MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reluni Structured version   Visualization version   GIF version

Theorem reluni 5818
Description: The union of a class is a relation iff any member is a relation. Exercise 6 of [TakeutiZaring] p. 25 and its converse. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
reluni (Rel 𝐴 ↔ ∀𝑥𝐴 Rel 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem reluni
StepHypRef Expression
1 uniiun 5061 . . 3 𝐴 = 𝑥𝐴 𝑥
21releqi 5777 . 2 (Rel 𝐴 ↔ Rel 𝑥𝐴 𝑥)
3 reliun 5816 . 2 (Rel 𝑥𝐴 𝑥 ↔ ∀𝑥𝐴 Rel 𝑥)
42, 3bitri 275 1 (Rel 𝐴 ↔ ∀𝑥𝐴 Rel 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wral 3060   cuni 4908   ciun 4997  Rel wrel 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-v 3475  df-in 3955  df-ss 3965  df-uni 4909  df-iun 4999  df-rel 5683
This theorem is referenced by:  fununi  6623  frrlem6  8282  wfrrelOLD  8320  tfrlem6  8388  bnj1379  34154
  Copyright terms: Public domain W3C validator