![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reliin | Structured version Visualization version GIF version |
Description: An indexed intersection is a relation if at least one of the member of the indexed family is a relation. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
reliin | ⊢ (∃𝑥 ∈ 𝐴 Rel 𝐵 → Rel ∩ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinss 5061 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ (V × V) → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ (V × V)) | |
2 | df-rel 5696 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
3 | 2 | rexbii 3092 | . 2 ⊢ (∃𝑥 ∈ 𝐴 Rel 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝐵 ⊆ (V × V)) |
4 | df-rel 5696 | . 2 ⊢ (Rel ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ (V × V)) | |
5 | 1, 3, 4 | 3imtr4i 292 | 1 ⊢ (∃𝑥 ∈ 𝐴 Rel 𝐵 → Rel ∩ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wrex 3068 Vcvv 3478 ⊆ wss 3963 ∩ ciin 4997 × cxp 5687 Rel wrel 5694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-v 3480 df-ss 3980 df-iin 4999 df-rel 5696 |
This theorem is referenced by: relint 5832 xpiindi 5849 dibglbN 41149 dihglbcpreN 41283 |
Copyright terms: Public domain | W3C validator |