| Step | Hyp | Ref
| Expression |
| 1 | | fveq1 6885 |
. . . . . . 7
⊢ (𝑔 = ((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇) → (𝑔‘𝑤) = (((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)) |
| 2 | 1 | oveq1d 7428 |
. . . . . 6
⊢ (𝑔 = ((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇) → ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) = ((((𝟭‘Word
(𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))) |
| 3 | 2 | mpteq2dv 5224 |
. . . . 5
⊢ (𝑔 = ((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇) → (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))) = (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))) |
| 4 | 3 | oveq2d 7429 |
. . . 4
⊢ (𝑔 = ((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇) → (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) |
| 5 | 4 | eqeq2d 2745 |
. . 3
⊢ (𝑔 = ((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇) → (𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))) ↔ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))))) |
| 6 | | breq1 5126 |
. . . 4
⊢ (ℎ = ((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇) → (ℎ finSupp 0 ↔ ((𝟭‘Word
(𝐸 ∪ 𝐹))‘𝑇) finSupp 0)) |
| 7 | | zex 12605 |
. . . . . 6
⊢ ℤ
∈ V |
| 8 | 7 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℤ ∈
V) |
| 9 | | elrgspnsubrun.e |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈ (SubRing‘𝑅)) |
| 10 | | elrgspnsubrun.f |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝑅)) |
| 11 | 9, 10 | unexd 7756 |
. . . . . 6
⊢ (𝜑 → (𝐸 ∪ 𝐹) ∈ V) |
| 12 | | wrdexg 14545 |
. . . . . 6
⊢ ((𝐸 ∪ 𝐹) ∈ V → Word (𝐸 ∪ 𝐹) ∈ V) |
| 13 | 11, 12 | syl 17 |
. . . . 5
⊢ (𝜑 → Word (𝐸 ∪ 𝐹) ∈ V) |
| 14 | | elrgspnsubrunlem1.t |
. . . . . . . 8
⊢ 𝑇 = ran (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉) |
| 15 | | ssun1 4158 |
. . . . . . . . . . . 12
⊢ 𝐸 ⊆ (𝐸 ∪ 𝐹) |
| 16 | | elrgspnsubrunlem1.p1 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑃:𝐹⟶𝐸) |
| 17 | 16 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑃 supp 0 )) → 𝑃:𝐹⟶𝐸) |
| 18 | | suppssdm 8184 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 supp 0 ) ⊆ dom 𝑃 |
| 19 | 18, 16 | fssdm 6735 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑃 supp 0 ) ⊆ 𝐹) |
| 20 | 19 | sselda 3963 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑃 supp 0 )) → 𝑓 ∈ 𝐹) |
| 21 | 17, 20 | ffvelcdmd 7085 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑃 supp 0 )) → (𝑃‘𝑓) ∈ 𝐸) |
| 22 | 15, 21 | sselid 3961 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑃 supp 0 )) → (𝑃‘𝑓) ∈ (𝐸 ∪ 𝐹)) |
| 23 | | ssun2 4159 |
. . . . . . . . . . . . 13
⊢ 𝐹 ⊆ (𝐸 ∪ 𝐹) |
| 24 | 19, 23 | sstrdi 3976 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑃 supp 0 ) ⊆ (𝐸 ∪ 𝐹)) |
| 25 | 24 | sselda 3963 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑃 supp 0 )) → 𝑓 ∈ (𝐸 ∪ 𝐹)) |
| 26 | 22, 25 | s2cld 14893 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑃 supp 0 )) →
〈“(𝑃‘𝑓)𝑓”〉 ∈ Word (𝐸 ∪ 𝐹)) |
| 27 | 26 | ralrimiva 3133 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑓 ∈ (𝑃 supp 0 )〈“(𝑃‘𝑓)𝑓”〉 ∈ Word (𝐸 ∪ 𝐹)) |
| 28 | | eqid 2734 |
. . . . . . . . . 10
⊢ (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉) = (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉) |
| 29 | 28 | rnmptss 7123 |
. . . . . . . . 9
⊢
(∀𝑓 ∈
(𝑃 supp 0 )〈“(𝑃‘𝑓)𝑓”〉 ∈ Word (𝐸 ∪ 𝐹) → ran (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉) ⊆ Word (𝐸 ∪ 𝐹)) |
| 30 | 27, 29 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ran (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉) ⊆ Word (𝐸 ∪ 𝐹)) |
| 31 | 14, 30 | eqsstrid 4002 |
. . . . . . 7
⊢ (𝜑 → 𝑇 ⊆ Word (𝐸 ∪ 𝐹)) |
| 32 | | indf 32785 |
. . . . . . 7
⊢ ((Word
(𝐸 ∪ 𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸 ∪ 𝐹)) → ((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇):Word (𝐸 ∪ 𝐹)⟶{0, 1}) |
| 33 | 13, 31, 32 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((𝟭‘Word
(𝐸 ∪ 𝐹))‘𝑇):Word (𝐸 ∪ 𝐹)⟶{0, 1}) |
| 34 | | 0zd 12608 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℤ) |
| 35 | | 1zzd 12631 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℤ) |
| 36 | 34, 35 | prssd 4802 |
. . . . . 6
⊢ (𝜑 → {0, 1} ⊆
ℤ) |
| 37 | 33, 36 | fssd 6733 |
. . . . 5
⊢ (𝜑 → ((𝟭‘Word
(𝐸 ∪ 𝐹))‘𝑇):Word (𝐸 ∪ 𝐹)⟶ℤ) |
| 38 | 8, 13, 37 | elmapdd 8863 |
. . . 4
⊢ (𝜑 → ((𝟭‘Word
(𝐸 ∪ 𝐹))‘𝑇) ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹))) |
| 39 | 33 | ffund 6720 |
. . . . 5
⊢ (𝜑 → Fun ((𝟭‘Word
(𝐸 ∪ 𝐹))‘𝑇)) |
| 40 | | indsupp 32797 |
. . . . . . 7
⊢ ((Word
(𝐸 ∪ 𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸 ∪ 𝐹)) → (((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇) supp 0) = 𝑇) |
| 41 | 13, 31, 40 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (((𝟭‘Word
(𝐸 ∪ 𝐹))‘𝑇) supp 0) = 𝑇) |
| 42 | | elrgspnsubrunlem1.p2 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 finSupp 0 ) |
| 43 | 42 | fsuppimpd 9391 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 supp 0 ) ∈
Fin) |
| 44 | | mptfi 9373 |
. . . . . . . 8
⊢ ((𝑃 supp 0 ) ∈ Fin → (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉) ∈ Fin) |
| 45 | | rnfi 9362 |
. . . . . . . 8
⊢ ((𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉) ∈ Fin → ran (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉) ∈ Fin) |
| 46 | 43, 44, 45 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → ran (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉) ∈ Fin) |
| 47 | 14, 46 | eqeltrid 2837 |
. . . . . 6
⊢ (𝜑 → 𝑇 ∈ Fin) |
| 48 | 41, 47 | eqeltrd 2833 |
. . . . 5
⊢ (𝜑 → (((𝟭‘Word
(𝐸 ∪ 𝐹))‘𝑇) supp 0) ∈ Fin) |
| 49 | 38, 34, 39, 48 | isfsuppd 9388 |
. . . 4
⊢ (𝜑 → ((𝟭‘Word
(𝐸 ∪ 𝐹))‘𝑇) finSupp 0) |
| 50 | 6, 38, 49 | elrabd 3677 |
. . 3
⊢ (𝜑 → ((𝟭‘Word
(𝐸 ∪ 𝐹))‘𝑇) ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) |
| 51 | | elrgspnsubrun.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
| 52 | | elrgspnsubrun.z |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
| 53 | | elrgspnsubrun.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 54 | 53 | crngringd 20212 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 55 | 54 | ringcmnd 20250 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 56 | 16 | ffnd 6717 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 Fn 𝐹) |
| 57 | 56 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑃 Fn 𝐹) |
| 58 | 10 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝐹 ∈ (SubRing‘𝑅)) |
| 59 | 52 | fvexi 6900 |
. . . . . . . . . 10
⊢ 0 ∈
V |
| 60 | 59 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 0 ∈
V) |
| 61 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) |
| 62 | 57, 58, 60, 61 | fvdifsupp 8178 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → (𝑃‘𝑒) = 0 ) |
| 63 | 62 | oveq1d 7428 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → ((𝑃‘𝑒) · 𝑒) = ( 0 · 𝑒)) |
| 64 | | elrgspnsubrun.t |
. . . . . . . 8
⊢ · =
(.r‘𝑅) |
| 65 | 54 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑅 ∈ Ring) |
| 66 | 51 | subrgss 20541 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (SubRing‘𝑅) → 𝐹 ⊆ 𝐵) |
| 67 | 10, 66 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ⊆ 𝐵) |
| 68 | 67 | ssdifssd 4127 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ∖ (𝑃 supp 0 )) ⊆ 𝐵) |
| 69 | 68 | sselda 3963 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑒 ∈ 𝐵) |
| 70 | 51, 64, 52, 65, 69 | ringlzd 20261 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → ( 0 · 𝑒) = 0 ) |
| 71 | 63, 70 | eqtrd 2769 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → ((𝑃‘𝑒) · 𝑒) = 0 ) |
| 72 | 54 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ 𝐹) → 𝑅 ∈ Ring) |
| 73 | 51 | subrgss 20541 |
. . . . . . . . . 10
⊢ (𝐸 ∈ (SubRing‘𝑅) → 𝐸 ⊆ 𝐵) |
| 74 | 9, 73 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ⊆ 𝐵) |
| 75 | 16, 74 | fssd 6733 |
. . . . . . . 8
⊢ (𝜑 → 𝑃:𝐹⟶𝐵) |
| 76 | 75 | ffvelcdmda 7084 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ 𝐹) → (𝑃‘𝑒) ∈ 𝐵) |
| 77 | 67 | sselda 3963 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ 𝐹) → 𝑒 ∈ 𝐵) |
| 78 | 51, 64, 72, 76, 77 | ringcld 20226 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ 𝐹) → ((𝑃‘𝑒) · 𝑒) ∈ 𝐵) |
| 79 | 51, 52, 55, 10, 71, 43, 78, 19 | gsummptres2 33000 |
. . . . 5
⊢ (𝜑 → (𝑅 Σg (𝑒 ∈ 𝐹 ↦ ((𝑃‘𝑒) · 𝑒))) = (𝑅 Σg (𝑒 ∈ (𝑃 supp 0 ) ↦ ((𝑃‘𝑒) · 𝑒)))) |
| 80 | | nfcv 2897 |
. . . . . 6
⊢
Ⅎ𝑒((𝑃‘(𝑤‘1)) · (𝑤‘1)) |
| 81 | | fveq2 6886 |
. . . . . . 7
⊢ (𝑒 = (𝑤‘1) → (𝑃‘𝑒) = (𝑃‘(𝑤‘1))) |
| 82 | | id 22 |
. . . . . . 7
⊢ (𝑒 = (𝑤‘1) → 𝑒 = (𝑤‘1)) |
| 83 | 81, 82 | oveq12d 7431 |
. . . . . 6
⊢ (𝑒 = (𝑤‘1) → ((𝑃‘𝑒) · 𝑒) = ((𝑃‘(𝑤‘1)) · (𝑤‘1))) |
| 84 | | ssidd 3987 |
. . . . . 6
⊢ (𝜑 → 𝐵 ⊆ 𝐵) |
| 85 | 19 | sselda 3963 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) → 𝑒 ∈ 𝐹) |
| 86 | 85, 78 | syldan 591 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) → ((𝑃‘𝑒) · 𝑒) ∈ 𝐵) |
| 87 | | fveq1 6885 |
. . . . . . . . . 10
⊢ (𝑤 = 〈“(𝑃‘𝑓)𝑓”〉 → (𝑤‘1) = (〈“(𝑃‘𝑓)𝑓”〉‘1)) |
| 88 | 87 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → (𝑤‘1) = (〈“(𝑃‘𝑓)𝑓”〉‘1)) |
| 89 | | s2fv1 14910 |
. . . . . . . . . 10
⊢ (𝑓 ∈ (𝑃 supp 0 ) →
(〈“(𝑃‘𝑓)𝑓”〉‘1) = 𝑓) |
| 90 | 89 | ad2antlr 727 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → (〈“(𝑃‘𝑓)𝑓”〉‘1) = 𝑓) |
| 91 | 88, 90 | eqtrd 2769 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → (𝑤‘1) = 𝑓) |
| 92 | | simplr 768 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → 𝑓 ∈ (𝑃 supp 0 )) |
| 93 | 91, 92 | eqeltrd 2833 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → (𝑤‘1) ∈ (𝑃 supp 0 )) |
| 94 | 14 | eleq2i 2825 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝑇 ↔ 𝑤 ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉)) |
| 95 | 94 | biimpi 216 |
. . . . . . . . 9
⊢ (𝑤 ∈ 𝑇 → 𝑤 ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉)) |
| 96 | 95 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → 𝑤 ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉)) |
| 97 | 28, 96 | elrnmpt2d 5957 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → ∃𝑓 ∈ (𝑃 supp 0 )𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) |
| 98 | 93, 97 | r19.29a 3149 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → (𝑤‘1) ∈ (𝑃 supp 0 )) |
| 99 | | fveq2 6886 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑒 → (𝑃‘𝑓) = (𝑃‘𝑒)) |
| 100 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑒 → 𝑓 = 𝑒) |
| 101 | 99, 100 | s2eqd 14885 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑒 → 〈“(𝑃‘𝑓)𝑓”〉 = 〈“(𝑃‘𝑒)𝑒”〉) |
| 102 | 101 | cbvmptv 5235 |
. . . . . . . . 9
⊢ (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉) = (𝑒 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑒)𝑒”〉) |
| 103 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) → 𝑒 ∈ (𝑃 supp 0 )) |
| 104 | 75 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) → 𝑃:𝐹⟶𝐵) |
| 105 | 104, 85 | ffvelcdmd 7085 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) → (𝑃‘𝑒) ∈ 𝐵) |
| 106 | 19, 67 | sstrd 3974 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑃 supp 0 ) ⊆ 𝐵) |
| 107 | 106 | sselda 3963 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) → 𝑒 ∈ 𝐵) |
| 108 | 105, 107 | s2cld 14893 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) →
〈“(𝑃‘𝑒)𝑒”〉 ∈ Word 𝐵) |
| 109 | 102, 103,
108 | elrnmpt1d 5955 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) →
〈“(𝑃‘𝑒)𝑒”〉 ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉)) |
| 110 | 109, 14 | eleqtrrdi 2844 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) →
〈“(𝑃‘𝑒)𝑒”〉 ∈ 𝑇) |
| 111 | | simpr 484 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) |
| 112 | 82 | ad3antlr 731 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → 𝑒 = (𝑤‘1)) |
| 113 | 111 | fveq1d 6888 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → (𝑤‘1) = (〈“(𝑃‘𝑓)𝑓”〉‘1)) |
| 114 | 89 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → (〈“(𝑃‘𝑓)𝑓”〉‘1) = 𝑓) |
| 115 | 112, 113,
114 | 3eqtrrd 2774 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → 𝑓 = 𝑒) |
| 116 | 115 | fveq2d 6890 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → (𝑃‘𝑓) = (𝑃‘𝑒)) |
| 117 | 116, 115 | s2eqd 14885 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → 〈“(𝑃‘𝑓)𝑓”〉 = 〈“(𝑃‘𝑒)𝑒”〉) |
| 118 | 111, 117 | eqtrd 2769 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → 𝑤 = 〈“(𝑃‘𝑒)𝑒”〉) |
| 119 | 97 | ad4ant13 751 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑒 = (𝑤‘1)) → ∃𝑓 ∈ (𝑃 supp 0 )𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) |
| 120 | 118, 119 | r19.29a 3149 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑒 = (𝑤‘1)) → 𝑤 = 〈“(𝑃‘𝑒)𝑒”〉) |
| 121 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑤 = 〈“(𝑃‘𝑒)𝑒”〉) → 𝑤 = 〈“(𝑃‘𝑒)𝑒”〉) |
| 122 | 121 | fveq1d 6888 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑤 = 〈“(𝑃‘𝑒)𝑒”〉) → (𝑤‘1) = (〈“(𝑃‘𝑒)𝑒”〉‘1)) |
| 123 | | s2fv1 14910 |
. . . . . . . . . 10
⊢ (𝑒 ∈ (𝑃 supp 0 ) →
(〈“(𝑃‘𝑒)𝑒”〉‘1) = 𝑒) |
| 124 | 123 | ad3antlr 731 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑤 = 〈“(𝑃‘𝑒)𝑒”〉) → (〈“(𝑃‘𝑒)𝑒”〉‘1) = 𝑒) |
| 125 | 122, 124 | eqtr2d 2770 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑤 = 〈“(𝑃‘𝑒)𝑒”〉) → 𝑒 = (𝑤‘1)) |
| 126 | 120, 125 | impbida 800 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) → (𝑒 = (𝑤‘1) ↔ 𝑤 = 〈“(𝑃‘𝑒)𝑒”〉)) |
| 127 | 110, 126 | reu6dv 32421 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) → ∃!𝑤 ∈ 𝑇 𝑒 = (𝑤‘1)) |
| 128 | 80, 51, 52, 83, 55, 43, 84, 86, 98, 127 | gsummptf1o 19950 |
. . . . 5
⊢ (𝜑 → (𝑅 Σg (𝑒 ∈ (𝑃 supp 0 ) ↦ ((𝑃‘𝑒) · 𝑒))) = (𝑅 Σg (𝑤 ∈ 𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1))))) |
| 129 | 79, 128 | eqtrd 2769 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑒 ∈ 𝐹 ↦ ((𝑃‘𝑒) · 𝑒))) = (𝑅 Σg (𝑤 ∈ 𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1))))) |
| 130 | | elrgspnsubrunlem1.x |
. . . 4
⊢ (𝜑 → 𝑋 = (𝑅 Σg (𝑒 ∈ 𝐹 ↦ ((𝑃‘𝑒) · 𝑒)))) |
| 131 | 13 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ 𝑇)) → Word (𝐸 ∪ 𝐹) ∈ V) |
| 132 | 31 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ 𝑇)) → 𝑇 ⊆ Word (𝐸 ∪ 𝐹)) |
| 133 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ 𝑇)) → 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ 𝑇)) |
| 134 | | ind0 32788 |
. . . . . . . . 9
⊢ ((Word
(𝐸 ∪ 𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸 ∪ 𝐹) ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ 𝑇)) → (((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤) = 0) |
| 135 | 131, 132,
133, 134 | syl3anc 1372 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ 𝑇)) → (((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤) = 0) |
| 136 | 135 | oveq1d 7428 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ 𝑇)) → ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) =
(0(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))) |
| 137 | | eqid 2734 |
. . . . . . . . . . . 12
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
| 138 | 137 | crngmgp 20207 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ CRing →
(mulGrp‘𝑅) ∈
CMnd) |
| 139 | 53, 138 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (mulGrp‘𝑅) ∈ CMnd) |
| 140 | 139 | cmnmndd 19791 |
. . . . . . . . 9
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
| 141 | 74, 67 | unssd 4172 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸 ∪ 𝐹) ⊆ 𝐵) |
| 142 | | sswrd 14543 |
. . . . . . . . . . . 12
⊢ ((𝐸 ∪ 𝐹) ⊆ 𝐵 → Word (𝐸 ∪ 𝐹) ⊆ Word 𝐵) |
| 143 | 141, 142 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → Word (𝐸 ∪ 𝐹) ⊆ Word 𝐵) |
| 144 | 143 | ssdifssd 4127 |
. . . . . . . . . 10
⊢ (𝜑 → (Word (𝐸 ∪ 𝐹) ∖ 𝑇) ⊆ Word 𝐵) |
| 145 | 144 | sselda 3963 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ 𝑇)) → 𝑤 ∈ Word 𝐵) |
| 146 | 137, 51 | mgpbas 20111 |
. . . . . . . . . 10
⊢ 𝐵 =
(Base‘(mulGrp‘𝑅)) |
| 147 | 146 | gsumwcl 18822 |
. . . . . . . . 9
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ 𝑤 ∈
Word 𝐵) →
((mulGrp‘𝑅)
Σg 𝑤) ∈ 𝐵) |
| 148 | 140, 145,
147 | syl2an2r 685 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ 𝑇)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵) |
| 149 | | eqid 2734 |
. . . . . . . . 9
⊢
(.g‘𝑅) = (.g‘𝑅) |
| 150 | 51, 52, 149 | mulg0 19062 |
. . . . . . . 8
⊢
(((mulGrp‘𝑅)
Σg 𝑤) ∈ 𝐵 → (0(.g‘𝑅)((mulGrp‘𝑅) Σg
𝑤)) = 0 ) |
| 151 | 148, 150 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ 𝑇)) → (0(.g‘𝑅)((mulGrp‘𝑅) Σg
𝑤)) = 0 ) |
| 152 | 136, 151 | eqtrd 2769 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ 𝑇)) → ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 ) |
| 153 | 53 | crnggrpd 20213 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 154 | 153 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) → 𝑅 ∈ Grp) |
| 155 | 37 | ffvelcdmda 7084 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) → (((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤) ∈ ℤ) |
| 156 | 143 | sselda 3963 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) → 𝑤 ∈ Word 𝐵) |
| 157 | 140, 156,
147 | syl2an2r 685 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵) |
| 158 | 51, 149, 154, 155, 157 | mulgcld 19084 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) → ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵) |
| 159 | 51, 52, 55, 13, 152, 47, 158, 31 | gsummptres2 33000 |
. . . . 5
⊢ (𝜑 → (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ 𝑇 ↦ ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) |
| 160 | 31, 143 | sstrd 3974 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇 ⊆ Word 𝐵) |
| 161 | 160 | sselda 3963 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → 𝑤 ∈ Word 𝐵) |
| 162 | 140, 161,
147 | syl2an2r 685 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵) |
| 163 | 51, 149 | mulg1 19069 |
. . . . . . . . 9
⊢
(((mulGrp‘𝑅)
Σg 𝑤) ∈ 𝐵 → (1(.g‘𝑅)((mulGrp‘𝑅) Σg
𝑤)) = ((mulGrp‘𝑅) Σg
𝑤)) |
| 164 | 162, 163 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → (1(.g‘𝑅)((mulGrp‘𝑅) Σg
𝑤)) = ((mulGrp‘𝑅) Σg
𝑤)) |
| 165 | 13 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → Word (𝐸 ∪ 𝐹) ∈ V) |
| 166 | 31 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → 𝑇 ⊆ Word (𝐸 ∪ 𝐹)) |
| 167 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → 𝑤 ∈ 𝑇) |
| 168 | | ind1 32787 |
. . . . . . . . . 10
⊢ ((Word
(𝐸 ∪ 𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸 ∪ 𝐹) ∧ 𝑤 ∈ 𝑇) → (((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤) = 1) |
| 169 | 165, 166,
167, 168 | syl3anc 1372 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → (((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤) = 1) |
| 170 | 169 | oveq1d 7428 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) =
(1(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))) |
| 171 | 140 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → (mulGrp‘𝑅) ∈ Mnd) |
| 172 | 75 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → 𝑃:𝐹⟶𝐵) |
| 173 | 20 | ad4ant13 751 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → 𝑓 ∈ 𝐹) |
| 174 | 172, 173 | ffvelcdmd 7085 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → (𝑃‘𝑓) ∈ 𝐵) |
| 175 | 106 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → (𝑃 supp 0 ) ⊆ 𝐵) |
| 176 | 175, 92 | sseldd 3964 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → 𝑓 ∈ 𝐵) |
| 177 | 137, 64 | mgpplusg 20110 |
. . . . . . . . . . . 12
⊢ · =
(+g‘(mulGrp‘𝑅)) |
| 178 | 146, 177 | gsumws2 18825 |
. . . . . . . . . . 11
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ (𝑃‘𝑓) ∈ 𝐵 ∧ 𝑓 ∈ 𝐵) → ((mulGrp‘𝑅) Σg
〈“(𝑃‘𝑓)𝑓”〉) = ((𝑃‘𝑓) · 𝑓)) |
| 179 | 171, 174,
176, 178 | syl3anc 1372 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → ((mulGrp‘𝑅) Σg
〈“(𝑃‘𝑓)𝑓”〉) = ((𝑃‘𝑓) · 𝑓)) |
| 180 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) |
| 181 | 180 | oveq2d 7429 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → ((mulGrp‘𝑅) Σg
𝑤) = ((mulGrp‘𝑅) Σg
〈“(𝑃‘𝑓)𝑓”〉)) |
| 182 | 91 | fveq2d 6890 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → (𝑃‘(𝑤‘1)) = (𝑃‘𝑓)) |
| 183 | 182, 91 | oveq12d 7431 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → ((𝑃‘(𝑤‘1)) · (𝑤‘1)) = ((𝑃‘𝑓) · 𝑓)) |
| 184 | 179, 181,
183 | 3eqtr4rd 2780 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → ((𝑃‘(𝑤‘1)) · (𝑤‘1)) = ((mulGrp‘𝑅) Σg 𝑤)) |
| 185 | 184, 97 | r19.29a 3149 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → ((𝑃‘(𝑤‘1)) · (𝑤‘1)) = ((mulGrp‘𝑅) Σg 𝑤)) |
| 186 | 164, 170,
185 | 3eqtr4d 2779 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) = ((𝑃‘(𝑤‘1)) · (𝑤‘1))) |
| 187 | 186 | mpteq2dva 5222 |
. . . . . 6
⊢ (𝜑 → (𝑤 ∈ 𝑇 ↦ ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))) = (𝑤 ∈ 𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1)))) |
| 188 | 187 | oveq2d 7429 |
. . . . 5
⊢ (𝜑 → (𝑅 Σg (𝑤 ∈ 𝑇 ↦ ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ 𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1))))) |
| 189 | 159, 188 | eqtrd 2769 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ 𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1))))) |
| 190 | 129, 130,
189 | 3eqtr4d 2779 |
. . 3
⊢ (𝜑 → 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) |
| 191 | 5, 50, 190 | rspcedvdw 3608 |
. 2
⊢ (𝜑 → ∃𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) |
| 192 | | elrgspnsubrun.n |
. . 3
⊢ 𝑁 = (RingSpan‘𝑅) |
| 193 | | breq1 5126 |
. . . 4
⊢ (ℎ = 𝑖 → (ℎ finSupp 0 ↔ 𝑖 finSupp 0)) |
| 194 | 193 | cbvrabv 3430 |
. . 3
⊢ {ℎ ∈ (ℤ
↑m Word (𝐸
∪ 𝐹)) ∣ ℎ finSupp 0} = {𝑖 ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ 𝑖 finSupp 0} |
| 195 | 51, 137, 149, 192, 194, 54, 141 | elrgspn 33194 |
. 2
⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹)) ↔ ∃𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))))) |
| 196 | 191, 195 | mpbird 257 |
1
⊢ (𝜑 → 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) |