Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clrellem Structured version   Visualization version   GIF version

Theorem clrellem 43324
Description: When the property 𝜓 holds for a relation substituted for 𝑥, then the closure on that property is a relation if the base set is a relation. (Contributed by RP, 30-Jul-2020.)
Hypotheses
Ref Expression
clrellem.y (𝜑𝑌 ∈ V)
clrellem.rel (𝜑 → Rel 𝑋)
clrellem.sub (𝑥 = 𝑌 → (𝜓𝜒))
clrellem.sup (𝜑𝑋𝑌)
clrellem.maj (𝜑𝜒)
Assertion
Ref Expression
clrellem (𝜑 → Rel {𝑥 ∣ (𝑋𝑥𝜓)})
Distinct variable groups:   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem clrellem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 clrellem.y . . . 4 (𝜑𝑌 ∈ V)
2 cnvexg 7927 . . . 4 (𝑌 ∈ V → 𝑌 ∈ V)
3 cnvexg 7927 . . . 4 (𝑌 ∈ V → 𝑌 ∈ V)
41, 2, 33syl 18 . . 3 (𝜑𝑌 ∈ V)
5 clrellem.rel . . . . . 6 (𝜑 → Rel 𝑋)
6 dfrel2 6191 . . . . . 6 (Rel 𝑋𝑋 = 𝑋)
75, 6sylib 217 . . . . 5 (𝜑𝑋 = 𝑋)
8 clrellem.sup . . . . . 6 (𝜑𝑋𝑌)
9 cnvss 5870 . . . . . 6 (𝑋𝑌𝑋𝑌)
10 cnvss 5870 . . . . . 6 (𝑋𝑌𝑋𝑌)
118, 9, 103syl 18 . . . . 5 (𝜑𝑋𝑌)
127, 11eqsstrrd 4019 . . . 4 (𝜑𝑋𝑌)
13 clrellem.maj . . . 4 (𝜑𝜒)
14 relcnv 6105 . . . . 5 Rel 𝑌
1514a1i 11 . . . 4 (𝜑 → Rel 𝑌)
1612, 13, 15jca31 513 . . 3 (𝜑 → ((𝑋𝑌𝜒) ∧ Rel 𝑌))
17 clrellem.sub . . . . 5 (𝑥 = 𝑌 → (𝜓𝜒))
1817cleq2lem 43310 . . . 4 (𝑥 = 𝑌 → ((𝑋𝑥𝜓) ↔ (𝑋𝑌𝜒)))
19 releq 5773 . . . 4 (𝑥 = 𝑌 → (Rel 𝑥 ↔ Rel 𝑌))
2018, 19anbi12d 630 . . 3 (𝑥 = 𝑌 → (((𝑋𝑥𝜓) ∧ Rel 𝑥) ↔ ((𝑋𝑌𝜒) ∧ Rel 𝑌)))
214, 16, 20spcedv 3584 . 2 (𝜑 → ∃𝑥((𝑋𝑥𝜓) ∧ Rel 𝑥))
22 releq 5773 . . . 4 (𝑦 = 𝑥 → (Rel 𝑦 ↔ Rel 𝑥))
2322rexab2 3693 . . 3 (∃𝑦 ∈ {𝑥 ∣ (𝑋𝑥𝜓)}Rel 𝑦 ↔ ∃𝑥((𝑋𝑥𝜓) ∧ Rel 𝑥))
2423biimpri 227 . 2 (∃𝑥((𝑋𝑥𝜓) ∧ Rel 𝑥) → ∃𝑦 ∈ {𝑥 ∣ (𝑋𝑥𝜓)}Rel 𝑦)
25 relint 5816 . 2 (∃𝑦 ∈ {𝑥 ∣ (𝑋𝑥𝜓)}Rel 𝑦 → Rel {𝑥 ∣ (𝑋𝑥𝜓)})
2621, 24, 253syl 18 1 (𝜑 → Rel {𝑥 ∣ (𝑋𝑥𝜓)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wex 1774  wcel 2099  {cab 2703  wrex 3060  Vcvv 3463  wss 3947   cint 4947  ccnv 5672  Rel wrel 5678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rex 3061  df-rab 3421  df-v 3465  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-int 4948  df-iin 4997  df-br 5145  df-opab 5207  df-xp 5679  df-rel 5680  df-cnv 5681  df-dm 5683  df-rn 5684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator