|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clrellem | Structured version Visualization version GIF version | ||
| Description: When the property 𝜓 holds for a relation substituted for 𝑥, then the closure on that property is a relation if the base set is a relation. (Contributed by RP, 30-Jul-2020.) | 
| Ref | Expression | 
|---|---|
| clrellem.y | ⊢ (𝜑 → 𝑌 ∈ V) | 
| clrellem.rel | ⊢ (𝜑 → Rel 𝑋) | 
| clrellem.sub | ⊢ (𝑥 = ◡◡𝑌 → (𝜓 ↔ 𝜒)) | 
| clrellem.sup | ⊢ (𝜑 → 𝑋 ⊆ 𝑌) | 
| clrellem.maj | ⊢ (𝜑 → 𝜒) | 
| Ref | Expression | 
|---|---|
| clrellem | ⊢ (𝜑 → Rel ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | clrellem.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ V) | |
| 2 | cnvexg 7946 | . . . 4 ⊢ (𝑌 ∈ V → ◡𝑌 ∈ V) | |
| 3 | cnvexg 7946 | . . . 4 ⊢ (◡𝑌 ∈ V → ◡◡𝑌 ∈ V) | |
| 4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝜑 → ◡◡𝑌 ∈ V) | 
| 5 | clrellem.rel | . . . . . 6 ⊢ (𝜑 → Rel 𝑋) | |
| 6 | dfrel2 6209 | . . . . . 6 ⊢ (Rel 𝑋 ↔ ◡◡𝑋 = 𝑋) | |
| 7 | 5, 6 | sylib 218 | . . . . 5 ⊢ (𝜑 → ◡◡𝑋 = 𝑋) | 
| 8 | clrellem.sup | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ 𝑌) | |
| 9 | cnvss 5883 | . . . . . 6 ⊢ (𝑋 ⊆ 𝑌 → ◡𝑋 ⊆ ◡𝑌) | |
| 10 | cnvss 5883 | . . . . . 6 ⊢ (◡𝑋 ⊆ ◡𝑌 → ◡◡𝑋 ⊆ ◡◡𝑌) | |
| 11 | 8, 9, 10 | 3syl 18 | . . . . 5 ⊢ (𝜑 → ◡◡𝑋 ⊆ ◡◡𝑌) | 
| 12 | 7, 11 | eqsstrrd 4019 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ ◡◡𝑌) | 
| 13 | clrellem.maj | . . . 4 ⊢ (𝜑 → 𝜒) | |
| 14 | relcnv 6122 | . . . . 5 ⊢ Rel ◡◡𝑌 | |
| 15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → Rel ◡◡𝑌) | 
| 16 | 12, 13, 15 | jca31 514 | . . 3 ⊢ (𝜑 → ((𝑋 ⊆ ◡◡𝑌 ∧ 𝜒) ∧ Rel ◡◡𝑌)) | 
| 17 | clrellem.sub | . . . . 5 ⊢ (𝑥 = ◡◡𝑌 → (𝜓 ↔ 𝜒)) | |
| 18 | 17 | cleq2lem 43621 | . . . 4 ⊢ (𝑥 = ◡◡𝑌 → ((𝑋 ⊆ 𝑥 ∧ 𝜓) ↔ (𝑋 ⊆ ◡◡𝑌 ∧ 𝜒))) | 
| 19 | releq 5786 | . . . 4 ⊢ (𝑥 = ◡◡𝑌 → (Rel 𝑥 ↔ Rel ◡◡𝑌)) | |
| 20 | 18, 19 | anbi12d 632 | . . 3 ⊢ (𝑥 = ◡◡𝑌 → (((𝑋 ⊆ 𝑥 ∧ 𝜓) ∧ Rel 𝑥) ↔ ((𝑋 ⊆ ◡◡𝑌 ∧ 𝜒) ∧ Rel ◡◡𝑌))) | 
| 21 | 4, 16, 20 | spcedv 3598 | . 2 ⊢ (𝜑 → ∃𝑥((𝑋 ⊆ 𝑥 ∧ 𝜓) ∧ Rel 𝑥)) | 
| 22 | releq 5786 | . . . 4 ⊢ (𝑦 = 𝑥 → (Rel 𝑦 ↔ Rel 𝑥)) | |
| 23 | 22 | rexab2 3705 | . . 3 ⊢ (∃𝑦 ∈ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}Rel 𝑦 ↔ ∃𝑥((𝑋 ⊆ 𝑥 ∧ 𝜓) ∧ Rel 𝑥)) | 
| 24 | 23 | biimpri 228 | . 2 ⊢ (∃𝑥((𝑋 ⊆ 𝑥 ∧ 𝜓) ∧ Rel 𝑥) → ∃𝑦 ∈ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}Rel 𝑦) | 
| 25 | relint 5829 | . 2 ⊢ (∃𝑦 ∈ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}Rel 𝑦 → Rel ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) | |
| 26 | 21, 24, 25 | 3syl 18 | 1 ⊢ (𝜑 → Rel ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2714 ∃wrex 3070 Vcvv 3480 ⊆ wss 3951 ∩ cint 4946 ◡ccnv 5684 Rel wrel 5690 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iin 4994 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 df-cnv 5693 df-dm 5695 df-rn 5696 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |