![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reluni | Structured version Visualization version GIF version |
Description: The union of a class is a relation iff any member is a relation. Exercise 6 of [TakeutiZaring] p. 25 and its converse. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
reluni | ⊢ (Rel ∪ 𝐴 ↔ ∀𝑥 ∈ 𝐴 Rel 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniiun 5061 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
2 | 1 | releqi 5777 | . 2 ⊢ (Rel ∪ 𝐴 ↔ Rel ∪ 𝑥 ∈ 𝐴 𝑥) |
3 | reliun 5816 | . 2 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 𝑥 ↔ ∀𝑥 ∈ 𝐴 Rel 𝑥) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (Rel ∪ 𝐴 ↔ ∀𝑥 ∈ 𝐴 Rel 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wral 3060 ∪ cuni 4908 ∪ ciun 4997 Rel wrel 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-v 3475 df-in 3955 df-ss 3965 df-uni 4909 df-iun 4999 df-rel 5683 |
This theorem is referenced by: fununi 6623 frrlem6 8282 wfrrelOLD 8320 tfrlem6 8388 bnj1379 34154 |
Copyright terms: Public domain | W3C validator |