| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reliin | Structured version Visualization version GIF version | ||
| Description: An indexed intersection is a relation if at least one of the member of the indexed family is a relation. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| reliin | ⊢ (∃𝑥 ∈ 𝐴 Rel 𝐵 → Rel ∩ 𝑥 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iinss 5037 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ (V × V) → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ (V × V)) | |
| 2 | df-rel 5666 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 3 | 2 | rexbii 3084 | . 2 ⊢ (∃𝑥 ∈ 𝐴 Rel 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝐵 ⊆ (V × V)) |
| 4 | df-rel 5666 | . 2 ⊢ (Rel ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ (V × V)) | |
| 5 | 1, 3, 4 | 3imtr4i 292 | 1 ⊢ (∃𝑥 ∈ 𝐴 Rel 𝐵 → Rel ∩ 𝑥 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wrex 3061 Vcvv 3464 ⊆ wss 3931 ∩ ciin 4973 × cxp 5657 Rel wrel 5664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-v 3466 df-ss 3948 df-iin 4975 df-rel 5666 |
| This theorem is referenced by: relint 5803 xpiindi 5820 dibglbN 41190 dihglbcpreN 41324 iinxp 48776 |
| Copyright terms: Public domain | W3C validator |