MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relint Structured version   Visualization version   GIF version

Theorem relint 5812
Description: The intersection of a class is a relation if at least one member is a relation. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
relint (∃𝑥𝐴 Rel 𝑥 → Rel 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem relint
StepHypRef Expression
1 reliin 5810 . 2 (∃𝑥𝐴 Rel 𝑥 → Rel 𝑥𝐴 𝑥)
2 intiin 5055 . . 3 𝐴 = 𝑥𝐴 𝑥
32releqi 5770 . 2 (Rel 𝐴 ↔ Rel 𝑥𝐴 𝑥)
41, 3sylibr 233 1 (∃𝑥𝐴 Rel 𝑥 → Rel 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wrex 3064   cint 4943   ciin 4991  Rel wrel 5674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-v 3470  df-in 3950  df-ss 3960  df-int 4944  df-iin 4993  df-rel 5676
This theorem is referenced by:  clrellem  42930
  Copyright terms: Public domain W3C validator