Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspnsubrunlem1 Structured version   Visualization version   GIF version

Theorem elrgspnsubrunlem1 33206
Description: Lemma for elrgspnsubrun 33208, first direction. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
elrgspnsubrun.b 𝐵 = (Base‘𝑅)
elrgspnsubrun.t · = (.r𝑅)
elrgspnsubrun.z 0 = (0g𝑅)
elrgspnsubrun.n 𝑁 = (RingSpan‘𝑅)
elrgspnsubrun.r (𝜑𝑅 ∈ CRing)
elrgspnsubrun.e (𝜑𝐸 ∈ (SubRing‘𝑅))
elrgspnsubrun.f (𝜑𝐹 ∈ (SubRing‘𝑅))
elrgspnsubrunlem1.p1 (𝜑𝑃:𝐹𝐸)
elrgspnsubrunlem1.p2 (𝜑𝑃 finSupp 0 )
elrgspnsubrunlem1.x (𝜑𝑋 = (𝑅 Σg (𝑒𝐹 ↦ ((𝑃𝑒) · 𝑒))))
elrgspnsubrunlem1.t 𝑇 = ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩)
Assertion
Ref Expression
elrgspnsubrunlem1 (𝜑𝑋 ∈ (𝑁‘(𝐸𝐹)))
Distinct variable groups:   0 ,𝑒,𝑓   · ,𝑒,𝑓   𝐵,𝑒   𝑒,𝐸,𝑓   𝑒,𝐹,𝑓   𝑃,𝑒,𝑓   𝑅,𝑒,𝑓   𝑇,𝑒,𝑓   𝜑,𝑒,𝑓
Allowed substitution hints:   𝐵(𝑓)   𝑁(𝑒,𝑓)   𝑋(𝑒,𝑓)

Proof of Theorem elrgspnsubrunlem1
Dummy variables 𝑤 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6816 . . . . . . 7 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → (𝑔𝑤) = (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤))
21oveq1d 7356 . . . . . 6 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
32mpteq2dv 5180 . . . . 5 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))) = (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))
43oveq2d 7357 . . . 4 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
54eqeq2d 2742 . . 3 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → (𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) ↔ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))))
6 breq1 5089 . . . 4 ( = ((𝟭‘Word (𝐸𝐹))‘𝑇) → ( finSupp 0 ↔ ((𝟭‘Word (𝐸𝐹))‘𝑇) finSupp 0))
7 zex 12472 . . . . . 6 ℤ ∈ V
87a1i 11 . . . . 5 (𝜑 → ℤ ∈ V)
9 elrgspnsubrun.e . . . . . . 7 (𝜑𝐸 ∈ (SubRing‘𝑅))
10 elrgspnsubrun.f . . . . . . 7 (𝜑𝐹 ∈ (SubRing‘𝑅))
119, 10unexd 7682 . . . . . 6 (𝜑 → (𝐸𝐹) ∈ V)
12 wrdexg 14426 . . . . . 6 ((𝐸𝐹) ∈ V → Word (𝐸𝐹) ∈ V)
1311, 12syl 17 . . . . 5 (𝜑 → Word (𝐸𝐹) ∈ V)
14 elrgspnsubrunlem1.t . . . . . . . 8 𝑇 = ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩)
15 ssun1 4123 . . . . . . . . . . . 12 𝐸 ⊆ (𝐸𝐹)
16 elrgspnsubrunlem1.p1 . . . . . . . . . . . . . 14 (𝜑𝑃:𝐹𝐸)
1716adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → 𝑃:𝐹𝐸)
18 suppssdm 8102 . . . . . . . . . . . . . . 15 (𝑃 supp 0 ) ⊆ dom 𝑃
1918, 16fssdm 6665 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 supp 0 ) ⊆ 𝐹)
2019sselda 3929 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → 𝑓𝐹)
2117, 20ffvelcdmd 7013 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → (𝑃𝑓) ∈ 𝐸)
2215, 21sselid 3927 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → (𝑃𝑓) ∈ (𝐸𝐹))
23 ssun2 4124 . . . . . . . . . . . . 13 𝐹 ⊆ (𝐸𝐹)
2419, 23sstrdi 3942 . . . . . . . . . . . 12 (𝜑 → (𝑃 supp 0 ) ⊆ (𝐸𝐹))
2524sselda 3929 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → 𝑓 ∈ (𝐸𝐹))
2622, 25s2cld 14773 . . . . . . . . . 10 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → ⟨“(𝑃𝑓)𝑓”⟩ ∈ Word (𝐸𝐹))
2726ralrimiva 3124 . . . . . . . . 9 (𝜑 → ∀𝑓 ∈ (𝑃 supp 0 )⟨“(𝑃𝑓)𝑓”⟩ ∈ Word (𝐸𝐹))
28 eqid 2731 . . . . . . . . . 10 (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) = (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩)
2928rnmptss 7051 . . . . . . . . 9 (∀𝑓 ∈ (𝑃 supp 0 )⟨“(𝑃𝑓)𝑓”⟩ ∈ Word (𝐸𝐹) → ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ⊆ Word (𝐸𝐹))
3027, 29syl 17 . . . . . . . 8 (𝜑 → ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ⊆ Word (𝐸𝐹))
3114, 30eqsstrid 3968 . . . . . . 7 (𝜑𝑇 ⊆ Word (𝐸𝐹))
32 indf 32828 . . . . . . 7 ((Word (𝐸𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸𝐹)) → ((𝟭‘Word (𝐸𝐹))‘𝑇):Word (𝐸𝐹)⟶{0, 1})
3313, 31, 32syl2anc 584 . . . . . 6 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇):Word (𝐸𝐹)⟶{0, 1})
34 0zd 12475 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
35 1zzd 12498 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
3634, 35prssd 4769 . . . . . 6 (𝜑 → {0, 1} ⊆ ℤ)
3733, 36fssd 6663 . . . . 5 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇):Word (𝐸𝐹)⟶ℤ)
388, 13, 37elmapdd 8760 . . . 4 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇) ∈ (ℤ ↑m Word (𝐸𝐹)))
3933ffund 6650 . . . . 5 (𝜑 → Fun ((𝟭‘Word (𝐸𝐹))‘𝑇))
40 indsupp 32840 . . . . . . 7 ((Word (𝐸𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸𝐹)) → (((𝟭‘Word (𝐸𝐹))‘𝑇) supp 0) = 𝑇)
4113, 31, 40syl2anc 584 . . . . . 6 (𝜑 → (((𝟭‘Word (𝐸𝐹))‘𝑇) supp 0) = 𝑇)
42 elrgspnsubrunlem1.p2 . . . . . . . . 9 (𝜑𝑃 finSupp 0 )
4342fsuppimpd 9248 . . . . . . . 8 (𝜑 → (𝑃 supp 0 ) ∈ Fin)
44 mptfi 9230 . . . . . . . 8 ((𝑃 supp 0 ) ∈ Fin → (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ∈ Fin)
45 rnfi 9219 . . . . . . . 8 ((𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ∈ Fin → ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ∈ Fin)
4643, 44, 453syl 18 . . . . . . 7 (𝜑 → ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ∈ Fin)
4714, 46eqeltrid 2835 . . . . . 6 (𝜑𝑇 ∈ Fin)
4841, 47eqeltrd 2831 . . . . 5 (𝜑 → (((𝟭‘Word (𝐸𝐹))‘𝑇) supp 0) ∈ Fin)
4938, 34, 39, 48isfsuppd 9245 . . . 4 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇) finSupp 0)
506, 38, 49elrabd 3644 . . 3 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇) ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0})
51 elrgspnsubrun.b . . . . . 6 𝐵 = (Base‘𝑅)
52 elrgspnsubrun.z . . . . . 6 0 = (0g𝑅)
53 elrgspnsubrun.r . . . . . . . 8 (𝜑𝑅 ∈ CRing)
5453crngringd 20159 . . . . . . 7 (𝜑𝑅 ∈ Ring)
5554ringcmnd 20197 . . . . . 6 (𝜑𝑅 ∈ CMnd)
5616ffnd 6647 . . . . . . . . . 10 (𝜑𝑃 Fn 𝐹)
5756adantr 480 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑃 Fn 𝐹)
5810adantr 480 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝐹 ∈ (SubRing‘𝑅))
5952fvexi 6831 . . . . . . . . . 10 0 ∈ V
6059a1i 11 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 0 ∈ V)
61 simpr 484 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 )))
6257, 58, 60, 61fvdifsupp 8096 . . . . . . . 8 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → (𝑃𝑒) = 0 )
6362oveq1d 7356 . . . . . . 7 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → ((𝑃𝑒) · 𝑒) = ( 0 · 𝑒))
64 elrgspnsubrun.t . . . . . . . 8 · = (.r𝑅)
6554adantr 480 . . . . . . . 8 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑅 ∈ Ring)
6651subrgss 20482 . . . . . . . . . . 11 (𝐹 ∈ (SubRing‘𝑅) → 𝐹𝐵)
6710, 66syl 17 . . . . . . . . . 10 (𝜑𝐹𝐵)
6867ssdifssd 4092 . . . . . . . . 9 (𝜑 → (𝐹 ∖ (𝑃 supp 0 )) ⊆ 𝐵)
6968sselda 3929 . . . . . . . 8 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑒𝐵)
7051, 64, 52, 65, 69ringlzd 20208 . . . . . . 7 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → ( 0 · 𝑒) = 0 )
7163, 70eqtrd 2766 . . . . . 6 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → ((𝑃𝑒) · 𝑒) = 0 )
7254adantr 480 . . . . . . 7 ((𝜑𝑒𝐹) → 𝑅 ∈ Ring)
7351subrgss 20482 . . . . . . . . . 10 (𝐸 ∈ (SubRing‘𝑅) → 𝐸𝐵)
749, 73syl 17 . . . . . . . . 9 (𝜑𝐸𝐵)
7516, 74fssd 6663 . . . . . . . 8 (𝜑𝑃:𝐹𝐵)
7675ffvelcdmda 7012 . . . . . . 7 ((𝜑𝑒𝐹) → (𝑃𝑒) ∈ 𝐵)
7767sselda 3929 . . . . . . 7 ((𝜑𝑒𝐹) → 𝑒𝐵)
7851, 64, 72, 76, 77ringcld 20173 . . . . . 6 ((𝜑𝑒𝐹) → ((𝑃𝑒) · 𝑒) ∈ 𝐵)
7951, 52, 55, 10, 71, 43, 78, 19gsummptres2 33025 . . . . 5 (𝜑 → (𝑅 Σg (𝑒𝐹 ↦ ((𝑃𝑒) · 𝑒))) = (𝑅 Σg (𝑒 ∈ (𝑃 supp 0 ) ↦ ((𝑃𝑒) · 𝑒))))
80 nfcv 2894 . . . . . 6 𝑒((𝑃‘(𝑤‘1)) · (𝑤‘1))
81 fveq2 6817 . . . . . . 7 (𝑒 = (𝑤‘1) → (𝑃𝑒) = (𝑃‘(𝑤‘1)))
82 id 22 . . . . . . 7 (𝑒 = (𝑤‘1) → 𝑒 = (𝑤‘1))
8381, 82oveq12d 7359 . . . . . 6 (𝑒 = (𝑤‘1) → ((𝑃𝑒) · 𝑒) = ((𝑃‘(𝑤‘1)) · (𝑤‘1)))
84 ssidd 3953 . . . . . 6 (𝜑𝐵𝐵)
8519sselda 3929 . . . . . . 7 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → 𝑒𝐹)
8685, 78syldan 591 . . . . . 6 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ((𝑃𝑒) · 𝑒) ∈ 𝐵)
87 fveq1 6816 . . . . . . . . . 10 (𝑤 = ⟨“(𝑃𝑓)𝑓”⟩ → (𝑤‘1) = (⟨“(𝑃𝑓)𝑓”⟩‘1))
8887adantl 481 . . . . . . . . 9 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑤‘1) = (⟨“(𝑃𝑓)𝑓”⟩‘1))
89 s2fv1 14790 . . . . . . . . . 10 (𝑓 ∈ (𝑃 supp 0 ) → (⟨“(𝑃𝑓)𝑓”⟩‘1) = 𝑓)
9089ad2antlr 727 . . . . . . . . 9 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (⟨“(𝑃𝑓)𝑓”⟩‘1) = 𝑓)
9188, 90eqtrd 2766 . . . . . . . 8 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑤‘1) = 𝑓)
92 simplr 768 . . . . . . . 8 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑓 ∈ (𝑃 supp 0 ))
9391, 92eqeltrd 2831 . . . . . . 7 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑤‘1) ∈ (𝑃 supp 0 ))
9414eleq2i 2823 . . . . . . . . . 10 (𝑤𝑇𝑤 ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩))
9594biimpi 216 . . . . . . . . 9 (𝑤𝑇𝑤 ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩))
9695adantl 481 . . . . . . . 8 ((𝜑𝑤𝑇) → 𝑤 ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩))
9728, 96elrnmpt2d 5901 . . . . . . 7 ((𝜑𝑤𝑇) → ∃𝑓 ∈ (𝑃 supp 0 )𝑤 = ⟨“(𝑃𝑓)𝑓”⟩)
9893, 97r19.29a 3140 . . . . . 6 ((𝜑𝑤𝑇) → (𝑤‘1) ∈ (𝑃 supp 0 ))
99 fveq2 6817 . . . . . . . . . . 11 (𝑓 = 𝑒 → (𝑃𝑓) = (𝑃𝑒))
100 id 22 . . . . . . . . . . 11 (𝑓 = 𝑒𝑓 = 𝑒)
10199, 100s2eqd 14765 . . . . . . . . . 10 (𝑓 = 𝑒 → ⟨“(𝑃𝑓)𝑓”⟩ = ⟨“(𝑃𝑒)𝑒”⟩)
102101cbvmptv 5190 . . . . . . . . 9 (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) = (𝑒 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑒)𝑒”⟩)
103 simpr 484 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → 𝑒 ∈ (𝑃 supp 0 ))
10475adantr 480 . . . . . . . . . . 11 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → 𝑃:𝐹𝐵)
105104, 85ffvelcdmd 7013 . . . . . . . . . 10 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → (𝑃𝑒) ∈ 𝐵)
10619, 67sstrd 3940 . . . . . . . . . . 11 (𝜑 → (𝑃 supp 0 ) ⊆ 𝐵)
107106sselda 3929 . . . . . . . . . 10 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → 𝑒𝐵)
108105, 107s2cld 14773 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ⟨“(𝑃𝑒)𝑒”⟩ ∈ Word 𝐵)
109102, 103, 108elrnmpt1d 5899 . . . . . . . 8 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ⟨“(𝑃𝑒)𝑒”⟩ ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩))
110109, 14eleqtrrdi 2842 . . . . . . 7 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ⟨“(𝑃𝑒)𝑒”⟩ ∈ 𝑇)
111 simpr 484 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩)
11282ad3antlr 731 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑒 = (𝑤‘1))
113111fveq1d 6819 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑤‘1) = (⟨“(𝑃𝑓)𝑓”⟩‘1))
11489ad2antlr 727 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (⟨“(𝑃𝑓)𝑓”⟩‘1) = 𝑓)
115112, 113, 1143eqtrrd 2771 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑓 = 𝑒)
116115fveq2d 6821 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑃𝑓) = (𝑃𝑒))
117116, 115s2eqd 14765 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ⟨“(𝑃𝑓)𝑓”⟩ = ⟨“(𝑃𝑒)𝑒”⟩)
118111, 117eqtrd 2766 . . . . . . . . 9 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩)
11997ad4ant13 751 . . . . . . . . 9 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) → ∃𝑓 ∈ (𝑃 supp 0 )𝑤 = ⟨“(𝑃𝑓)𝑓”⟩)
120118, 119r19.29a 3140 . . . . . . . 8 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) → 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩)
121 simpr 484 . . . . . . . . . 10 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩) → 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩)
122121fveq1d 6819 . . . . . . . . 9 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩) → (𝑤‘1) = (⟨“(𝑃𝑒)𝑒”⟩‘1))
123 s2fv1 14790 . . . . . . . . . 10 (𝑒 ∈ (𝑃 supp 0 ) → (⟨“(𝑃𝑒)𝑒”⟩‘1) = 𝑒)
124123ad3antlr 731 . . . . . . . . 9 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩) → (⟨“(𝑃𝑒)𝑒”⟩‘1) = 𝑒)
125122, 124eqtr2d 2767 . . . . . . . 8 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩) → 𝑒 = (𝑤‘1))
126120, 125impbida 800 . . . . . . 7 (((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) → (𝑒 = (𝑤‘1) ↔ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩))
127110, 126reu6dv 32444 . . . . . 6 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ∃!𝑤𝑇 𝑒 = (𝑤‘1))
12880, 51, 52, 83, 55, 43, 84, 86, 98, 127gsummptf1o 19870 . . . . 5 (𝜑 → (𝑅 Σg (𝑒 ∈ (𝑃 supp 0 ) ↦ ((𝑃𝑒) · 𝑒))) = (𝑅 Σg (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1)))))
12979, 128eqtrd 2766 . . . 4 (𝜑 → (𝑅 Σg (𝑒𝐹 ↦ ((𝑃𝑒) · 𝑒))) = (𝑅 Σg (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1)))))
130 elrgspnsubrunlem1.x . . . 4 (𝜑𝑋 = (𝑅 Σg (𝑒𝐹 ↦ ((𝑃𝑒) · 𝑒))))
13113adantr 480 . . . . . . . . 9 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → Word (𝐸𝐹) ∈ V)
13231adantr 480 . . . . . . . . 9 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → 𝑇 ⊆ Word (𝐸𝐹))
133 simpr 484 . . . . . . . . 9 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → 𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇))
134 ind0 32831 . . . . . . . . 9 ((Word (𝐸𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸𝐹) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) = 0)
135131, 132, 133, 134syl3anc 1373 . . . . . . . 8 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) = 0)
136135oveq1d 7356 . . . . . . 7 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
137 eqid 2731 . . . . . . . . . . . 12 (mulGrp‘𝑅) = (mulGrp‘𝑅)
138137crngmgp 20154 . . . . . . . . . . 11 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
13953, 138syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
140139cmnmndd 19711 . . . . . . . . 9 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
14174, 67unssd 4137 . . . . . . . . . . . 12 (𝜑 → (𝐸𝐹) ⊆ 𝐵)
142 sswrd 14424 . . . . . . . . . . . 12 ((𝐸𝐹) ⊆ 𝐵 → Word (𝐸𝐹) ⊆ Word 𝐵)
143141, 142syl 17 . . . . . . . . . . 11 (𝜑 → Word (𝐸𝐹) ⊆ Word 𝐵)
144143ssdifssd 4092 . . . . . . . . . 10 (𝜑 → (Word (𝐸𝐹) ∖ 𝑇) ⊆ Word 𝐵)
145144sselda 3929 . . . . . . . . 9 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → 𝑤 ∈ Word 𝐵)
146137, 51mgpbas 20058 . . . . . . . . . 10 𝐵 = (Base‘(mulGrp‘𝑅))
147146gsumwcl 18742 . . . . . . . . 9 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑤 ∈ Word 𝐵) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
148140, 145, 147syl2an2r 685 . . . . . . . 8 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
149 eqid 2731 . . . . . . . . 9 (.g𝑅) = (.g𝑅)
15051, 52, 149mulg0 18982 . . . . . . . 8 (((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵 → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
151148, 150syl 17 . . . . . . 7 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
152136, 151eqtrd 2766 . . . . . 6 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
15353crnggrpd 20160 . . . . . . . 8 (𝜑𝑅 ∈ Grp)
154153adantr 480 . . . . . . 7 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝑅 ∈ Grp)
15537ffvelcdmda 7012 . . . . . . 7 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) ∈ ℤ)
156143sselda 3929 . . . . . . . 8 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝑤 ∈ Word 𝐵)
157140, 156, 147syl2an2r 685 . . . . . . 7 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
15851, 149, 154, 155, 157mulgcld 19004 . . . . . 6 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵)
15951, 52, 55, 13, 152, 47, 158, 31gsummptres2 33025 . . . . 5 (𝜑 → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤𝑇 ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
16031, 143sstrd 3940 . . . . . . . . . . 11 (𝜑𝑇 ⊆ Word 𝐵)
161160sselda 3929 . . . . . . . . . 10 ((𝜑𝑤𝑇) → 𝑤 ∈ Word 𝐵)
162140, 161, 147syl2an2r 685 . . . . . . . . 9 ((𝜑𝑤𝑇) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
16351, 149mulg1 18989 . . . . . . . . 9 (((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵 → (1(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = ((mulGrp‘𝑅) Σg 𝑤))
164162, 163syl 17 . . . . . . . 8 ((𝜑𝑤𝑇) → (1(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = ((mulGrp‘𝑅) Σg 𝑤))
16513adantr 480 . . . . . . . . . 10 ((𝜑𝑤𝑇) → Word (𝐸𝐹) ∈ V)
16631adantr 480 . . . . . . . . . 10 ((𝜑𝑤𝑇) → 𝑇 ⊆ Word (𝐸𝐹))
167 simpr 484 . . . . . . . . . 10 ((𝜑𝑤𝑇) → 𝑤𝑇)
168 ind1 32830 . . . . . . . . . 10 ((Word (𝐸𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸𝐹) ∧ 𝑤𝑇) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) = 1)
169165, 166, 167, 168syl3anc 1373 . . . . . . . . 9 ((𝜑𝑤𝑇) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) = 1)
170169oveq1d 7356 . . . . . . . 8 ((𝜑𝑤𝑇) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = (1(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
171140ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (mulGrp‘𝑅) ∈ Mnd)
17275ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑃:𝐹𝐵)
17320ad4ant13 751 . . . . . . . . . . . 12 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑓𝐹)
174172, 173ffvelcdmd 7013 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑃𝑓) ∈ 𝐵)
175106ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑃 supp 0 ) ⊆ 𝐵)
176175, 92sseldd 3930 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑓𝐵)
177137, 64mgpplusg 20057 . . . . . . . . . . . 12 · = (+g‘(mulGrp‘𝑅))
178146, 177gsumws2 18745 . . . . . . . . . . 11 (((mulGrp‘𝑅) ∈ Mnd ∧ (𝑃𝑓) ∈ 𝐵𝑓𝐵) → ((mulGrp‘𝑅) Σg ⟨“(𝑃𝑓)𝑓”⟩) = ((𝑃𝑓) · 𝑓))
179171, 174, 176, 178syl3anc 1373 . . . . . . . . . 10 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ((mulGrp‘𝑅) Σg ⟨“(𝑃𝑓)𝑓”⟩) = ((𝑃𝑓) · 𝑓))
180 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩)
181180oveq2d 7357 . . . . . . . . . 10 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ((mulGrp‘𝑅) Σg 𝑤) = ((mulGrp‘𝑅) Σg ⟨“(𝑃𝑓)𝑓”⟩))
18291fveq2d 6821 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑃‘(𝑤‘1)) = (𝑃𝑓))
183182, 91oveq12d 7359 . . . . . . . . . 10 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ((𝑃‘(𝑤‘1)) · (𝑤‘1)) = ((𝑃𝑓) · 𝑓))
184179, 181, 1833eqtr4rd 2777 . . . . . . . . 9 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ((𝑃‘(𝑤‘1)) · (𝑤‘1)) = ((mulGrp‘𝑅) Σg 𝑤))
185184, 97r19.29a 3140 . . . . . . . 8 ((𝜑𝑤𝑇) → ((𝑃‘(𝑤‘1)) · (𝑤‘1)) = ((mulGrp‘𝑅) Σg 𝑤))
186164, 170, 1853eqtr4d 2776 . . . . . . 7 ((𝜑𝑤𝑇) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = ((𝑃‘(𝑤‘1)) · (𝑤‘1)))
187186mpteq2dva 5179 . . . . . 6 (𝜑 → (𝑤𝑇 ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))) = (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1))))
188187oveq2d 7357 . . . . 5 (𝜑 → (𝑅 Σg (𝑤𝑇 ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1)))))
189159, 188eqtrd 2766 . . . 4 (𝜑 → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1)))))
190129, 130, 1893eqtr4d 2776 . . 3 (𝜑𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
1915, 50, 190rspcedvdw 3575 . 2 (𝜑 → ∃𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
192 elrgspnsubrun.n . . 3 𝑁 = (RingSpan‘𝑅)
193 breq1 5089 . . . 4 ( = 𝑖 → ( finSupp 0 ↔ 𝑖 finSupp 0))
194193cbvrabv 3405 . . 3 { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0} = {𝑖 ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ 𝑖 finSupp 0}
19551, 137, 149, 192, 194, 54, 141elrgspn 33205 . 2 (𝜑 → (𝑋 ∈ (𝑁‘(𝐸𝐹)) ↔ ∃𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))))
196191, 195mpbird 257 1 (𝜑𝑋 ∈ (𝑁‘(𝐸𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cdif 3894  cun 3895  wss 3897  {cpr 4573   class class class wbr 5086  cmpt 5167  ran crn 5612   Fn wfn 6471  wf 6472  cfv 6476  (class class class)co 7341   supp csupp 8085  m cmap 8745  Fincfn 8864   finSupp cfsupp 9240  0cc0 11001  1c1 11002  cz 12463  Word cword 14415  ⟨“cs2 14743  Basecbs 17115  .rcmulr 17157  0gc0g 17338   Σg cgsu 17339  Mndcmnd 18637  Grpcgrp 18841  .gcmg 18975  CMndccmn 19687  mulGrpcmgp 20053  Ringcrg 20146  CRingccrg 20147  SubRingcsubrg 20479  RingSpancrgspn 20520  𝟭cind 32823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-rp 12886  df-fz 13403  df-fzo 13550  df-seq 13904  df-exp 13964  df-hash 14233  df-word 14416  df-concat 14473  df-s1 14499  df-substr 14544  df-pfx 14574  df-s2 14750  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-sum 15589  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-0g 17340  df-gsum 17341  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-mulg 18976  df-subg 19031  df-ghm 19120  df-cntz 19224  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-cring 20149  df-oppr 20250  df-subrng 20456  df-subrg 20480  df-rgspn 20521  df-cnfld 21287  df-zring 21379  df-ind 32824
This theorem is referenced by:  elrgspnsubrun  33208
  Copyright terms: Public domain W3C validator