![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clrellem | Structured version Visualization version GIF version |
Description: When the property 𝜓 holds for a relation substituted for 𝑥, then the closure on that property is a relation if the base set is a relation. (Contributed by RP, 30-Jul-2020.) |
Ref | Expression |
---|---|
clrellem.y | ⊢ (𝜑 → 𝑌 ∈ V) |
clrellem.rel | ⊢ (𝜑 → Rel 𝑋) |
clrellem.sub | ⊢ (𝑥 = ◡◡𝑌 → (𝜓 ↔ 𝜒)) |
clrellem.sup | ⊢ (𝜑 → 𝑋 ⊆ 𝑌) |
clrellem.maj | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
clrellem | ⊢ (𝜑 → Rel ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clrellem.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ V) | |
2 | cnvexg 7915 | . . . 4 ⊢ (𝑌 ∈ V → ◡𝑌 ∈ V) | |
3 | cnvexg 7915 | . . . 4 ⊢ (◡𝑌 ∈ V → ◡◡𝑌 ∈ V) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝜑 → ◡◡𝑌 ∈ V) |
5 | clrellem.rel | . . . . . 6 ⊢ (𝜑 → Rel 𝑋) | |
6 | dfrel2 6189 | . . . . . 6 ⊢ (Rel 𝑋 ↔ ◡◡𝑋 = 𝑋) | |
7 | 5, 6 | sylib 217 | . . . . 5 ⊢ (𝜑 → ◡◡𝑋 = 𝑋) |
8 | clrellem.sup | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ 𝑌) | |
9 | cnvss 5873 | . . . . . 6 ⊢ (𝑋 ⊆ 𝑌 → ◡𝑋 ⊆ ◡𝑌) | |
10 | cnvss 5873 | . . . . . 6 ⊢ (◡𝑋 ⊆ ◡𝑌 → ◡◡𝑋 ⊆ ◡◡𝑌) | |
11 | 8, 9, 10 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ◡◡𝑋 ⊆ ◡◡𝑌) |
12 | 7, 11 | eqsstrrd 4022 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ ◡◡𝑌) |
13 | clrellem.maj | . . . 4 ⊢ (𝜑 → 𝜒) | |
14 | relcnv 6104 | . . . . 5 ⊢ Rel ◡◡𝑌 | |
15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → Rel ◡◡𝑌) |
16 | 12, 13, 15 | jca31 516 | . . 3 ⊢ (𝜑 → ((𝑋 ⊆ ◡◡𝑌 ∧ 𝜒) ∧ Rel ◡◡𝑌)) |
17 | clrellem.sub | . . . . 5 ⊢ (𝑥 = ◡◡𝑌 → (𝜓 ↔ 𝜒)) | |
18 | 17 | cleq2lem 42359 | . . . 4 ⊢ (𝑥 = ◡◡𝑌 → ((𝑋 ⊆ 𝑥 ∧ 𝜓) ↔ (𝑋 ⊆ ◡◡𝑌 ∧ 𝜒))) |
19 | releq 5777 | . . . 4 ⊢ (𝑥 = ◡◡𝑌 → (Rel 𝑥 ↔ Rel ◡◡𝑌)) | |
20 | 18, 19 | anbi12d 632 | . . 3 ⊢ (𝑥 = ◡◡𝑌 → (((𝑋 ⊆ 𝑥 ∧ 𝜓) ∧ Rel 𝑥) ↔ ((𝑋 ⊆ ◡◡𝑌 ∧ 𝜒) ∧ Rel ◡◡𝑌))) |
21 | 4, 16, 20 | spcedv 3589 | . 2 ⊢ (𝜑 → ∃𝑥((𝑋 ⊆ 𝑥 ∧ 𝜓) ∧ Rel 𝑥)) |
22 | releq 5777 | . . . 4 ⊢ (𝑦 = 𝑥 → (Rel 𝑦 ↔ Rel 𝑥)) | |
23 | 22 | rexab2 3696 | . . 3 ⊢ (∃𝑦 ∈ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}Rel 𝑦 ↔ ∃𝑥((𝑋 ⊆ 𝑥 ∧ 𝜓) ∧ Rel 𝑥)) |
24 | 23 | biimpri 227 | . 2 ⊢ (∃𝑥((𝑋 ⊆ 𝑥 ∧ 𝜓) ∧ Rel 𝑥) → ∃𝑦 ∈ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}Rel 𝑦) |
25 | relint 5820 | . 2 ⊢ (∃𝑦 ∈ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}Rel 𝑦 → Rel ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) | |
26 | 21, 24, 25 | 3syl 18 | 1 ⊢ (𝜑 → Rel ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 ∃wrex 3071 Vcvv 3475 ⊆ wss 3949 ∩ cint 4951 ◡ccnv 5676 Rel wrel 5682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iin 5001 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 df-dm 5687 df-rn 5688 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |