| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reluni | Structured version Visualization version GIF version | ||
| Description: The union of a class is a relation iff any member is a relation. Exercise 6 of [TakeutiZaring] p. 25 and its converse. (Contributed by NM, 13-Aug-2004.) |
| Ref | Expression |
|---|---|
| reluni | ⊢ (Rel ∪ 𝐴 ↔ ∀𝑥 ∈ 𝐴 Rel 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniiun 5005 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
| 2 | 1 | releqi 5717 | . 2 ⊢ (Rel ∪ 𝐴 ↔ Rel ∪ 𝑥 ∈ 𝐴 𝑥) |
| 3 | reliun 5755 | . 2 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 𝑥 ↔ ∀𝑥 ∈ 𝐴 Rel 𝑥) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (Rel ∪ 𝐴 ↔ ∀𝑥 ∈ 𝐴 Rel 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wral 3047 ∪ cuni 4856 ∪ ciun 4939 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-ss 3914 df-uni 4857 df-iun 4941 df-rel 5621 |
| This theorem is referenced by: fununi 6556 frrlem6 8221 tfrlem6 8301 bnj1379 34842 |
| Copyright terms: Public domain | W3C validator |