| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clrellem | Structured version Visualization version GIF version | ||
| Description: When the property 𝜓 holds for a relation substituted for 𝑥, then the closure on that property is a relation if the base set is a relation. (Contributed by RP, 30-Jul-2020.) |
| Ref | Expression |
|---|---|
| clrellem.y | ⊢ (𝜑 → 𝑌 ∈ V) |
| clrellem.rel | ⊢ (𝜑 → Rel 𝑋) |
| clrellem.sub | ⊢ (𝑥 = ◡◡𝑌 → (𝜓 ↔ 𝜒)) |
| clrellem.sup | ⊢ (𝜑 → 𝑋 ⊆ 𝑌) |
| clrellem.maj | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| clrellem | ⊢ (𝜑 → Rel ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clrellem.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ V) | |
| 2 | cnvexg 7860 | . . . 4 ⊢ (𝑌 ∈ V → ◡𝑌 ∈ V) | |
| 3 | cnvexg 7860 | . . . 4 ⊢ (◡𝑌 ∈ V → ◡◡𝑌 ∈ V) | |
| 4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝜑 → ◡◡𝑌 ∈ V) |
| 5 | clrellem.rel | . . . . . 6 ⊢ (𝜑 → Rel 𝑋) | |
| 6 | dfrel2 6141 | . . . . . 6 ⊢ (Rel 𝑋 ↔ ◡◡𝑋 = 𝑋) | |
| 7 | 5, 6 | sylib 218 | . . . . 5 ⊢ (𝜑 → ◡◡𝑋 = 𝑋) |
| 8 | clrellem.sup | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ 𝑌) | |
| 9 | cnvss 5816 | . . . . . 6 ⊢ (𝑋 ⊆ 𝑌 → ◡𝑋 ⊆ ◡𝑌) | |
| 10 | cnvss 5816 | . . . . . 6 ⊢ (◡𝑋 ⊆ ◡𝑌 → ◡◡𝑋 ⊆ ◡◡𝑌) | |
| 11 | 8, 9, 10 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ◡◡𝑋 ⊆ ◡◡𝑌) |
| 12 | 7, 11 | eqsstrrd 3966 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ ◡◡𝑌) |
| 13 | clrellem.maj | . . . 4 ⊢ (𝜑 → 𝜒) | |
| 14 | relcnv 6057 | . . . . 5 ⊢ Rel ◡◡𝑌 | |
| 15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → Rel ◡◡𝑌) |
| 16 | 12, 13, 15 | jca31 514 | . . 3 ⊢ (𝜑 → ((𝑋 ⊆ ◡◡𝑌 ∧ 𝜒) ∧ Rel ◡◡𝑌)) |
| 17 | clrellem.sub | . . . . 5 ⊢ (𝑥 = ◡◡𝑌 → (𝜓 ↔ 𝜒)) | |
| 18 | 17 | cleq2lem 43725 | . . . 4 ⊢ (𝑥 = ◡◡𝑌 → ((𝑋 ⊆ 𝑥 ∧ 𝜓) ↔ (𝑋 ⊆ ◡◡𝑌 ∧ 𝜒))) |
| 19 | releq 5721 | . . . 4 ⊢ (𝑥 = ◡◡𝑌 → (Rel 𝑥 ↔ Rel ◡◡𝑌)) | |
| 20 | 18, 19 | anbi12d 632 | . . 3 ⊢ (𝑥 = ◡◡𝑌 → (((𝑋 ⊆ 𝑥 ∧ 𝜓) ∧ Rel 𝑥) ↔ ((𝑋 ⊆ ◡◡𝑌 ∧ 𝜒) ∧ Rel ◡◡𝑌))) |
| 21 | 4, 16, 20 | spcedv 3549 | . 2 ⊢ (𝜑 → ∃𝑥((𝑋 ⊆ 𝑥 ∧ 𝜓) ∧ Rel 𝑥)) |
| 22 | releq 5721 | . . . 4 ⊢ (𝑦 = 𝑥 → (Rel 𝑦 ↔ Rel 𝑥)) | |
| 23 | 22 | rexab2 3654 | . . 3 ⊢ (∃𝑦 ∈ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}Rel 𝑦 ↔ ∃𝑥((𝑋 ⊆ 𝑥 ∧ 𝜓) ∧ Rel 𝑥)) |
| 24 | 23 | biimpri 228 | . 2 ⊢ (∃𝑥((𝑋 ⊆ 𝑥 ∧ 𝜓) ∧ Rel 𝑥) → ∃𝑦 ∈ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}Rel 𝑦) |
| 25 | relint 5763 | . 2 ⊢ (∃𝑦 ∈ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}Rel 𝑦 → Rel ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) | |
| 26 | 21, 24, 25 | 3syl 18 | 1 ⊢ (𝜑 → Rel ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 {cab 2711 ∃wrex 3057 Vcvv 3437 ⊆ wss 3898 ∩ cint 4897 ◡ccnv 5618 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iin 4944 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |