![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reluni | Structured version Visualization version GIF version |
Description: The union of a class is a relation iff any member is a relation. Exercise 6 of [TakeutiZaring] p. 25 and its converse. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
reluni | ⊢ (Rel ∪ 𝐴 ↔ ∀𝑥 ∈ 𝐴 Rel 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniiun 4761 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
2 | 1 | releqi 5405 | . 2 ⊢ (Rel ∪ 𝐴 ↔ Rel ∪ 𝑥 ∈ 𝐴 𝑥) |
3 | reliun 5441 | . 2 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 𝑥 ↔ ∀𝑥 ∈ 𝐴 Rel 𝑥) | |
4 | 2, 3 | bitri 267 | 1 ⊢ (Rel ∪ 𝐴 ↔ ∀𝑥 ∈ 𝐴 Rel 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∀wral 3087 ∪ cuni 4626 ∪ ciun 4708 Rel wrel 5315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rex 3093 df-v 3385 df-in 3774 df-ss 3781 df-uni 4627 df-iun 4710 df-rel 5317 |
This theorem is referenced by: fununi 6173 wfrrel 7657 tfrlem6 7715 bnj1379 31410 frrlem5b 32290 frrlem6 32294 cnfinltrel 33731 |
Copyright terms: Public domain | W3C validator |