MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reliin Structured version   Visualization version   GIF version

Theorem reliin 5801
Description: An indexed intersection is a relation if at least one of the member of the indexed family is a relation. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
reliin (∃𝑥𝐴 Rel 𝐵 → Rel 𝑥𝐴 𝐵)

Proof of Theorem reliin
StepHypRef Expression
1 iinss 5037 . 2 (∃𝑥𝐴 𝐵 ⊆ (V × V) → 𝑥𝐴 𝐵 ⊆ (V × V))
2 df-rel 5666 . . 3 (Rel 𝐵𝐵 ⊆ (V × V))
32rexbii 3084 . 2 (∃𝑥𝐴 Rel 𝐵 ↔ ∃𝑥𝐴 𝐵 ⊆ (V × V))
4 df-rel 5666 . 2 (Rel 𝑥𝐴 𝐵 𝑥𝐴 𝐵 ⊆ (V × V))
51, 3, 43imtr4i 292 1 (∃𝑥𝐴 Rel 𝐵 → Rel 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wrex 3061  Vcvv 3464  wss 3931   ciin 4973   × cxp 5657  Rel wrel 5664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-v 3466  df-ss 3948  df-iin 4975  df-rel 5666
This theorem is referenced by:  relint  5803  xpiindi  5820  dibglbN  41190  dihglbcpreN  41324  iinxp  48776
  Copyright terms: Public domain W3C validator