Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspnsubrunlem1 Structured version   Visualization version   GIF version

Theorem elrgspnsubrunlem1 33195
Description: Lemma for elrgspnsubrun 33197, first direction. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
elrgspnsubrun.b 𝐵 = (Base‘𝑅)
elrgspnsubrun.t · = (.r𝑅)
elrgspnsubrun.z 0 = (0g𝑅)
elrgspnsubrun.n 𝑁 = (RingSpan‘𝑅)
elrgspnsubrun.r (𝜑𝑅 ∈ CRing)
elrgspnsubrun.e (𝜑𝐸 ∈ (SubRing‘𝑅))
elrgspnsubrun.f (𝜑𝐹 ∈ (SubRing‘𝑅))
elrgspnsubrunlem1.p1 (𝜑𝑃:𝐹𝐸)
elrgspnsubrunlem1.p2 (𝜑𝑃 finSupp 0 )
elrgspnsubrunlem1.x (𝜑𝑋 = (𝑅 Σg (𝑒𝐹 ↦ ((𝑃𝑒) · 𝑒))))
elrgspnsubrunlem1.t 𝑇 = ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩)
Assertion
Ref Expression
elrgspnsubrunlem1 (𝜑𝑋 ∈ (𝑁‘(𝐸𝐹)))
Distinct variable groups:   0 ,𝑒,𝑓   · ,𝑒,𝑓   𝐵,𝑒   𝑒,𝐸,𝑓   𝑒,𝐹,𝑓   𝑃,𝑒,𝑓   𝑅,𝑒,𝑓   𝑇,𝑒,𝑓   𝜑,𝑒,𝑓
Allowed substitution hints:   𝐵(𝑓)   𝑁(𝑒,𝑓)   𝑋(𝑒,𝑓)

Proof of Theorem elrgspnsubrunlem1
Dummy variables 𝑤 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6885 . . . . . . 7 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → (𝑔𝑤) = (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤))
21oveq1d 7428 . . . . . 6 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
32mpteq2dv 5224 . . . . 5 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))) = (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))
43oveq2d 7429 . . . 4 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
54eqeq2d 2745 . . 3 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → (𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) ↔ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))))
6 breq1 5126 . . . 4 ( = ((𝟭‘Word (𝐸𝐹))‘𝑇) → ( finSupp 0 ↔ ((𝟭‘Word (𝐸𝐹))‘𝑇) finSupp 0))
7 zex 12605 . . . . . 6 ℤ ∈ V
87a1i 11 . . . . 5 (𝜑 → ℤ ∈ V)
9 elrgspnsubrun.e . . . . . . 7 (𝜑𝐸 ∈ (SubRing‘𝑅))
10 elrgspnsubrun.f . . . . . . 7 (𝜑𝐹 ∈ (SubRing‘𝑅))
119, 10unexd 7756 . . . . . 6 (𝜑 → (𝐸𝐹) ∈ V)
12 wrdexg 14545 . . . . . 6 ((𝐸𝐹) ∈ V → Word (𝐸𝐹) ∈ V)
1311, 12syl 17 . . . . 5 (𝜑 → Word (𝐸𝐹) ∈ V)
14 elrgspnsubrunlem1.t . . . . . . . 8 𝑇 = ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩)
15 ssun1 4158 . . . . . . . . . . . 12 𝐸 ⊆ (𝐸𝐹)
16 elrgspnsubrunlem1.p1 . . . . . . . . . . . . . 14 (𝜑𝑃:𝐹𝐸)
1716adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → 𝑃:𝐹𝐸)
18 suppssdm 8184 . . . . . . . . . . . . . . 15 (𝑃 supp 0 ) ⊆ dom 𝑃
1918, 16fssdm 6735 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 supp 0 ) ⊆ 𝐹)
2019sselda 3963 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → 𝑓𝐹)
2117, 20ffvelcdmd 7085 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → (𝑃𝑓) ∈ 𝐸)
2215, 21sselid 3961 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → (𝑃𝑓) ∈ (𝐸𝐹))
23 ssun2 4159 . . . . . . . . . . . . 13 𝐹 ⊆ (𝐸𝐹)
2419, 23sstrdi 3976 . . . . . . . . . . . 12 (𝜑 → (𝑃 supp 0 ) ⊆ (𝐸𝐹))
2524sselda 3963 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → 𝑓 ∈ (𝐸𝐹))
2622, 25s2cld 14893 . . . . . . . . . 10 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → ⟨“(𝑃𝑓)𝑓”⟩ ∈ Word (𝐸𝐹))
2726ralrimiva 3133 . . . . . . . . 9 (𝜑 → ∀𝑓 ∈ (𝑃 supp 0 )⟨“(𝑃𝑓)𝑓”⟩ ∈ Word (𝐸𝐹))
28 eqid 2734 . . . . . . . . . 10 (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) = (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩)
2928rnmptss 7123 . . . . . . . . 9 (∀𝑓 ∈ (𝑃 supp 0 )⟨“(𝑃𝑓)𝑓”⟩ ∈ Word (𝐸𝐹) → ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ⊆ Word (𝐸𝐹))
3027, 29syl 17 . . . . . . . 8 (𝜑 → ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ⊆ Word (𝐸𝐹))
3114, 30eqsstrid 4002 . . . . . . 7 (𝜑𝑇 ⊆ Word (𝐸𝐹))
32 indf 32785 . . . . . . 7 ((Word (𝐸𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸𝐹)) → ((𝟭‘Word (𝐸𝐹))‘𝑇):Word (𝐸𝐹)⟶{0, 1})
3313, 31, 32syl2anc 584 . . . . . 6 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇):Word (𝐸𝐹)⟶{0, 1})
34 0zd 12608 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
35 1zzd 12631 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
3634, 35prssd 4802 . . . . . 6 (𝜑 → {0, 1} ⊆ ℤ)
3733, 36fssd 6733 . . . . 5 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇):Word (𝐸𝐹)⟶ℤ)
388, 13, 37elmapdd 8863 . . . 4 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇) ∈ (ℤ ↑m Word (𝐸𝐹)))
3933ffund 6720 . . . . 5 (𝜑 → Fun ((𝟭‘Word (𝐸𝐹))‘𝑇))
40 indsupp 32797 . . . . . . 7 ((Word (𝐸𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸𝐹)) → (((𝟭‘Word (𝐸𝐹))‘𝑇) supp 0) = 𝑇)
4113, 31, 40syl2anc 584 . . . . . 6 (𝜑 → (((𝟭‘Word (𝐸𝐹))‘𝑇) supp 0) = 𝑇)
42 elrgspnsubrunlem1.p2 . . . . . . . . 9 (𝜑𝑃 finSupp 0 )
4342fsuppimpd 9391 . . . . . . . 8 (𝜑 → (𝑃 supp 0 ) ∈ Fin)
44 mptfi 9373 . . . . . . . 8 ((𝑃 supp 0 ) ∈ Fin → (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ∈ Fin)
45 rnfi 9362 . . . . . . . 8 ((𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ∈ Fin → ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ∈ Fin)
4643, 44, 453syl 18 . . . . . . 7 (𝜑 → ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ∈ Fin)
4714, 46eqeltrid 2837 . . . . . 6 (𝜑𝑇 ∈ Fin)
4841, 47eqeltrd 2833 . . . . 5 (𝜑 → (((𝟭‘Word (𝐸𝐹))‘𝑇) supp 0) ∈ Fin)
4938, 34, 39, 48isfsuppd 9388 . . . 4 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇) finSupp 0)
506, 38, 49elrabd 3677 . . 3 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇) ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0})
51 elrgspnsubrun.b . . . . . 6 𝐵 = (Base‘𝑅)
52 elrgspnsubrun.z . . . . . 6 0 = (0g𝑅)
53 elrgspnsubrun.r . . . . . . . 8 (𝜑𝑅 ∈ CRing)
5453crngringd 20212 . . . . . . 7 (𝜑𝑅 ∈ Ring)
5554ringcmnd 20250 . . . . . 6 (𝜑𝑅 ∈ CMnd)
5616ffnd 6717 . . . . . . . . . 10 (𝜑𝑃 Fn 𝐹)
5756adantr 480 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑃 Fn 𝐹)
5810adantr 480 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝐹 ∈ (SubRing‘𝑅))
5952fvexi 6900 . . . . . . . . . 10 0 ∈ V
6059a1i 11 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 0 ∈ V)
61 simpr 484 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 )))
6257, 58, 60, 61fvdifsupp 8178 . . . . . . . 8 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → (𝑃𝑒) = 0 )
6362oveq1d 7428 . . . . . . 7 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → ((𝑃𝑒) · 𝑒) = ( 0 · 𝑒))
64 elrgspnsubrun.t . . . . . . . 8 · = (.r𝑅)
6554adantr 480 . . . . . . . 8 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑅 ∈ Ring)
6651subrgss 20541 . . . . . . . . . . 11 (𝐹 ∈ (SubRing‘𝑅) → 𝐹𝐵)
6710, 66syl 17 . . . . . . . . . 10 (𝜑𝐹𝐵)
6867ssdifssd 4127 . . . . . . . . 9 (𝜑 → (𝐹 ∖ (𝑃 supp 0 )) ⊆ 𝐵)
6968sselda 3963 . . . . . . . 8 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑒𝐵)
7051, 64, 52, 65, 69ringlzd 20261 . . . . . . 7 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → ( 0 · 𝑒) = 0 )
7163, 70eqtrd 2769 . . . . . 6 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → ((𝑃𝑒) · 𝑒) = 0 )
7254adantr 480 . . . . . . 7 ((𝜑𝑒𝐹) → 𝑅 ∈ Ring)
7351subrgss 20541 . . . . . . . . . 10 (𝐸 ∈ (SubRing‘𝑅) → 𝐸𝐵)
749, 73syl 17 . . . . . . . . 9 (𝜑𝐸𝐵)
7516, 74fssd 6733 . . . . . . . 8 (𝜑𝑃:𝐹𝐵)
7675ffvelcdmda 7084 . . . . . . 7 ((𝜑𝑒𝐹) → (𝑃𝑒) ∈ 𝐵)
7767sselda 3963 . . . . . . 7 ((𝜑𝑒𝐹) → 𝑒𝐵)
7851, 64, 72, 76, 77ringcld 20226 . . . . . 6 ((𝜑𝑒𝐹) → ((𝑃𝑒) · 𝑒) ∈ 𝐵)
7951, 52, 55, 10, 71, 43, 78, 19gsummptres2 33000 . . . . 5 (𝜑 → (𝑅 Σg (𝑒𝐹 ↦ ((𝑃𝑒) · 𝑒))) = (𝑅 Σg (𝑒 ∈ (𝑃 supp 0 ) ↦ ((𝑃𝑒) · 𝑒))))
80 nfcv 2897 . . . . . 6 𝑒((𝑃‘(𝑤‘1)) · (𝑤‘1))
81 fveq2 6886 . . . . . . 7 (𝑒 = (𝑤‘1) → (𝑃𝑒) = (𝑃‘(𝑤‘1)))
82 id 22 . . . . . . 7 (𝑒 = (𝑤‘1) → 𝑒 = (𝑤‘1))
8381, 82oveq12d 7431 . . . . . 6 (𝑒 = (𝑤‘1) → ((𝑃𝑒) · 𝑒) = ((𝑃‘(𝑤‘1)) · (𝑤‘1)))
84 ssidd 3987 . . . . . 6 (𝜑𝐵𝐵)
8519sselda 3963 . . . . . . 7 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → 𝑒𝐹)
8685, 78syldan 591 . . . . . 6 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ((𝑃𝑒) · 𝑒) ∈ 𝐵)
87 fveq1 6885 . . . . . . . . . 10 (𝑤 = ⟨“(𝑃𝑓)𝑓”⟩ → (𝑤‘1) = (⟨“(𝑃𝑓)𝑓”⟩‘1))
8887adantl 481 . . . . . . . . 9 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑤‘1) = (⟨“(𝑃𝑓)𝑓”⟩‘1))
89 s2fv1 14910 . . . . . . . . . 10 (𝑓 ∈ (𝑃 supp 0 ) → (⟨“(𝑃𝑓)𝑓”⟩‘1) = 𝑓)
9089ad2antlr 727 . . . . . . . . 9 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (⟨“(𝑃𝑓)𝑓”⟩‘1) = 𝑓)
9188, 90eqtrd 2769 . . . . . . . 8 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑤‘1) = 𝑓)
92 simplr 768 . . . . . . . 8 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑓 ∈ (𝑃 supp 0 ))
9391, 92eqeltrd 2833 . . . . . . 7 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑤‘1) ∈ (𝑃 supp 0 ))
9414eleq2i 2825 . . . . . . . . . 10 (𝑤𝑇𝑤 ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩))
9594biimpi 216 . . . . . . . . 9 (𝑤𝑇𝑤 ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩))
9695adantl 481 . . . . . . . 8 ((𝜑𝑤𝑇) → 𝑤 ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩))
9728, 96elrnmpt2d 5957 . . . . . . 7 ((𝜑𝑤𝑇) → ∃𝑓 ∈ (𝑃 supp 0 )𝑤 = ⟨“(𝑃𝑓)𝑓”⟩)
9893, 97r19.29a 3149 . . . . . 6 ((𝜑𝑤𝑇) → (𝑤‘1) ∈ (𝑃 supp 0 ))
99 fveq2 6886 . . . . . . . . . . 11 (𝑓 = 𝑒 → (𝑃𝑓) = (𝑃𝑒))
100 id 22 . . . . . . . . . . 11 (𝑓 = 𝑒𝑓 = 𝑒)
10199, 100s2eqd 14885 . . . . . . . . . 10 (𝑓 = 𝑒 → ⟨“(𝑃𝑓)𝑓”⟩ = ⟨“(𝑃𝑒)𝑒”⟩)
102101cbvmptv 5235 . . . . . . . . 9 (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) = (𝑒 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑒)𝑒”⟩)
103 simpr 484 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → 𝑒 ∈ (𝑃 supp 0 ))
10475adantr 480 . . . . . . . . . . 11 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → 𝑃:𝐹𝐵)
105104, 85ffvelcdmd 7085 . . . . . . . . . 10 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → (𝑃𝑒) ∈ 𝐵)
10619, 67sstrd 3974 . . . . . . . . . . 11 (𝜑 → (𝑃 supp 0 ) ⊆ 𝐵)
107106sselda 3963 . . . . . . . . . 10 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → 𝑒𝐵)
108105, 107s2cld 14893 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ⟨“(𝑃𝑒)𝑒”⟩ ∈ Word 𝐵)
109102, 103, 108elrnmpt1d 5955 . . . . . . . 8 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ⟨“(𝑃𝑒)𝑒”⟩ ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩))
110109, 14eleqtrrdi 2844 . . . . . . 7 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ⟨“(𝑃𝑒)𝑒”⟩ ∈ 𝑇)
111 simpr 484 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩)
11282ad3antlr 731 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑒 = (𝑤‘1))
113111fveq1d 6888 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑤‘1) = (⟨“(𝑃𝑓)𝑓”⟩‘1))
11489ad2antlr 727 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (⟨“(𝑃𝑓)𝑓”⟩‘1) = 𝑓)
115112, 113, 1143eqtrrd 2774 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑓 = 𝑒)
116115fveq2d 6890 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑃𝑓) = (𝑃𝑒))
117116, 115s2eqd 14885 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ⟨“(𝑃𝑓)𝑓”⟩ = ⟨“(𝑃𝑒)𝑒”⟩)
118111, 117eqtrd 2769 . . . . . . . . 9 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩)
11997ad4ant13 751 . . . . . . . . 9 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) → ∃𝑓 ∈ (𝑃 supp 0 )𝑤 = ⟨“(𝑃𝑓)𝑓”⟩)
120118, 119r19.29a 3149 . . . . . . . 8 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) → 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩)
121 simpr 484 . . . . . . . . . 10 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩) → 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩)
122121fveq1d 6888 . . . . . . . . 9 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩) → (𝑤‘1) = (⟨“(𝑃𝑒)𝑒”⟩‘1))
123 s2fv1 14910 . . . . . . . . . 10 (𝑒 ∈ (𝑃 supp 0 ) → (⟨“(𝑃𝑒)𝑒”⟩‘1) = 𝑒)
124123ad3antlr 731 . . . . . . . . 9 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩) → (⟨“(𝑃𝑒)𝑒”⟩‘1) = 𝑒)
125122, 124eqtr2d 2770 . . . . . . . 8 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩) → 𝑒 = (𝑤‘1))
126120, 125impbida 800 . . . . . . 7 (((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) → (𝑒 = (𝑤‘1) ↔ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩))
127110, 126reu6dv 32421 . . . . . 6 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ∃!𝑤𝑇 𝑒 = (𝑤‘1))
12880, 51, 52, 83, 55, 43, 84, 86, 98, 127gsummptf1o 19950 . . . . 5 (𝜑 → (𝑅 Σg (𝑒 ∈ (𝑃 supp 0 ) ↦ ((𝑃𝑒) · 𝑒))) = (𝑅 Σg (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1)))))
12979, 128eqtrd 2769 . . . 4 (𝜑 → (𝑅 Σg (𝑒𝐹 ↦ ((𝑃𝑒) · 𝑒))) = (𝑅 Σg (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1)))))
130 elrgspnsubrunlem1.x . . . 4 (𝜑𝑋 = (𝑅 Σg (𝑒𝐹 ↦ ((𝑃𝑒) · 𝑒))))
13113adantr 480 . . . . . . . . 9 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → Word (𝐸𝐹) ∈ V)
13231adantr 480 . . . . . . . . 9 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → 𝑇 ⊆ Word (𝐸𝐹))
133 simpr 484 . . . . . . . . 9 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → 𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇))
134 ind0 32788 . . . . . . . . 9 ((Word (𝐸𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸𝐹) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) = 0)
135131, 132, 133, 134syl3anc 1372 . . . . . . . 8 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) = 0)
136135oveq1d 7428 . . . . . . 7 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
137 eqid 2734 . . . . . . . . . . . 12 (mulGrp‘𝑅) = (mulGrp‘𝑅)
138137crngmgp 20207 . . . . . . . . . . 11 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
13953, 138syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
140139cmnmndd 19791 . . . . . . . . 9 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
14174, 67unssd 4172 . . . . . . . . . . . 12 (𝜑 → (𝐸𝐹) ⊆ 𝐵)
142 sswrd 14543 . . . . . . . . . . . 12 ((𝐸𝐹) ⊆ 𝐵 → Word (𝐸𝐹) ⊆ Word 𝐵)
143141, 142syl 17 . . . . . . . . . . 11 (𝜑 → Word (𝐸𝐹) ⊆ Word 𝐵)
144143ssdifssd 4127 . . . . . . . . . 10 (𝜑 → (Word (𝐸𝐹) ∖ 𝑇) ⊆ Word 𝐵)
145144sselda 3963 . . . . . . . . 9 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → 𝑤 ∈ Word 𝐵)
146137, 51mgpbas 20111 . . . . . . . . . 10 𝐵 = (Base‘(mulGrp‘𝑅))
147146gsumwcl 18822 . . . . . . . . 9 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑤 ∈ Word 𝐵) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
148140, 145, 147syl2an2r 685 . . . . . . . 8 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
149 eqid 2734 . . . . . . . . 9 (.g𝑅) = (.g𝑅)
15051, 52, 149mulg0 19062 . . . . . . . 8 (((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵 → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
151148, 150syl 17 . . . . . . 7 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
152136, 151eqtrd 2769 . . . . . 6 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
15353crnggrpd 20213 . . . . . . . 8 (𝜑𝑅 ∈ Grp)
154153adantr 480 . . . . . . 7 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝑅 ∈ Grp)
15537ffvelcdmda 7084 . . . . . . 7 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) ∈ ℤ)
156143sselda 3963 . . . . . . . 8 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝑤 ∈ Word 𝐵)
157140, 156, 147syl2an2r 685 . . . . . . 7 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
15851, 149, 154, 155, 157mulgcld 19084 . . . . . 6 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵)
15951, 52, 55, 13, 152, 47, 158, 31gsummptres2 33000 . . . . 5 (𝜑 → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤𝑇 ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
16031, 143sstrd 3974 . . . . . . . . . . 11 (𝜑𝑇 ⊆ Word 𝐵)
161160sselda 3963 . . . . . . . . . 10 ((𝜑𝑤𝑇) → 𝑤 ∈ Word 𝐵)
162140, 161, 147syl2an2r 685 . . . . . . . . 9 ((𝜑𝑤𝑇) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
16351, 149mulg1 19069 . . . . . . . . 9 (((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵 → (1(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = ((mulGrp‘𝑅) Σg 𝑤))
164162, 163syl 17 . . . . . . . 8 ((𝜑𝑤𝑇) → (1(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = ((mulGrp‘𝑅) Σg 𝑤))
16513adantr 480 . . . . . . . . . 10 ((𝜑𝑤𝑇) → Word (𝐸𝐹) ∈ V)
16631adantr 480 . . . . . . . . . 10 ((𝜑𝑤𝑇) → 𝑇 ⊆ Word (𝐸𝐹))
167 simpr 484 . . . . . . . . . 10 ((𝜑𝑤𝑇) → 𝑤𝑇)
168 ind1 32787 . . . . . . . . . 10 ((Word (𝐸𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸𝐹) ∧ 𝑤𝑇) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) = 1)
169165, 166, 167, 168syl3anc 1372 . . . . . . . . 9 ((𝜑𝑤𝑇) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) = 1)
170169oveq1d 7428 . . . . . . . 8 ((𝜑𝑤𝑇) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = (1(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
171140ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (mulGrp‘𝑅) ∈ Mnd)
17275ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑃:𝐹𝐵)
17320ad4ant13 751 . . . . . . . . . . . 12 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑓𝐹)
174172, 173ffvelcdmd 7085 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑃𝑓) ∈ 𝐵)
175106ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑃 supp 0 ) ⊆ 𝐵)
176175, 92sseldd 3964 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑓𝐵)
177137, 64mgpplusg 20110 . . . . . . . . . . . 12 · = (+g‘(mulGrp‘𝑅))
178146, 177gsumws2 18825 . . . . . . . . . . 11 (((mulGrp‘𝑅) ∈ Mnd ∧ (𝑃𝑓) ∈ 𝐵𝑓𝐵) → ((mulGrp‘𝑅) Σg ⟨“(𝑃𝑓)𝑓”⟩) = ((𝑃𝑓) · 𝑓))
179171, 174, 176, 178syl3anc 1372 . . . . . . . . . 10 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ((mulGrp‘𝑅) Σg ⟨“(𝑃𝑓)𝑓”⟩) = ((𝑃𝑓) · 𝑓))
180 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩)
181180oveq2d 7429 . . . . . . . . . 10 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ((mulGrp‘𝑅) Σg 𝑤) = ((mulGrp‘𝑅) Σg ⟨“(𝑃𝑓)𝑓”⟩))
18291fveq2d 6890 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑃‘(𝑤‘1)) = (𝑃𝑓))
183182, 91oveq12d 7431 . . . . . . . . . 10 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ((𝑃‘(𝑤‘1)) · (𝑤‘1)) = ((𝑃𝑓) · 𝑓))
184179, 181, 1833eqtr4rd 2780 . . . . . . . . 9 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ((𝑃‘(𝑤‘1)) · (𝑤‘1)) = ((mulGrp‘𝑅) Σg 𝑤))
185184, 97r19.29a 3149 . . . . . . . 8 ((𝜑𝑤𝑇) → ((𝑃‘(𝑤‘1)) · (𝑤‘1)) = ((mulGrp‘𝑅) Σg 𝑤))
186164, 170, 1853eqtr4d 2779 . . . . . . 7 ((𝜑𝑤𝑇) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = ((𝑃‘(𝑤‘1)) · (𝑤‘1)))
187186mpteq2dva 5222 . . . . . 6 (𝜑 → (𝑤𝑇 ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))) = (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1))))
188187oveq2d 7429 . . . . 5 (𝜑 → (𝑅 Σg (𝑤𝑇 ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1)))))
189159, 188eqtrd 2769 . . . 4 (𝜑 → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1)))))
190129, 130, 1893eqtr4d 2779 . . 3 (𝜑𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
1915, 50, 190rspcedvdw 3608 . 2 (𝜑 → ∃𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
192 elrgspnsubrun.n . . 3 𝑁 = (RingSpan‘𝑅)
193 breq1 5126 . . . 4 ( = 𝑖 → ( finSupp 0 ↔ 𝑖 finSupp 0))
194193cbvrabv 3430 . . 3 { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0} = {𝑖 ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ 𝑖 finSupp 0}
19551, 137, 149, 192, 194, 54, 141elrgspn 33194 . 2 (𝜑 → (𝑋 ∈ (𝑁‘(𝐸𝐹)) ↔ ∃𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))))
196191, 195mpbird 257 1 (𝜑𝑋 ∈ (𝑁‘(𝐸𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  wrex 3059  {crab 3419  Vcvv 3463  cdif 3928  cun 3929  wss 3931  {cpr 4608   class class class wbr 5123  cmpt 5205  ran crn 5666   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7413   supp csupp 8167  m cmap 8848  Fincfn 8967   finSupp cfsupp 9383  0cc0 11137  1c1 11138  cz 12596  Word cword 14535  ⟨“cs2 14863  Basecbs 17230  .rcmulr 17275  0gc0g 17456   Σg cgsu 17457  Mndcmnd 18717  Grpcgrp 18921  .gcmg 19055  CMndccmn 19767  mulGrpcmgp 20106  Ringcrg 20199  CRingccrg 20200  SubRingcsubrg 20538  RingSpancrgspn 20579  𝟭cind 32780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-sup 9464  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-rp 13017  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14353  df-word 14536  df-concat 14592  df-s1 14617  df-substr 14662  df-pfx 14692  df-s2 14870  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-sum 15706  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-starv 17289  df-tset 17293  df-ple 17294  df-ds 17296  df-unif 17297  df-0g 17458  df-gsum 17459  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19769  df-abl 19770  df-mgp 20107  df-rng 20119  df-ur 20148  df-ring 20201  df-cring 20202  df-oppr 20303  df-subrng 20515  df-subrg 20539  df-rgspn 20580  df-cnfld 21328  df-zring 21421  df-ind 32781
This theorem is referenced by:  elrgspnsubrun  33197
  Copyright terms: Public domain W3C validator