MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reliin Structured version   Visualization version   GIF version

Theorem reliin 5756
Description: An indexed intersection is a relation if at least one of the member of the indexed family is a relation. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
reliin (∃𝑥𝐴 Rel 𝐵 → Rel 𝑥𝐴 𝐵)

Proof of Theorem reliin
StepHypRef Expression
1 iinss 5003 . 2 (∃𝑥𝐴 𝐵 ⊆ (V × V) → 𝑥𝐴 𝐵 ⊆ (V × V))
2 df-rel 5621 . . 3 (Rel 𝐵𝐵 ⊆ (V × V))
32rexbii 3079 . 2 (∃𝑥𝐴 Rel 𝐵 ↔ ∃𝑥𝐴 𝐵 ⊆ (V × V))
4 df-rel 5621 . 2 (Rel 𝑥𝐴 𝐵 𝑥𝐴 𝐵 ⊆ (V × V))
51, 3, 43imtr4i 292 1 (∃𝑥𝐴 Rel 𝐵 → Rel 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wrex 3056  Vcvv 3436  wss 3897   ciin 4940   × cxp 5612  Rel wrel 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-v 3438  df-ss 3914  df-iin 4942  df-rel 5621
This theorem is referenced by:  relint  5758  xpiindi  5774  dibglbN  41275  dihglbcpreN  41409  iinxp  48941
  Copyright terms: Public domain W3C validator