MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relint Structured version   Visualization version   GIF version

Theorem relint 5820
Description: The intersection of a class is a relation if at least one member is a relation. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
relint (∃𝑥𝐴 Rel 𝑥 → Rel 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem relint
StepHypRef Expression
1 reliin 5818 . 2 (∃𝑥𝐴 Rel 𝑥 → Rel 𝑥𝐴 𝑥)
2 intiin 5063 . . 3 𝐴 = 𝑥𝐴 𝑥
32releqi 5778 . 2 (Rel 𝐴 ↔ Rel 𝑥𝐴 𝑥)
41, 3sylibr 233 1 (∃𝑥𝐴 Rel 𝑥 → Rel 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wrex 3071   cint 4951   ciin 4999  Rel wrel 5682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-v 3477  df-in 3956  df-ss 3966  df-int 4952  df-iin 5001  df-rel 5684
This theorem is referenced by:  clrellem  42373
  Copyright terms: Public domain W3C validator