![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reliin | Structured version Visualization version GIF version |
Description: An indexed intersection is a relation if at least one of the member of the indexed family is a relation. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
reliin | ⊢ (∃𝑥 ∈ 𝐴 Rel 𝐵 → Rel ∩ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinss 4792 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ (V × V) → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ (V × V)) | |
2 | df-rel 5350 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
3 | 2 | rexbii 3252 | . 2 ⊢ (∃𝑥 ∈ 𝐴 Rel 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝐵 ⊆ (V × V)) |
4 | df-rel 5350 | . 2 ⊢ (Rel ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ (V × V)) | |
5 | 1, 3, 4 | 3imtr4i 284 | 1 ⊢ (∃𝑥 ∈ 𝐴 Rel 𝐵 → Rel ∩ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wrex 3119 Vcvv 3415 ⊆ wss 3799 ∩ ciin 4742 × cxp 5341 Rel wrel 5348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2804 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ral 3123 df-rex 3124 df-v 3417 df-in 3806 df-ss 3813 df-iin 4744 df-rel 5350 |
This theorem is referenced by: relint 5478 xpiindi 5491 dibglbN 37242 dihglbcpreN 37376 |
Copyright terms: Public domain | W3C validator |