MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reliin Structured version   Visualization version   GIF version

Theorem reliin 5716
Description: An indexed intersection is a relation if at least one of the member of the indexed family is a relation. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
reliin (∃𝑥𝐴 Rel 𝐵 → Rel 𝑥𝐴 𝐵)

Proof of Theorem reliin
StepHypRef Expression
1 iinss 4982 . 2 (∃𝑥𝐴 𝐵 ⊆ (V × V) → 𝑥𝐴 𝐵 ⊆ (V × V))
2 df-rel 5587 . . 3 (Rel 𝐵𝐵 ⊆ (V × V))
32rexbii 3177 . 2 (∃𝑥𝐴 Rel 𝐵 ↔ ∃𝑥𝐴 𝐵 ⊆ (V × V))
4 df-rel 5587 . 2 (Rel 𝑥𝐴 𝐵 𝑥𝐴 𝐵 ⊆ (V × V))
51, 3, 43imtr4i 291 1 (∃𝑥𝐴 Rel 𝐵 → Rel 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wrex 3064  Vcvv 3422  wss 3883   ciin 4922   × cxp 5578  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-v 3424  df-in 3890  df-ss 3900  df-iin 4924  df-rel 5587
This theorem is referenced by:  relint  5718  xpiindi  5733  dibglbN  39107  dihglbcpreN  39241
  Copyright terms: Public domain W3C validator