MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relint Structured version   Visualization version   GIF version

Theorem relint 5763
Description: The intersection of a class is a relation if at least one member is a relation. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
relint (∃𝑥𝐴 Rel 𝑥 → Rel 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem relint
StepHypRef Expression
1 reliin 5761 . 2 (∃𝑥𝐴 Rel 𝑥 → Rel 𝑥𝐴 𝑥)
2 intiin 5010 . . 3 𝐴 = 𝑥𝐴 𝑥
32releqi 5722 . 2 (Rel 𝐴 ↔ Rel 𝑥𝐴 𝑥)
41, 3sylibr 234 1 (∃𝑥𝐴 Rel 𝑥 → Rel 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wrex 3057   cint 4897   ciin 4942  Rel wrel 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-v 3439  df-ss 3915  df-int 4898  df-iin 4944  df-rel 5626
This theorem is referenced by:  clrellem  43739
  Copyright terms: Public domain W3C validator