Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspnsubrunlem1 Structured version   Visualization version   GIF version

Theorem elrgspnsubrunlem1 33204
Description: Lemma for elrgspnsubrun 33206, first direction. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
elrgspnsubrun.b 𝐵 = (Base‘𝑅)
elrgspnsubrun.t · = (.r𝑅)
elrgspnsubrun.z 0 = (0g𝑅)
elrgspnsubrun.n 𝑁 = (RingSpan‘𝑅)
elrgspnsubrun.r (𝜑𝑅 ∈ CRing)
elrgspnsubrun.e (𝜑𝐸 ∈ (SubRing‘𝑅))
elrgspnsubrun.f (𝜑𝐹 ∈ (SubRing‘𝑅))
elrgspnsubrunlem1.p1 (𝜑𝑃:𝐹𝐸)
elrgspnsubrunlem1.p2 (𝜑𝑃 finSupp 0 )
elrgspnsubrunlem1.x (𝜑𝑋 = (𝑅 Σg (𝑒𝐹 ↦ ((𝑃𝑒) · 𝑒))))
elrgspnsubrunlem1.t 𝑇 = ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩)
Assertion
Ref Expression
elrgspnsubrunlem1 (𝜑𝑋 ∈ (𝑁‘(𝐸𝐹)))
Distinct variable groups:   0 ,𝑒,𝑓   · ,𝑒,𝑓   𝐵,𝑒   𝑒,𝐸,𝑓   𝑒,𝐹,𝑓   𝑃,𝑒,𝑓   𝑅,𝑒,𝑓   𝑇,𝑒,𝑓   𝜑,𝑒,𝑓
Allowed substitution hints:   𝐵(𝑓)   𝑁(𝑒,𝑓)   𝑋(𝑒,𝑓)

Proof of Theorem elrgspnsubrunlem1
Dummy variables 𝑤 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6859 . . . . . . 7 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → (𝑔𝑤) = (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤))
21oveq1d 7404 . . . . . 6 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
32mpteq2dv 5203 . . . . 5 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))) = (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))
43oveq2d 7405 . . . 4 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
54eqeq2d 2741 . . 3 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → (𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) ↔ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))))
6 breq1 5112 . . . 4 ( = ((𝟭‘Word (𝐸𝐹))‘𝑇) → ( finSupp 0 ↔ ((𝟭‘Word (𝐸𝐹))‘𝑇) finSupp 0))
7 zex 12544 . . . . . 6 ℤ ∈ V
87a1i 11 . . . . 5 (𝜑 → ℤ ∈ V)
9 elrgspnsubrun.e . . . . . . 7 (𝜑𝐸 ∈ (SubRing‘𝑅))
10 elrgspnsubrun.f . . . . . . 7 (𝜑𝐹 ∈ (SubRing‘𝑅))
119, 10unexd 7732 . . . . . 6 (𝜑 → (𝐸𝐹) ∈ V)
12 wrdexg 14495 . . . . . 6 ((𝐸𝐹) ∈ V → Word (𝐸𝐹) ∈ V)
1311, 12syl 17 . . . . 5 (𝜑 → Word (𝐸𝐹) ∈ V)
14 elrgspnsubrunlem1.t . . . . . . . 8 𝑇 = ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩)
15 ssun1 4143 . . . . . . . . . . . 12 𝐸 ⊆ (𝐸𝐹)
16 elrgspnsubrunlem1.p1 . . . . . . . . . . . . . 14 (𝜑𝑃:𝐹𝐸)
1716adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → 𝑃:𝐹𝐸)
18 suppssdm 8158 . . . . . . . . . . . . . . 15 (𝑃 supp 0 ) ⊆ dom 𝑃
1918, 16fssdm 6709 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 supp 0 ) ⊆ 𝐹)
2019sselda 3948 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → 𝑓𝐹)
2117, 20ffvelcdmd 7059 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → (𝑃𝑓) ∈ 𝐸)
2215, 21sselid 3946 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → (𝑃𝑓) ∈ (𝐸𝐹))
23 ssun2 4144 . . . . . . . . . . . . 13 𝐹 ⊆ (𝐸𝐹)
2419, 23sstrdi 3961 . . . . . . . . . . . 12 (𝜑 → (𝑃 supp 0 ) ⊆ (𝐸𝐹))
2524sselda 3948 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → 𝑓 ∈ (𝐸𝐹))
2622, 25s2cld 14843 . . . . . . . . . 10 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → ⟨“(𝑃𝑓)𝑓”⟩ ∈ Word (𝐸𝐹))
2726ralrimiva 3126 . . . . . . . . 9 (𝜑 → ∀𝑓 ∈ (𝑃 supp 0 )⟨“(𝑃𝑓)𝑓”⟩ ∈ Word (𝐸𝐹))
28 eqid 2730 . . . . . . . . . 10 (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) = (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩)
2928rnmptss 7097 . . . . . . . . 9 (∀𝑓 ∈ (𝑃 supp 0 )⟨“(𝑃𝑓)𝑓”⟩ ∈ Word (𝐸𝐹) → ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ⊆ Word (𝐸𝐹))
3027, 29syl 17 . . . . . . . 8 (𝜑 → ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ⊆ Word (𝐸𝐹))
3114, 30eqsstrid 3987 . . . . . . 7 (𝜑𝑇 ⊆ Word (𝐸𝐹))
32 indf 32784 . . . . . . 7 ((Word (𝐸𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸𝐹)) → ((𝟭‘Word (𝐸𝐹))‘𝑇):Word (𝐸𝐹)⟶{0, 1})
3313, 31, 32syl2anc 584 . . . . . 6 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇):Word (𝐸𝐹)⟶{0, 1})
34 0zd 12547 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
35 1zzd 12570 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
3634, 35prssd 4788 . . . . . 6 (𝜑 → {0, 1} ⊆ ℤ)
3733, 36fssd 6707 . . . . 5 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇):Word (𝐸𝐹)⟶ℤ)
388, 13, 37elmapdd 8816 . . . 4 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇) ∈ (ℤ ↑m Word (𝐸𝐹)))
3933ffund 6694 . . . . 5 (𝜑 → Fun ((𝟭‘Word (𝐸𝐹))‘𝑇))
40 indsupp 32796 . . . . . . 7 ((Word (𝐸𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸𝐹)) → (((𝟭‘Word (𝐸𝐹))‘𝑇) supp 0) = 𝑇)
4113, 31, 40syl2anc 584 . . . . . 6 (𝜑 → (((𝟭‘Word (𝐸𝐹))‘𝑇) supp 0) = 𝑇)
42 elrgspnsubrunlem1.p2 . . . . . . . . 9 (𝜑𝑃 finSupp 0 )
4342fsuppimpd 9326 . . . . . . . 8 (𝜑 → (𝑃 supp 0 ) ∈ Fin)
44 mptfi 9308 . . . . . . . 8 ((𝑃 supp 0 ) ∈ Fin → (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ∈ Fin)
45 rnfi 9297 . . . . . . . 8 ((𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ∈ Fin → ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ∈ Fin)
4643, 44, 453syl 18 . . . . . . 7 (𝜑 → ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ∈ Fin)
4714, 46eqeltrid 2833 . . . . . 6 (𝜑𝑇 ∈ Fin)
4841, 47eqeltrd 2829 . . . . 5 (𝜑 → (((𝟭‘Word (𝐸𝐹))‘𝑇) supp 0) ∈ Fin)
4938, 34, 39, 48isfsuppd 9323 . . . 4 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇) finSupp 0)
506, 38, 49elrabd 3663 . . 3 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇) ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0})
51 elrgspnsubrun.b . . . . . 6 𝐵 = (Base‘𝑅)
52 elrgspnsubrun.z . . . . . 6 0 = (0g𝑅)
53 elrgspnsubrun.r . . . . . . . 8 (𝜑𝑅 ∈ CRing)
5453crngringd 20161 . . . . . . 7 (𝜑𝑅 ∈ Ring)
5554ringcmnd 20199 . . . . . 6 (𝜑𝑅 ∈ CMnd)
5616ffnd 6691 . . . . . . . . . 10 (𝜑𝑃 Fn 𝐹)
5756adantr 480 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑃 Fn 𝐹)
5810adantr 480 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝐹 ∈ (SubRing‘𝑅))
5952fvexi 6874 . . . . . . . . . 10 0 ∈ V
6059a1i 11 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 0 ∈ V)
61 simpr 484 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 )))
6257, 58, 60, 61fvdifsupp 8152 . . . . . . . 8 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → (𝑃𝑒) = 0 )
6362oveq1d 7404 . . . . . . 7 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → ((𝑃𝑒) · 𝑒) = ( 0 · 𝑒))
64 elrgspnsubrun.t . . . . . . . 8 · = (.r𝑅)
6554adantr 480 . . . . . . . 8 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑅 ∈ Ring)
6651subrgss 20487 . . . . . . . . . . 11 (𝐹 ∈ (SubRing‘𝑅) → 𝐹𝐵)
6710, 66syl 17 . . . . . . . . . 10 (𝜑𝐹𝐵)
6867ssdifssd 4112 . . . . . . . . 9 (𝜑 → (𝐹 ∖ (𝑃 supp 0 )) ⊆ 𝐵)
6968sselda 3948 . . . . . . . 8 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑒𝐵)
7051, 64, 52, 65, 69ringlzd 20210 . . . . . . 7 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → ( 0 · 𝑒) = 0 )
7163, 70eqtrd 2765 . . . . . 6 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → ((𝑃𝑒) · 𝑒) = 0 )
7254adantr 480 . . . . . . 7 ((𝜑𝑒𝐹) → 𝑅 ∈ Ring)
7351subrgss 20487 . . . . . . . . . 10 (𝐸 ∈ (SubRing‘𝑅) → 𝐸𝐵)
749, 73syl 17 . . . . . . . . 9 (𝜑𝐸𝐵)
7516, 74fssd 6707 . . . . . . . 8 (𝜑𝑃:𝐹𝐵)
7675ffvelcdmda 7058 . . . . . . 7 ((𝜑𝑒𝐹) → (𝑃𝑒) ∈ 𝐵)
7767sselda 3948 . . . . . . 7 ((𝜑𝑒𝐹) → 𝑒𝐵)
7851, 64, 72, 76, 77ringcld 20175 . . . . . 6 ((𝜑𝑒𝐹) → ((𝑃𝑒) · 𝑒) ∈ 𝐵)
7951, 52, 55, 10, 71, 43, 78, 19gsummptres2 32999 . . . . 5 (𝜑 → (𝑅 Σg (𝑒𝐹 ↦ ((𝑃𝑒) · 𝑒))) = (𝑅 Σg (𝑒 ∈ (𝑃 supp 0 ) ↦ ((𝑃𝑒) · 𝑒))))
80 nfcv 2892 . . . . . 6 𝑒((𝑃‘(𝑤‘1)) · (𝑤‘1))
81 fveq2 6860 . . . . . . 7 (𝑒 = (𝑤‘1) → (𝑃𝑒) = (𝑃‘(𝑤‘1)))
82 id 22 . . . . . . 7 (𝑒 = (𝑤‘1) → 𝑒 = (𝑤‘1))
8381, 82oveq12d 7407 . . . . . 6 (𝑒 = (𝑤‘1) → ((𝑃𝑒) · 𝑒) = ((𝑃‘(𝑤‘1)) · (𝑤‘1)))
84 ssidd 3972 . . . . . 6 (𝜑𝐵𝐵)
8519sselda 3948 . . . . . . 7 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → 𝑒𝐹)
8685, 78syldan 591 . . . . . 6 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ((𝑃𝑒) · 𝑒) ∈ 𝐵)
87 fveq1 6859 . . . . . . . . . 10 (𝑤 = ⟨“(𝑃𝑓)𝑓”⟩ → (𝑤‘1) = (⟨“(𝑃𝑓)𝑓”⟩‘1))
8887adantl 481 . . . . . . . . 9 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑤‘1) = (⟨“(𝑃𝑓)𝑓”⟩‘1))
89 s2fv1 14860 . . . . . . . . . 10 (𝑓 ∈ (𝑃 supp 0 ) → (⟨“(𝑃𝑓)𝑓”⟩‘1) = 𝑓)
9089ad2antlr 727 . . . . . . . . 9 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (⟨“(𝑃𝑓)𝑓”⟩‘1) = 𝑓)
9188, 90eqtrd 2765 . . . . . . . 8 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑤‘1) = 𝑓)
92 simplr 768 . . . . . . . 8 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑓 ∈ (𝑃 supp 0 ))
9391, 92eqeltrd 2829 . . . . . . 7 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑤‘1) ∈ (𝑃 supp 0 ))
9414eleq2i 2821 . . . . . . . . . 10 (𝑤𝑇𝑤 ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩))
9594biimpi 216 . . . . . . . . 9 (𝑤𝑇𝑤 ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩))
9695adantl 481 . . . . . . . 8 ((𝜑𝑤𝑇) → 𝑤 ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩))
9728, 96elrnmpt2d 5932 . . . . . . 7 ((𝜑𝑤𝑇) → ∃𝑓 ∈ (𝑃 supp 0 )𝑤 = ⟨“(𝑃𝑓)𝑓”⟩)
9893, 97r19.29a 3142 . . . . . 6 ((𝜑𝑤𝑇) → (𝑤‘1) ∈ (𝑃 supp 0 ))
99 fveq2 6860 . . . . . . . . . . 11 (𝑓 = 𝑒 → (𝑃𝑓) = (𝑃𝑒))
100 id 22 . . . . . . . . . . 11 (𝑓 = 𝑒𝑓 = 𝑒)
10199, 100s2eqd 14835 . . . . . . . . . 10 (𝑓 = 𝑒 → ⟨“(𝑃𝑓)𝑓”⟩ = ⟨“(𝑃𝑒)𝑒”⟩)
102101cbvmptv 5213 . . . . . . . . 9 (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) = (𝑒 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑒)𝑒”⟩)
103 simpr 484 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → 𝑒 ∈ (𝑃 supp 0 ))
10475adantr 480 . . . . . . . . . . 11 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → 𝑃:𝐹𝐵)
105104, 85ffvelcdmd 7059 . . . . . . . . . 10 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → (𝑃𝑒) ∈ 𝐵)
10619, 67sstrd 3959 . . . . . . . . . . 11 (𝜑 → (𝑃 supp 0 ) ⊆ 𝐵)
107106sselda 3948 . . . . . . . . . 10 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → 𝑒𝐵)
108105, 107s2cld 14843 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ⟨“(𝑃𝑒)𝑒”⟩ ∈ Word 𝐵)
109102, 103, 108elrnmpt1d 5930 . . . . . . . 8 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ⟨“(𝑃𝑒)𝑒”⟩ ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩))
110109, 14eleqtrrdi 2840 . . . . . . 7 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ⟨“(𝑃𝑒)𝑒”⟩ ∈ 𝑇)
111 simpr 484 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩)
11282ad3antlr 731 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑒 = (𝑤‘1))
113111fveq1d 6862 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑤‘1) = (⟨“(𝑃𝑓)𝑓”⟩‘1))
11489ad2antlr 727 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (⟨“(𝑃𝑓)𝑓”⟩‘1) = 𝑓)
115112, 113, 1143eqtrrd 2770 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑓 = 𝑒)
116115fveq2d 6864 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑃𝑓) = (𝑃𝑒))
117116, 115s2eqd 14835 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ⟨“(𝑃𝑓)𝑓”⟩ = ⟨“(𝑃𝑒)𝑒”⟩)
118111, 117eqtrd 2765 . . . . . . . . 9 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩)
11997ad4ant13 751 . . . . . . . . 9 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) → ∃𝑓 ∈ (𝑃 supp 0 )𝑤 = ⟨“(𝑃𝑓)𝑓”⟩)
120118, 119r19.29a 3142 . . . . . . . 8 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) → 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩)
121 simpr 484 . . . . . . . . . 10 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩) → 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩)
122121fveq1d 6862 . . . . . . . . 9 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩) → (𝑤‘1) = (⟨“(𝑃𝑒)𝑒”⟩‘1))
123 s2fv1 14860 . . . . . . . . . 10 (𝑒 ∈ (𝑃 supp 0 ) → (⟨“(𝑃𝑒)𝑒”⟩‘1) = 𝑒)
124123ad3antlr 731 . . . . . . . . 9 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩) → (⟨“(𝑃𝑒)𝑒”⟩‘1) = 𝑒)
125122, 124eqtr2d 2766 . . . . . . . 8 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩) → 𝑒 = (𝑤‘1))
126120, 125impbida 800 . . . . . . 7 (((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) → (𝑒 = (𝑤‘1) ↔ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩))
127110, 126reu6dv 32408 . . . . . 6 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ∃!𝑤𝑇 𝑒 = (𝑤‘1))
12880, 51, 52, 83, 55, 43, 84, 86, 98, 127gsummptf1o 19899 . . . . 5 (𝜑 → (𝑅 Σg (𝑒 ∈ (𝑃 supp 0 ) ↦ ((𝑃𝑒) · 𝑒))) = (𝑅 Σg (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1)))))
12979, 128eqtrd 2765 . . . 4 (𝜑 → (𝑅 Σg (𝑒𝐹 ↦ ((𝑃𝑒) · 𝑒))) = (𝑅 Σg (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1)))))
130 elrgspnsubrunlem1.x . . . 4 (𝜑𝑋 = (𝑅 Σg (𝑒𝐹 ↦ ((𝑃𝑒) · 𝑒))))
13113adantr 480 . . . . . . . . 9 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → Word (𝐸𝐹) ∈ V)
13231adantr 480 . . . . . . . . 9 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → 𝑇 ⊆ Word (𝐸𝐹))
133 simpr 484 . . . . . . . . 9 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → 𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇))
134 ind0 32787 . . . . . . . . 9 ((Word (𝐸𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸𝐹) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) = 0)
135131, 132, 133, 134syl3anc 1373 . . . . . . . 8 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) = 0)
136135oveq1d 7404 . . . . . . 7 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
137 eqid 2730 . . . . . . . . . . . 12 (mulGrp‘𝑅) = (mulGrp‘𝑅)
138137crngmgp 20156 . . . . . . . . . . 11 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
13953, 138syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
140139cmnmndd 19740 . . . . . . . . 9 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
14174, 67unssd 4157 . . . . . . . . . . . 12 (𝜑 → (𝐸𝐹) ⊆ 𝐵)
142 sswrd 14493 . . . . . . . . . . . 12 ((𝐸𝐹) ⊆ 𝐵 → Word (𝐸𝐹) ⊆ Word 𝐵)
143141, 142syl 17 . . . . . . . . . . 11 (𝜑 → Word (𝐸𝐹) ⊆ Word 𝐵)
144143ssdifssd 4112 . . . . . . . . . 10 (𝜑 → (Word (𝐸𝐹) ∖ 𝑇) ⊆ Word 𝐵)
145144sselda 3948 . . . . . . . . 9 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → 𝑤 ∈ Word 𝐵)
146137, 51mgpbas 20060 . . . . . . . . . 10 𝐵 = (Base‘(mulGrp‘𝑅))
147146gsumwcl 18772 . . . . . . . . 9 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑤 ∈ Word 𝐵) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
148140, 145, 147syl2an2r 685 . . . . . . . 8 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
149 eqid 2730 . . . . . . . . 9 (.g𝑅) = (.g𝑅)
15051, 52, 149mulg0 19012 . . . . . . . 8 (((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵 → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
151148, 150syl 17 . . . . . . 7 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
152136, 151eqtrd 2765 . . . . . 6 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
15353crnggrpd 20162 . . . . . . . 8 (𝜑𝑅 ∈ Grp)
154153adantr 480 . . . . . . 7 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝑅 ∈ Grp)
15537ffvelcdmda 7058 . . . . . . 7 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) ∈ ℤ)
156143sselda 3948 . . . . . . . 8 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝑤 ∈ Word 𝐵)
157140, 156, 147syl2an2r 685 . . . . . . 7 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
15851, 149, 154, 155, 157mulgcld 19034 . . . . . 6 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵)
15951, 52, 55, 13, 152, 47, 158, 31gsummptres2 32999 . . . . 5 (𝜑 → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤𝑇 ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
16031, 143sstrd 3959 . . . . . . . . . . 11 (𝜑𝑇 ⊆ Word 𝐵)
161160sselda 3948 . . . . . . . . . 10 ((𝜑𝑤𝑇) → 𝑤 ∈ Word 𝐵)
162140, 161, 147syl2an2r 685 . . . . . . . . 9 ((𝜑𝑤𝑇) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
16351, 149mulg1 19019 . . . . . . . . 9 (((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵 → (1(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = ((mulGrp‘𝑅) Σg 𝑤))
164162, 163syl 17 . . . . . . . 8 ((𝜑𝑤𝑇) → (1(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = ((mulGrp‘𝑅) Σg 𝑤))
16513adantr 480 . . . . . . . . . 10 ((𝜑𝑤𝑇) → Word (𝐸𝐹) ∈ V)
16631adantr 480 . . . . . . . . . 10 ((𝜑𝑤𝑇) → 𝑇 ⊆ Word (𝐸𝐹))
167 simpr 484 . . . . . . . . . 10 ((𝜑𝑤𝑇) → 𝑤𝑇)
168 ind1 32786 . . . . . . . . . 10 ((Word (𝐸𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸𝐹) ∧ 𝑤𝑇) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) = 1)
169165, 166, 167, 168syl3anc 1373 . . . . . . . . 9 ((𝜑𝑤𝑇) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) = 1)
170169oveq1d 7404 . . . . . . . 8 ((𝜑𝑤𝑇) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = (1(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
171140ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (mulGrp‘𝑅) ∈ Mnd)
17275ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑃:𝐹𝐵)
17320ad4ant13 751 . . . . . . . . . . . 12 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑓𝐹)
174172, 173ffvelcdmd 7059 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑃𝑓) ∈ 𝐵)
175106ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑃 supp 0 ) ⊆ 𝐵)
176175, 92sseldd 3949 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑓𝐵)
177137, 64mgpplusg 20059 . . . . . . . . . . . 12 · = (+g‘(mulGrp‘𝑅))
178146, 177gsumws2 18775 . . . . . . . . . . 11 (((mulGrp‘𝑅) ∈ Mnd ∧ (𝑃𝑓) ∈ 𝐵𝑓𝐵) → ((mulGrp‘𝑅) Σg ⟨“(𝑃𝑓)𝑓”⟩) = ((𝑃𝑓) · 𝑓))
179171, 174, 176, 178syl3anc 1373 . . . . . . . . . 10 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ((mulGrp‘𝑅) Σg ⟨“(𝑃𝑓)𝑓”⟩) = ((𝑃𝑓) · 𝑓))
180 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩)
181180oveq2d 7405 . . . . . . . . . 10 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ((mulGrp‘𝑅) Σg 𝑤) = ((mulGrp‘𝑅) Σg ⟨“(𝑃𝑓)𝑓”⟩))
18291fveq2d 6864 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑃‘(𝑤‘1)) = (𝑃𝑓))
183182, 91oveq12d 7407 . . . . . . . . . 10 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ((𝑃‘(𝑤‘1)) · (𝑤‘1)) = ((𝑃𝑓) · 𝑓))
184179, 181, 1833eqtr4rd 2776 . . . . . . . . 9 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ((𝑃‘(𝑤‘1)) · (𝑤‘1)) = ((mulGrp‘𝑅) Σg 𝑤))
185184, 97r19.29a 3142 . . . . . . . 8 ((𝜑𝑤𝑇) → ((𝑃‘(𝑤‘1)) · (𝑤‘1)) = ((mulGrp‘𝑅) Σg 𝑤))
186164, 170, 1853eqtr4d 2775 . . . . . . 7 ((𝜑𝑤𝑇) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = ((𝑃‘(𝑤‘1)) · (𝑤‘1)))
187186mpteq2dva 5202 . . . . . 6 (𝜑 → (𝑤𝑇 ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))) = (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1))))
188187oveq2d 7405 . . . . 5 (𝜑 → (𝑅 Σg (𝑤𝑇 ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1)))))
189159, 188eqtrd 2765 . . . 4 (𝜑 → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1)))))
190129, 130, 1893eqtr4d 2775 . . 3 (𝜑𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
1915, 50, 190rspcedvdw 3594 . 2 (𝜑 → ∃𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
192 elrgspnsubrun.n . . 3 𝑁 = (RingSpan‘𝑅)
193 breq1 5112 . . . 4 ( = 𝑖 → ( finSupp 0 ↔ 𝑖 finSupp 0))
194193cbvrabv 3419 . . 3 { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0} = {𝑖 ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ 𝑖 finSupp 0}
19551, 137, 149, 192, 194, 54, 141elrgspn 33203 . 2 (𝜑 → (𝑋 ∈ (𝑁‘(𝐸𝐹)) ↔ ∃𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))))
196191, 195mpbird 257 1 (𝜑𝑋 ∈ (𝑁‘(𝐸𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cdif 3913  cun 3914  wss 3916  {cpr 4593   class class class wbr 5109  cmpt 5190  ran crn 5641   Fn wfn 6508  wf 6509  cfv 6513  (class class class)co 7389   supp csupp 8141  m cmap 8801  Fincfn 8920   finSupp cfsupp 9318  0cc0 11074  1c1 11075  cz 12535  Word cword 14484  ⟨“cs2 14813  Basecbs 17185  .rcmulr 17227  0gc0g 17408   Σg cgsu 17409  Mndcmnd 18667  Grpcgrp 18871  .gcmg 19005  CMndccmn 19716  mulGrpcmgp 20055  Ringcrg 20148  CRingccrg 20149  SubRingcsubrg 20484  RingSpancrgspn 20525  𝟭cind 32779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152  ax-addf 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-sup 9399  df-oi 9469  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-rp 12958  df-fz 13475  df-fzo 13622  df-seq 13973  df-exp 14033  df-hash 14302  df-word 14485  df-concat 14542  df-s1 14567  df-substr 14612  df-pfx 14642  df-s2 14820  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-clim 15460  df-sum 15659  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-0g 17410  df-gsum 17411  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-grp 18874  df-minusg 18875  df-mulg 19006  df-subg 19061  df-ghm 19151  df-cntz 19255  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-cring 20151  df-oppr 20252  df-subrng 20461  df-subrg 20485  df-rgspn 20526  df-cnfld 21271  df-zring 21363  df-ind 32780
This theorem is referenced by:  elrgspnsubrun  33206
  Copyright terms: Public domain W3C validator