 5685 |
This theorem is referenced by: clrellem 43052 |
Copyright terms: Public domain | W3C validator |