Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspnsubrunlem1 Structured version   Visualization version   GIF version

Theorem elrgspnsubrunlem1 33206
Description: Lemma for elrgspnsubrun 33208, first direction. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
elrgspnsubrun.b 𝐵 = (Base‘𝑅)
elrgspnsubrun.t · = (.r𝑅)
elrgspnsubrun.z 0 = (0g𝑅)
elrgspnsubrun.n 𝑁 = (RingSpan‘𝑅)
elrgspnsubrun.r (𝜑𝑅 ∈ CRing)
elrgspnsubrun.e (𝜑𝐸 ∈ (SubRing‘𝑅))
elrgspnsubrun.f (𝜑𝐹 ∈ (SubRing‘𝑅))
elrgspnsubrunlem1.p1 (𝜑𝑃:𝐹𝐸)
elrgspnsubrunlem1.p2 (𝜑𝑃 finSupp 0 )
elrgspnsubrunlem1.x (𝜑𝑋 = (𝑅 Σg (𝑒𝐹 ↦ ((𝑃𝑒) · 𝑒))))
elrgspnsubrunlem1.t 𝑇 = ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩)
Assertion
Ref Expression
elrgspnsubrunlem1 (𝜑𝑋 ∈ (𝑁‘(𝐸𝐹)))
Distinct variable groups:   0 ,𝑒,𝑓   · ,𝑒,𝑓   𝐵,𝑒   𝑒,𝐸,𝑓   𝑒,𝐹,𝑓   𝑃,𝑒,𝑓   𝑅,𝑒,𝑓   𝑇,𝑒,𝑓   𝜑,𝑒,𝑓
Allowed substitution hints:   𝐵(𝑓)   𝑁(𝑒,𝑓)   𝑋(𝑒,𝑓)

Proof of Theorem elrgspnsubrunlem1
Dummy variables 𝑤 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6825 . . . . . . 7 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → (𝑔𝑤) = (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤))
21oveq1d 7368 . . . . . 6 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
32mpteq2dv 5189 . . . . 5 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))) = (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))
43oveq2d 7369 . . . 4 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
54eqeq2d 2740 . . 3 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → (𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) ↔ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))))
6 breq1 5098 . . . 4 ( = ((𝟭‘Word (𝐸𝐹))‘𝑇) → ( finSupp 0 ↔ ((𝟭‘Word (𝐸𝐹))‘𝑇) finSupp 0))
7 zex 12499 . . . . . 6 ℤ ∈ V
87a1i 11 . . . . 5 (𝜑 → ℤ ∈ V)
9 elrgspnsubrun.e . . . . . . 7 (𝜑𝐸 ∈ (SubRing‘𝑅))
10 elrgspnsubrun.f . . . . . . 7 (𝜑𝐹 ∈ (SubRing‘𝑅))
119, 10unexd 7694 . . . . . 6 (𝜑 → (𝐸𝐹) ∈ V)
12 wrdexg 14450 . . . . . 6 ((𝐸𝐹) ∈ V → Word (𝐸𝐹) ∈ V)
1311, 12syl 17 . . . . 5 (𝜑 → Word (𝐸𝐹) ∈ V)
14 elrgspnsubrunlem1.t . . . . . . . 8 𝑇 = ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩)
15 ssun1 4131 . . . . . . . . . . . 12 𝐸 ⊆ (𝐸𝐹)
16 elrgspnsubrunlem1.p1 . . . . . . . . . . . . . 14 (𝜑𝑃:𝐹𝐸)
1716adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → 𝑃:𝐹𝐸)
18 suppssdm 8117 . . . . . . . . . . . . . . 15 (𝑃 supp 0 ) ⊆ dom 𝑃
1918, 16fssdm 6675 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 supp 0 ) ⊆ 𝐹)
2019sselda 3937 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → 𝑓𝐹)
2117, 20ffvelcdmd 7023 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → (𝑃𝑓) ∈ 𝐸)
2215, 21sselid 3935 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → (𝑃𝑓) ∈ (𝐸𝐹))
23 ssun2 4132 . . . . . . . . . . . . 13 𝐹 ⊆ (𝐸𝐹)
2419, 23sstrdi 3950 . . . . . . . . . . . 12 (𝜑 → (𝑃 supp 0 ) ⊆ (𝐸𝐹))
2524sselda 3937 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → 𝑓 ∈ (𝐸𝐹))
2622, 25s2cld 14797 . . . . . . . . . 10 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → ⟨“(𝑃𝑓)𝑓”⟩ ∈ Word (𝐸𝐹))
2726ralrimiva 3121 . . . . . . . . 9 (𝜑 → ∀𝑓 ∈ (𝑃 supp 0 )⟨“(𝑃𝑓)𝑓”⟩ ∈ Word (𝐸𝐹))
28 eqid 2729 . . . . . . . . . 10 (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) = (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩)
2928rnmptss 7061 . . . . . . . . 9 (∀𝑓 ∈ (𝑃 supp 0 )⟨“(𝑃𝑓)𝑓”⟩ ∈ Word (𝐸𝐹) → ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ⊆ Word (𝐸𝐹))
3027, 29syl 17 . . . . . . . 8 (𝜑 → ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ⊆ Word (𝐸𝐹))
3114, 30eqsstrid 3976 . . . . . . 7 (𝜑𝑇 ⊆ Word (𝐸𝐹))
32 indf 32817 . . . . . . 7 ((Word (𝐸𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸𝐹)) → ((𝟭‘Word (𝐸𝐹))‘𝑇):Word (𝐸𝐹)⟶{0, 1})
3313, 31, 32syl2anc 584 . . . . . 6 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇):Word (𝐸𝐹)⟶{0, 1})
34 0zd 12502 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
35 1zzd 12525 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
3634, 35prssd 4776 . . . . . 6 (𝜑 → {0, 1} ⊆ ℤ)
3733, 36fssd 6673 . . . . 5 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇):Word (𝐸𝐹)⟶ℤ)
388, 13, 37elmapdd 8775 . . . 4 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇) ∈ (ℤ ↑m Word (𝐸𝐹)))
3933ffund 6660 . . . . 5 (𝜑 → Fun ((𝟭‘Word (𝐸𝐹))‘𝑇))
40 indsupp 32829 . . . . . . 7 ((Word (𝐸𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸𝐹)) → (((𝟭‘Word (𝐸𝐹))‘𝑇) supp 0) = 𝑇)
4113, 31, 40syl2anc 584 . . . . . 6 (𝜑 → (((𝟭‘Word (𝐸𝐹))‘𝑇) supp 0) = 𝑇)
42 elrgspnsubrunlem1.p2 . . . . . . . . 9 (𝜑𝑃 finSupp 0 )
4342fsuppimpd 9278 . . . . . . . 8 (𝜑 → (𝑃 supp 0 ) ∈ Fin)
44 mptfi 9260 . . . . . . . 8 ((𝑃 supp 0 ) ∈ Fin → (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ∈ Fin)
45 rnfi 9249 . . . . . . . 8 ((𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ∈ Fin → ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ∈ Fin)
4643, 44, 453syl 18 . . . . . . 7 (𝜑 → ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ∈ Fin)
4714, 46eqeltrid 2832 . . . . . 6 (𝜑𝑇 ∈ Fin)
4841, 47eqeltrd 2828 . . . . 5 (𝜑 → (((𝟭‘Word (𝐸𝐹))‘𝑇) supp 0) ∈ Fin)
4938, 34, 39, 48isfsuppd 9275 . . . 4 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇) finSupp 0)
506, 38, 49elrabd 3652 . . 3 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇) ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0})
51 elrgspnsubrun.b . . . . . 6 𝐵 = (Base‘𝑅)
52 elrgspnsubrun.z . . . . . 6 0 = (0g𝑅)
53 elrgspnsubrun.r . . . . . . . 8 (𝜑𝑅 ∈ CRing)
5453crngringd 20150 . . . . . . 7 (𝜑𝑅 ∈ Ring)
5554ringcmnd 20188 . . . . . 6 (𝜑𝑅 ∈ CMnd)
5616ffnd 6657 . . . . . . . . . 10 (𝜑𝑃 Fn 𝐹)
5756adantr 480 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑃 Fn 𝐹)
5810adantr 480 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝐹 ∈ (SubRing‘𝑅))
5952fvexi 6840 . . . . . . . . . 10 0 ∈ V
6059a1i 11 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 0 ∈ V)
61 simpr 484 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 )))
6257, 58, 60, 61fvdifsupp 8111 . . . . . . . 8 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → (𝑃𝑒) = 0 )
6362oveq1d 7368 . . . . . . 7 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → ((𝑃𝑒) · 𝑒) = ( 0 · 𝑒))
64 elrgspnsubrun.t . . . . . . . 8 · = (.r𝑅)
6554adantr 480 . . . . . . . 8 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑅 ∈ Ring)
6651subrgss 20476 . . . . . . . . . . 11 (𝐹 ∈ (SubRing‘𝑅) → 𝐹𝐵)
6710, 66syl 17 . . . . . . . . . 10 (𝜑𝐹𝐵)
6867ssdifssd 4100 . . . . . . . . 9 (𝜑 → (𝐹 ∖ (𝑃 supp 0 )) ⊆ 𝐵)
6968sselda 3937 . . . . . . . 8 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑒𝐵)
7051, 64, 52, 65, 69ringlzd 20199 . . . . . . 7 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → ( 0 · 𝑒) = 0 )
7163, 70eqtrd 2764 . . . . . 6 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → ((𝑃𝑒) · 𝑒) = 0 )
7254adantr 480 . . . . . . 7 ((𝜑𝑒𝐹) → 𝑅 ∈ Ring)
7351subrgss 20476 . . . . . . . . . 10 (𝐸 ∈ (SubRing‘𝑅) → 𝐸𝐵)
749, 73syl 17 . . . . . . . . 9 (𝜑𝐸𝐵)
7516, 74fssd 6673 . . . . . . . 8 (𝜑𝑃:𝐹𝐵)
7675ffvelcdmda 7022 . . . . . . 7 ((𝜑𝑒𝐹) → (𝑃𝑒) ∈ 𝐵)
7767sselda 3937 . . . . . . 7 ((𝜑𝑒𝐹) → 𝑒𝐵)
7851, 64, 72, 76, 77ringcld 20164 . . . . . 6 ((𝜑𝑒𝐹) → ((𝑃𝑒) · 𝑒) ∈ 𝐵)
7951, 52, 55, 10, 71, 43, 78, 19gsummptres2 33025 . . . . 5 (𝜑 → (𝑅 Σg (𝑒𝐹 ↦ ((𝑃𝑒) · 𝑒))) = (𝑅 Σg (𝑒 ∈ (𝑃 supp 0 ) ↦ ((𝑃𝑒) · 𝑒))))
80 nfcv 2891 . . . . . 6 𝑒((𝑃‘(𝑤‘1)) · (𝑤‘1))
81 fveq2 6826 . . . . . . 7 (𝑒 = (𝑤‘1) → (𝑃𝑒) = (𝑃‘(𝑤‘1)))
82 id 22 . . . . . . 7 (𝑒 = (𝑤‘1) → 𝑒 = (𝑤‘1))
8381, 82oveq12d 7371 . . . . . 6 (𝑒 = (𝑤‘1) → ((𝑃𝑒) · 𝑒) = ((𝑃‘(𝑤‘1)) · (𝑤‘1)))
84 ssidd 3961 . . . . . 6 (𝜑𝐵𝐵)
8519sselda 3937 . . . . . . 7 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → 𝑒𝐹)
8685, 78syldan 591 . . . . . 6 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ((𝑃𝑒) · 𝑒) ∈ 𝐵)
87 fveq1 6825 . . . . . . . . . 10 (𝑤 = ⟨“(𝑃𝑓)𝑓”⟩ → (𝑤‘1) = (⟨“(𝑃𝑓)𝑓”⟩‘1))
8887adantl 481 . . . . . . . . 9 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑤‘1) = (⟨“(𝑃𝑓)𝑓”⟩‘1))
89 s2fv1 14814 . . . . . . . . . 10 (𝑓 ∈ (𝑃 supp 0 ) → (⟨“(𝑃𝑓)𝑓”⟩‘1) = 𝑓)
9089ad2antlr 727 . . . . . . . . 9 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (⟨“(𝑃𝑓)𝑓”⟩‘1) = 𝑓)
9188, 90eqtrd 2764 . . . . . . . 8 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑤‘1) = 𝑓)
92 simplr 768 . . . . . . . 8 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑓 ∈ (𝑃 supp 0 ))
9391, 92eqeltrd 2828 . . . . . . 7 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑤‘1) ∈ (𝑃 supp 0 ))
9414eleq2i 2820 . . . . . . . . . 10 (𝑤𝑇𝑤 ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩))
9594biimpi 216 . . . . . . . . 9 (𝑤𝑇𝑤 ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩))
9695adantl 481 . . . . . . . 8 ((𝜑𝑤𝑇) → 𝑤 ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩))
9728, 96elrnmpt2d 5912 . . . . . . 7 ((𝜑𝑤𝑇) → ∃𝑓 ∈ (𝑃 supp 0 )𝑤 = ⟨“(𝑃𝑓)𝑓”⟩)
9893, 97r19.29a 3137 . . . . . 6 ((𝜑𝑤𝑇) → (𝑤‘1) ∈ (𝑃 supp 0 ))
99 fveq2 6826 . . . . . . . . . . 11 (𝑓 = 𝑒 → (𝑃𝑓) = (𝑃𝑒))
100 id 22 . . . . . . . . . . 11 (𝑓 = 𝑒𝑓 = 𝑒)
10199, 100s2eqd 14789 . . . . . . . . . 10 (𝑓 = 𝑒 → ⟨“(𝑃𝑓)𝑓”⟩ = ⟨“(𝑃𝑒)𝑒”⟩)
102101cbvmptv 5199 . . . . . . . . 9 (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) = (𝑒 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑒)𝑒”⟩)
103 simpr 484 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → 𝑒 ∈ (𝑃 supp 0 ))
10475adantr 480 . . . . . . . . . . 11 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → 𝑃:𝐹𝐵)
105104, 85ffvelcdmd 7023 . . . . . . . . . 10 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → (𝑃𝑒) ∈ 𝐵)
10619, 67sstrd 3948 . . . . . . . . . . 11 (𝜑 → (𝑃 supp 0 ) ⊆ 𝐵)
107106sselda 3937 . . . . . . . . . 10 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → 𝑒𝐵)
108105, 107s2cld 14797 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ⟨“(𝑃𝑒)𝑒”⟩ ∈ Word 𝐵)
109102, 103, 108elrnmpt1d 5910 . . . . . . . 8 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ⟨“(𝑃𝑒)𝑒”⟩ ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩))
110109, 14eleqtrrdi 2839 . . . . . . 7 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ⟨“(𝑃𝑒)𝑒”⟩ ∈ 𝑇)
111 simpr 484 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩)
11282ad3antlr 731 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑒 = (𝑤‘1))
113111fveq1d 6828 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑤‘1) = (⟨“(𝑃𝑓)𝑓”⟩‘1))
11489ad2antlr 727 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (⟨“(𝑃𝑓)𝑓”⟩‘1) = 𝑓)
115112, 113, 1143eqtrrd 2769 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑓 = 𝑒)
116115fveq2d 6830 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑃𝑓) = (𝑃𝑒))
117116, 115s2eqd 14789 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ⟨“(𝑃𝑓)𝑓”⟩ = ⟨“(𝑃𝑒)𝑒”⟩)
118111, 117eqtrd 2764 . . . . . . . . 9 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩)
11997ad4ant13 751 . . . . . . . . 9 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) → ∃𝑓 ∈ (𝑃 supp 0 )𝑤 = ⟨“(𝑃𝑓)𝑓”⟩)
120118, 119r19.29a 3137 . . . . . . . 8 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) → 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩)
121 simpr 484 . . . . . . . . . 10 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩) → 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩)
122121fveq1d 6828 . . . . . . . . 9 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩) → (𝑤‘1) = (⟨“(𝑃𝑒)𝑒”⟩‘1))
123 s2fv1 14814 . . . . . . . . . 10 (𝑒 ∈ (𝑃 supp 0 ) → (⟨“(𝑃𝑒)𝑒”⟩‘1) = 𝑒)
124123ad3antlr 731 . . . . . . . . 9 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩) → (⟨“(𝑃𝑒)𝑒”⟩‘1) = 𝑒)
125122, 124eqtr2d 2765 . . . . . . . 8 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩) → 𝑒 = (𝑤‘1))
126120, 125impbida 800 . . . . . . 7 (((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) → (𝑒 = (𝑤‘1) ↔ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩))
127110, 126reu6dv 32436 . . . . . 6 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ∃!𝑤𝑇 𝑒 = (𝑤‘1))
12880, 51, 52, 83, 55, 43, 84, 86, 98, 127gsummptf1o 19861 . . . . 5 (𝜑 → (𝑅 Σg (𝑒 ∈ (𝑃 supp 0 ) ↦ ((𝑃𝑒) · 𝑒))) = (𝑅 Σg (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1)))))
12979, 128eqtrd 2764 . . . 4 (𝜑 → (𝑅 Σg (𝑒𝐹 ↦ ((𝑃𝑒) · 𝑒))) = (𝑅 Σg (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1)))))
130 elrgspnsubrunlem1.x . . . 4 (𝜑𝑋 = (𝑅 Σg (𝑒𝐹 ↦ ((𝑃𝑒) · 𝑒))))
13113adantr 480 . . . . . . . . 9 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → Word (𝐸𝐹) ∈ V)
13231adantr 480 . . . . . . . . 9 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → 𝑇 ⊆ Word (𝐸𝐹))
133 simpr 484 . . . . . . . . 9 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → 𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇))
134 ind0 32820 . . . . . . . . 9 ((Word (𝐸𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸𝐹) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) = 0)
135131, 132, 133, 134syl3anc 1373 . . . . . . . 8 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) = 0)
136135oveq1d 7368 . . . . . . 7 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
137 eqid 2729 . . . . . . . . . . . 12 (mulGrp‘𝑅) = (mulGrp‘𝑅)
138137crngmgp 20145 . . . . . . . . . . 11 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
13953, 138syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
140139cmnmndd 19702 . . . . . . . . 9 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
14174, 67unssd 4145 . . . . . . . . . . . 12 (𝜑 → (𝐸𝐹) ⊆ 𝐵)
142 sswrd 14448 . . . . . . . . . . . 12 ((𝐸𝐹) ⊆ 𝐵 → Word (𝐸𝐹) ⊆ Word 𝐵)
143141, 142syl 17 . . . . . . . . . . 11 (𝜑 → Word (𝐸𝐹) ⊆ Word 𝐵)
144143ssdifssd 4100 . . . . . . . . . 10 (𝜑 → (Word (𝐸𝐹) ∖ 𝑇) ⊆ Word 𝐵)
145144sselda 3937 . . . . . . . . 9 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → 𝑤 ∈ Word 𝐵)
146137, 51mgpbas 20049 . . . . . . . . . 10 𝐵 = (Base‘(mulGrp‘𝑅))
147146gsumwcl 18732 . . . . . . . . 9 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑤 ∈ Word 𝐵) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
148140, 145, 147syl2an2r 685 . . . . . . . 8 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
149 eqid 2729 . . . . . . . . 9 (.g𝑅) = (.g𝑅)
15051, 52, 149mulg0 18972 . . . . . . . 8 (((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵 → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
151148, 150syl 17 . . . . . . 7 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
152136, 151eqtrd 2764 . . . . . 6 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
15353crnggrpd 20151 . . . . . . . 8 (𝜑𝑅 ∈ Grp)
154153adantr 480 . . . . . . 7 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝑅 ∈ Grp)
15537ffvelcdmda 7022 . . . . . . 7 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) ∈ ℤ)
156143sselda 3937 . . . . . . . 8 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝑤 ∈ Word 𝐵)
157140, 156, 147syl2an2r 685 . . . . . . 7 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
15851, 149, 154, 155, 157mulgcld 18994 . . . . . 6 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵)
15951, 52, 55, 13, 152, 47, 158, 31gsummptres2 33025 . . . . 5 (𝜑 → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤𝑇 ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
16031, 143sstrd 3948 . . . . . . . . . . 11 (𝜑𝑇 ⊆ Word 𝐵)
161160sselda 3937 . . . . . . . . . 10 ((𝜑𝑤𝑇) → 𝑤 ∈ Word 𝐵)
162140, 161, 147syl2an2r 685 . . . . . . . . 9 ((𝜑𝑤𝑇) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
16351, 149mulg1 18979 . . . . . . . . 9 (((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵 → (1(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = ((mulGrp‘𝑅) Σg 𝑤))
164162, 163syl 17 . . . . . . . 8 ((𝜑𝑤𝑇) → (1(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = ((mulGrp‘𝑅) Σg 𝑤))
16513adantr 480 . . . . . . . . . 10 ((𝜑𝑤𝑇) → Word (𝐸𝐹) ∈ V)
16631adantr 480 . . . . . . . . . 10 ((𝜑𝑤𝑇) → 𝑇 ⊆ Word (𝐸𝐹))
167 simpr 484 . . . . . . . . . 10 ((𝜑𝑤𝑇) → 𝑤𝑇)
168 ind1 32819 . . . . . . . . . 10 ((Word (𝐸𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸𝐹) ∧ 𝑤𝑇) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) = 1)
169165, 166, 167, 168syl3anc 1373 . . . . . . . . 9 ((𝜑𝑤𝑇) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) = 1)
170169oveq1d 7368 . . . . . . . 8 ((𝜑𝑤𝑇) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = (1(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
171140ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (mulGrp‘𝑅) ∈ Mnd)
17275ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑃:𝐹𝐵)
17320ad4ant13 751 . . . . . . . . . . . 12 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑓𝐹)
174172, 173ffvelcdmd 7023 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑃𝑓) ∈ 𝐵)
175106ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑃 supp 0 ) ⊆ 𝐵)
176175, 92sseldd 3938 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑓𝐵)
177137, 64mgpplusg 20048 . . . . . . . . . . . 12 · = (+g‘(mulGrp‘𝑅))
178146, 177gsumws2 18735 . . . . . . . . . . 11 (((mulGrp‘𝑅) ∈ Mnd ∧ (𝑃𝑓) ∈ 𝐵𝑓𝐵) → ((mulGrp‘𝑅) Σg ⟨“(𝑃𝑓)𝑓”⟩) = ((𝑃𝑓) · 𝑓))
179171, 174, 176, 178syl3anc 1373 . . . . . . . . . 10 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ((mulGrp‘𝑅) Σg ⟨“(𝑃𝑓)𝑓”⟩) = ((𝑃𝑓) · 𝑓))
180 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩)
181180oveq2d 7369 . . . . . . . . . 10 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ((mulGrp‘𝑅) Σg 𝑤) = ((mulGrp‘𝑅) Σg ⟨“(𝑃𝑓)𝑓”⟩))
18291fveq2d 6830 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑃‘(𝑤‘1)) = (𝑃𝑓))
183182, 91oveq12d 7371 . . . . . . . . . 10 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ((𝑃‘(𝑤‘1)) · (𝑤‘1)) = ((𝑃𝑓) · 𝑓))
184179, 181, 1833eqtr4rd 2775 . . . . . . . . 9 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ((𝑃‘(𝑤‘1)) · (𝑤‘1)) = ((mulGrp‘𝑅) Σg 𝑤))
185184, 97r19.29a 3137 . . . . . . . 8 ((𝜑𝑤𝑇) → ((𝑃‘(𝑤‘1)) · (𝑤‘1)) = ((mulGrp‘𝑅) Σg 𝑤))
186164, 170, 1853eqtr4d 2774 . . . . . . 7 ((𝜑𝑤𝑇) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = ((𝑃‘(𝑤‘1)) · (𝑤‘1)))
187186mpteq2dva 5188 . . . . . 6 (𝜑 → (𝑤𝑇 ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))) = (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1))))
188187oveq2d 7369 . . . . 5 (𝜑 → (𝑅 Σg (𝑤𝑇 ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1)))))
189159, 188eqtrd 2764 . . . 4 (𝜑 → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1)))))
190129, 130, 1893eqtr4d 2774 . . 3 (𝜑𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
1915, 50, 190rspcedvdw 3582 . 2 (𝜑 → ∃𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
192 elrgspnsubrun.n . . 3 𝑁 = (RingSpan‘𝑅)
193 breq1 5098 . . . 4 ( = 𝑖 → ( finSupp 0 ↔ 𝑖 finSupp 0))
194193cbvrabv 3407 . . 3 { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0} = {𝑖 ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ 𝑖 finSupp 0}
19551, 137, 149, 192, 194, 54, 141elrgspn 33205 . 2 (𝜑 → (𝑋 ∈ (𝑁‘(𝐸𝐹)) ↔ ∃𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))))
196191, 195mpbird 257 1 (𝜑𝑋 ∈ (𝑁‘(𝐸𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3396  Vcvv 3438  cdif 3902  cun 3903  wss 3905  {cpr 4581   class class class wbr 5095  cmpt 5176  ran crn 5624   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353   supp csupp 8100  m cmap 8760  Fincfn 8879   finSupp cfsupp 9270  0cc0 11028  1c1 11029  cz 12490  Word cword 14439  ⟨“cs2 14767  Basecbs 17139  .rcmulr 17181  0gc0g 17362   Σg cgsu 17363  Mndcmnd 18627  Grpcgrp 18831  .gcmg 18965  CMndccmn 19678  mulGrpcmgp 20044  Ringcrg 20137  CRingccrg 20138  SubRingcsubrg 20473  RingSpancrgspn 20514  𝟭cind 32812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-rp 12913  df-fz 13430  df-fzo 13577  df-seq 13928  df-exp 13988  df-hash 14257  df-word 14440  df-concat 14497  df-s1 14522  df-substr 14567  df-pfx 14597  df-s2 14774  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-clim 15414  df-sum 15613  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-starv 17195  df-tset 17199  df-ple 17200  df-ds 17202  df-unif 17203  df-0g 17364  df-gsum 17365  df-mre 17507  df-mrc 17508  df-acs 17510  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-mhm 18676  df-submnd 18677  df-grp 18834  df-minusg 18835  df-mulg 18966  df-subg 19021  df-ghm 19111  df-cntz 19215  df-cmn 19680  df-abl 19681  df-mgp 20045  df-rng 20057  df-ur 20086  df-ring 20139  df-cring 20140  df-oppr 20241  df-subrng 20450  df-subrg 20474  df-rgspn 20515  df-cnfld 21281  df-zring 21373  df-ind 32813
This theorem is referenced by:  elrgspnsubrun  33208
  Copyright terms: Public domain W3C validator