MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reluni Structured version   Visualization version   GIF version

Theorem reluni 5802
Description: The union of a class is a relation iff any member is a relation. Exercise 6 of [TakeutiZaring] p. 25 and its converse. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
reluni (Rel 𝐴 ↔ ∀𝑥𝐴 Rel 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem reluni
StepHypRef Expression
1 uniiun 5039 . . 3 𝐴 = 𝑥𝐴 𝑥
21releqi 5761 . 2 (Rel 𝐴 ↔ Rel 𝑥𝐴 𝑥)
3 reliun 5800 . 2 (Rel 𝑥𝐴 𝑥 ↔ ∀𝑥𝐴 Rel 𝑥)
42, 3bitri 275 1 (Rel 𝐴 ↔ ∀𝑥𝐴 Rel 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wral 3052   cuni 4888   ciun 4972  Rel wrel 5664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-ss 3948  df-uni 4889  df-iun 4974  df-rel 5666
This theorem is referenced by:  fununi  6616  frrlem6  8295  wfrrelOLD  8333  tfrlem6  8401  bnj1379  34866
  Copyright terms: Public domain W3C validator