| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clrellem | Structured version Visualization version GIF version | ||
| Description: When the property 𝜓 holds for a relation substituted for 𝑥, then the closure on that property is a relation if the base set is a relation. (Contributed by RP, 30-Jul-2020.) |
| Ref | Expression |
|---|---|
| clrellem.y | ⊢ (𝜑 → 𝑌 ∈ V) |
| clrellem.rel | ⊢ (𝜑 → Rel 𝑋) |
| clrellem.sub | ⊢ (𝑥 = ◡◡𝑌 → (𝜓 ↔ 𝜒)) |
| clrellem.sup | ⊢ (𝜑 → 𝑋 ⊆ 𝑌) |
| clrellem.maj | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| clrellem | ⊢ (𝜑 → Rel ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clrellem.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ V) | |
| 2 | cnvexg 7854 | . . . 4 ⊢ (𝑌 ∈ V → ◡𝑌 ∈ V) | |
| 3 | cnvexg 7854 | . . . 4 ⊢ (◡𝑌 ∈ V → ◡◡𝑌 ∈ V) | |
| 4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝜑 → ◡◡𝑌 ∈ V) |
| 5 | clrellem.rel | . . . . . 6 ⊢ (𝜑 → Rel 𝑋) | |
| 6 | dfrel2 6136 | . . . . . 6 ⊢ (Rel 𝑋 ↔ ◡◡𝑋 = 𝑋) | |
| 7 | 5, 6 | sylib 218 | . . . . 5 ⊢ (𝜑 → ◡◡𝑋 = 𝑋) |
| 8 | clrellem.sup | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ 𝑌) | |
| 9 | cnvss 5812 | . . . . . 6 ⊢ (𝑋 ⊆ 𝑌 → ◡𝑋 ⊆ ◡𝑌) | |
| 10 | cnvss 5812 | . . . . . 6 ⊢ (◡𝑋 ⊆ ◡𝑌 → ◡◡𝑋 ⊆ ◡◡𝑌) | |
| 11 | 8, 9, 10 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ◡◡𝑋 ⊆ ◡◡𝑌) |
| 12 | 7, 11 | eqsstrrd 3970 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ ◡◡𝑌) |
| 13 | clrellem.maj | . . . 4 ⊢ (𝜑 → 𝜒) | |
| 14 | relcnv 6053 | . . . . 5 ⊢ Rel ◡◡𝑌 | |
| 15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → Rel ◡◡𝑌) |
| 16 | 12, 13, 15 | jca31 514 | . . 3 ⊢ (𝜑 → ((𝑋 ⊆ ◡◡𝑌 ∧ 𝜒) ∧ Rel ◡◡𝑌)) |
| 17 | clrellem.sub | . . . . 5 ⊢ (𝑥 = ◡◡𝑌 → (𝜓 ↔ 𝜒)) | |
| 18 | 17 | cleq2lem 43640 | . . . 4 ⊢ (𝑥 = ◡◡𝑌 → ((𝑋 ⊆ 𝑥 ∧ 𝜓) ↔ (𝑋 ⊆ ◡◡𝑌 ∧ 𝜒))) |
| 19 | releq 5717 | . . . 4 ⊢ (𝑥 = ◡◡𝑌 → (Rel 𝑥 ↔ Rel ◡◡𝑌)) | |
| 20 | 18, 19 | anbi12d 632 | . . 3 ⊢ (𝑥 = ◡◡𝑌 → (((𝑋 ⊆ 𝑥 ∧ 𝜓) ∧ Rel 𝑥) ↔ ((𝑋 ⊆ ◡◡𝑌 ∧ 𝜒) ∧ Rel ◡◡𝑌))) |
| 21 | 4, 16, 20 | spcedv 3553 | . 2 ⊢ (𝜑 → ∃𝑥((𝑋 ⊆ 𝑥 ∧ 𝜓) ∧ Rel 𝑥)) |
| 22 | releq 5717 | . . . 4 ⊢ (𝑦 = 𝑥 → (Rel 𝑦 ↔ Rel 𝑥)) | |
| 23 | 22 | rexab2 3658 | . . 3 ⊢ (∃𝑦 ∈ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}Rel 𝑦 ↔ ∃𝑥((𝑋 ⊆ 𝑥 ∧ 𝜓) ∧ Rel 𝑥)) |
| 24 | 23 | biimpri 228 | . 2 ⊢ (∃𝑥((𝑋 ⊆ 𝑥 ∧ 𝜓) ∧ Rel 𝑥) → ∃𝑦 ∈ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}Rel 𝑦) |
| 25 | relint 5759 | . 2 ⊢ (∃𝑦 ∈ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}Rel 𝑦 → Rel ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) | |
| 26 | 21, 24, 25 | 3syl 18 | 1 ⊢ (𝜑 → Rel ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 ∃wrex 3056 Vcvv 3436 ⊆ wss 3902 ∩ cint 4897 ◡ccnv 5615 Rel wrel 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iin 4944 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-dm 5626 df-rn 5627 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |