Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrgspnsubrunlem1 Structured version   Visualization version   GIF version

Theorem elrgspnsubrunlem1 33257
Description: Lemma for elrgspnsubrun 33259, first direction. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
elrgspnsubrun.b 𝐵 = (Base‘𝑅)
elrgspnsubrun.t · = (.r𝑅)
elrgspnsubrun.z 0 = (0g𝑅)
elrgspnsubrun.n 𝑁 = (RingSpan‘𝑅)
elrgspnsubrun.r (𝜑𝑅 ∈ CRing)
elrgspnsubrun.e (𝜑𝐸 ∈ (SubRing‘𝑅))
elrgspnsubrun.f (𝜑𝐹 ∈ (SubRing‘𝑅))
elrgspnsubrunlem1.p1 (𝜑𝑃:𝐹𝐸)
elrgspnsubrunlem1.p2 (𝜑𝑃 finSupp 0 )
elrgspnsubrunlem1.x (𝜑𝑋 = (𝑅 Σg (𝑒𝐹 ↦ ((𝑃𝑒) · 𝑒))))
elrgspnsubrunlem1.t 𝑇 = ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩)
Assertion
Ref Expression
elrgspnsubrunlem1 (𝜑𝑋 ∈ (𝑁‘(𝐸𝐹)))
Distinct variable groups:   0 ,𝑒,𝑓   · ,𝑒,𝑓   𝐵,𝑒   𝑒,𝐸,𝑓   𝑒,𝐹,𝑓   𝑃,𝑒,𝑓   𝑅,𝑒,𝑓   𝑇,𝑒,𝑓   𝜑,𝑒,𝑓
Allowed substitution hints:   𝐵(𝑓)   𝑁(𝑒,𝑓)   𝑋(𝑒,𝑓)

Proof of Theorem elrgspnsubrunlem1
Dummy variables 𝑤 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6830 . . . . . . 7 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → (𝑔𝑤) = (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤))
21oveq1d 7370 . . . . . 6 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
32mpteq2dv 5189 . . . . 5 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))) = (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))
43oveq2d 7371 . . . 4 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
54eqeq2d 2744 . . 3 (𝑔 = ((𝟭‘Word (𝐸𝐹))‘𝑇) → (𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) ↔ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))))
6 breq1 5098 . . . 4 ( = ((𝟭‘Word (𝐸𝐹))‘𝑇) → ( finSupp 0 ↔ ((𝟭‘Word (𝐸𝐹))‘𝑇) finSupp 0))
7 zex 12488 . . . . . 6 ℤ ∈ V
87a1i 11 . . . . 5 (𝜑 → ℤ ∈ V)
9 elrgspnsubrun.e . . . . . . 7 (𝜑𝐸 ∈ (SubRing‘𝑅))
10 elrgspnsubrun.f . . . . . . 7 (𝜑𝐹 ∈ (SubRing‘𝑅))
119, 10unexd 7696 . . . . . 6 (𝜑 → (𝐸𝐹) ∈ V)
12 wrdexg 14438 . . . . . 6 ((𝐸𝐹) ∈ V → Word (𝐸𝐹) ∈ V)
1311, 12syl 17 . . . . 5 (𝜑 → Word (𝐸𝐹) ∈ V)
14 elrgspnsubrunlem1.t . . . . . . . 8 𝑇 = ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩)
15 ssun1 4127 . . . . . . . . . . . 12 𝐸 ⊆ (𝐸𝐹)
16 elrgspnsubrunlem1.p1 . . . . . . . . . . . . . 14 (𝜑𝑃:𝐹𝐸)
1716adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → 𝑃:𝐹𝐸)
18 suppssdm 8116 . . . . . . . . . . . . . . 15 (𝑃 supp 0 ) ⊆ dom 𝑃
1918, 16fssdm 6678 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 supp 0 ) ⊆ 𝐹)
2019sselda 3930 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → 𝑓𝐹)
2117, 20ffvelcdmd 7027 . . . . . . . . . . . 12 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → (𝑃𝑓) ∈ 𝐸)
2215, 21sselid 3928 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → (𝑃𝑓) ∈ (𝐸𝐹))
23 ssun2 4128 . . . . . . . . . . . . 13 𝐹 ⊆ (𝐸𝐹)
2419, 23sstrdi 3943 . . . . . . . . . . . 12 (𝜑 → (𝑃 supp 0 ) ⊆ (𝐸𝐹))
2524sselda 3930 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → 𝑓 ∈ (𝐸𝐹))
2622, 25s2cld 14785 . . . . . . . . . 10 ((𝜑𝑓 ∈ (𝑃 supp 0 )) → ⟨“(𝑃𝑓)𝑓”⟩ ∈ Word (𝐸𝐹))
2726ralrimiva 3125 . . . . . . . . 9 (𝜑 → ∀𝑓 ∈ (𝑃 supp 0 )⟨“(𝑃𝑓)𝑓”⟩ ∈ Word (𝐸𝐹))
28 eqid 2733 . . . . . . . . . 10 (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) = (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩)
2928rnmptss 7065 . . . . . . . . 9 (∀𝑓 ∈ (𝑃 supp 0 )⟨“(𝑃𝑓)𝑓”⟩ ∈ Word (𝐸𝐹) → ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ⊆ Word (𝐸𝐹))
3027, 29syl 17 . . . . . . . 8 (𝜑 → ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ⊆ Word (𝐸𝐹))
3114, 30eqsstrid 3969 . . . . . . 7 (𝜑𝑇 ⊆ Word (𝐸𝐹))
32 indf 32862 . . . . . . 7 ((Word (𝐸𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸𝐹)) → ((𝟭‘Word (𝐸𝐹))‘𝑇):Word (𝐸𝐹)⟶{0, 1})
3313, 31, 32syl2anc 584 . . . . . 6 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇):Word (𝐸𝐹)⟶{0, 1})
34 0zd 12491 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
35 1zzd 12513 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
3634, 35prssd 4775 . . . . . 6 (𝜑 → {0, 1} ⊆ ℤ)
3733, 36fssd 6676 . . . . 5 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇):Word (𝐸𝐹)⟶ℤ)
388, 13, 37elmapdd 8774 . . . 4 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇) ∈ (ℤ ↑m Word (𝐸𝐹)))
3933ffund 6663 . . . . 5 (𝜑 → Fun ((𝟭‘Word (𝐸𝐹))‘𝑇))
40 indsupp 32877 . . . . . . 7 ((Word (𝐸𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸𝐹)) → (((𝟭‘Word (𝐸𝐹))‘𝑇) supp 0) = 𝑇)
4113, 31, 40syl2anc 584 . . . . . 6 (𝜑 → (((𝟭‘Word (𝐸𝐹))‘𝑇) supp 0) = 𝑇)
42 elrgspnsubrunlem1.p2 . . . . . . . . 9 (𝜑𝑃 finSupp 0 )
4342fsuppimpd 9264 . . . . . . . 8 (𝜑 → (𝑃 supp 0 ) ∈ Fin)
44 mptfi 9246 . . . . . . . 8 ((𝑃 supp 0 ) ∈ Fin → (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ∈ Fin)
45 rnfi 9235 . . . . . . . 8 ((𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ∈ Fin → ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ∈ Fin)
4643, 44, 453syl 18 . . . . . . 7 (𝜑 → ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) ∈ Fin)
4714, 46eqeltrid 2837 . . . . . 6 (𝜑𝑇 ∈ Fin)
4841, 47eqeltrd 2833 . . . . 5 (𝜑 → (((𝟭‘Word (𝐸𝐹))‘𝑇) supp 0) ∈ Fin)
4938, 34, 39, 48isfsuppd 9261 . . . 4 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇) finSupp 0)
506, 38, 49elrabd 3645 . . 3 (𝜑 → ((𝟭‘Word (𝐸𝐹))‘𝑇) ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0})
51 elrgspnsubrun.b . . . . . 6 𝐵 = (Base‘𝑅)
52 elrgspnsubrun.z . . . . . 6 0 = (0g𝑅)
53 elrgspnsubrun.r . . . . . . . 8 (𝜑𝑅 ∈ CRing)
5453crngringd 20172 . . . . . . 7 (𝜑𝑅 ∈ Ring)
5554ringcmnd 20210 . . . . . 6 (𝜑𝑅 ∈ CMnd)
5616ffnd 6660 . . . . . . . . . 10 (𝜑𝑃 Fn 𝐹)
5756adantr 480 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑃 Fn 𝐹)
5810adantr 480 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝐹 ∈ (SubRing‘𝑅))
5952fvexi 6845 . . . . . . . . . 10 0 ∈ V
6059a1i 11 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 0 ∈ V)
61 simpr 484 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 )))
6257, 58, 60, 61fvdifsupp 8110 . . . . . . . 8 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → (𝑃𝑒) = 0 )
6362oveq1d 7370 . . . . . . 7 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → ((𝑃𝑒) · 𝑒) = ( 0 · 𝑒))
64 elrgspnsubrun.t . . . . . . . 8 · = (.r𝑅)
6554adantr 480 . . . . . . . 8 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑅 ∈ Ring)
6651subrgss 20496 . . . . . . . . . . 11 (𝐹 ∈ (SubRing‘𝑅) → 𝐹𝐵)
6710, 66syl 17 . . . . . . . . . 10 (𝜑𝐹𝐵)
6867ssdifssd 4096 . . . . . . . . 9 (𝜑 → (𝐹 ∖ (𝑃 supp 0 )) ⊆ 𝐵)
6968sselda 3930 . . . . . . . 8 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑒𝐵)
7051, 64, 52, 65, 69ringlzd 20221 . . . . . . 7 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → ( 0 · 𝑒) = 0 )
7163, 70eqtrd 2768 . . . . . 6 ((𝜑𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → ((𝑃𝑒) · 𝑒) = 0 )
7254adantr 480 . . . . . . 7 ((𝜑𝑒𝐹) → 𝑅 ∈ Ring)
7351subrgss 20496 . . . . . . . . . 10 (𝐸 ∈ (SubRing‘𝑅) → 𝐸𝐵)
749, 73syl 17 . . . . . . . . 9 (𝜑𝐸𝐵)
7516, 74fssd 6676 . . . . . . . 8 (𝜑𝑃:𝐹𝐵)
7675ffvelcdmda 7026 . . . . . . 7 ((𝜑𝑒𝐹) → (𝑃𝑒) ∈ 𝐵)
7767sselda 3930 . . . . . . 7 ((𝜑𝑒𝐹) → 𝑒𝐵)
7851, 64, 72, 76, 77ringcld 20186 . . . . . 6 ((𝜑𝑒𝐹) → ((𝑃𝑒) · 𝑒) ∈ 𝐵)
7951, 52, 55, 10, 71, 43, 78, 19gsummptres2 33064 . . . . 5 (𝜑 → (𝑅 Σg (𝑒𝐹 ↦ ((𝑃𝑒) · 𝑒))) = (𝑅 Σg (𝑒 ∈ (𝑃 supp 0 ) ↦ ((𝑃𝑒) · 𝑒))))
80 nfcv 2895 . . . . . 6 𝑒((𝑃‘(𝑤‘1)) · (𝑤‘1))
81 fveq2 6831 . . . . . . 7 (𝑒 = (𝑤‘1) → (𝑃𝑒) = (𝑃‘(𝑤‘1)))
82 id 22 . . . . . . 7 (𝑒 = (𝑤‘1) → 𝑒 = (𝑤‘1))
8381, 82oveq12d 7373 . . . . . 6 (𝑒 = (𝑤‘1) → ((𝑃𝑒) · 𝑒) = ((𝑃‘(𝑤‘1)) · (𝑤‘1)))
84 ssidd 3954 . . . . . 6 (𝜑𝐵𝐵)
8519sselda 3930 . . . . . . 7 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → 𝑒𝐹)
8685, 78syldan 591 . . . . . 6 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ((𝑃𝑒) · 𝑒) ∈ 𝐵)
87 fveq1 6830 . . . . . . . . . 10 (𝑤 = ⟨“(𝑃𝑓)𝑓”⟩ → (𝑤‘1) = (⟨“(𝑃𝑓)𝑓”⟩‘1))
8887adantl 481 . . . . . . . . 9 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑤‘1) = (⟨“(𝑃𝑓)𝑓”⟩‘1))
89 s2fv1 14802 . . . . . . . . . 10 (𝑓 ∈ (𝑃 supp 0 ) → (⟨“(𝑃𝑓)𝑓”⟩‘1) = 𝑓)
9089ad2antlr 727 . . . . . . . . 9 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (⟨“(𝑃𝑓)𝑓”⟩‘1) = 𝑓)
9188, 90eqtrd 2768 . . . . . . . 8 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑤‘1) = 𝑓)
92 simplr 768 . . . . . . . 8 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑓 ∈ (𝑃 supp 0 ))
9391, 92eqeltrd 2833 . . . . . . 7 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑤‘1) ∈ (𝑃 supp 0 ))
9414eleq2i 2825 . . . . . . . . . 10 (𝑤𝑇𝑤 ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩))
9594biimpi 216 . . . . . . . . 9 (𝑤𝑇𝑤 ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩))
9695adantl 481 . . . . . . . 8 ((𝜑𝑤𝑇) → 𝑤 ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩))
9728, 96elrnmpt2d 5912 . . . . . . 7 ((𝜑𝑤𝑇) → ∃𝑓 ∈ (𝑃 supp 0 )𝑤 = ⟨“(𝑃𝑓)𝑓”⟩)
9893, 97r19.29a 3141 . . . . . 6 ((𝜑𝑤𝑇) → (𝑤‘1) ∈ (𝑃 supp 0 ))
99 fveq2 6831 . . . . . . . . . . 11 (𝑓 = 𝑒 → (𝑃𝑓) = (𝑃𝑒))
100 id 22 . . . . . . . . . . 11 (𝑓 = 𝑒𝑓 = 𝑒)
10199, 100s2eqd 14777 . . . . . . . . . 10 (𝑓 = 𝑒 → ⟨“(𝑃𝑓)𝑓”⟩ = ⟨“(𝑃𝑒)𝑒”⟩)
102101cbvmptv 5199 . . . . . . . . 9 (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩) = (𝑒 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑒)𝑒”⟩)
103 simpr 484 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → 𝑒 ∈ (𝑃 supp 0 ))
10475adantr 480 . . . . . . . . . . 11 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → 𝑃:𝐹𝐵)
105104, 85ffvelcdmd 7027 . . . . . . . . . 10 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → (𝑃𝑒) ∈ 𝐵)
10619, 67sstrd 3941 . . . . . . . . . . 11 (𝜑 → (𝑃 supp 0 ) ⊆ 𝐵)
107106sselda 3930 . . . . . . . . . 10 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → 𝑒𝐵)
108105, 107s2cld 14785 . . . . . . . . 9 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ⟨“(𝑃𝑒)𝑒”⟩ ∈ Word 𝐵)
109102, 103, 108elrnmpt1d 5910 . . . . . . . 8 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ⟨“(𝑃𝑒)𝑒”⟩ ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦ ⟨“(𝑃𝑓)𝑓”⟩))
110109, 14eleqtrrdi 2844 . . . . . . 7 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ⟨“(𝑃𝑒)𝑒”⟩ ∈ 𝑇)
111 simpr 484 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩)
11282ad3antlr 731 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑒 = (𝑤‘1))
113111fveq1d 6833 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑤‘1) = (⟨“(𝑃𝑓)𝑓”⟩‘1))
11489ad2antlr 727 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (⟨“(𝑃𝑓)𝑓”⟩‘1) = 𝑓)
115112, 113, 1143eqtrrd 2773 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑓 = 𝑒)
116115fveq2d 6835 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑃𝑓) = (𝑃𝑒))
117116, 115s2eqd 14777 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ⟨“(𝑃𝑓)𝑓”⟩ = ⟨“(𝑃𝑒)𝑒”⟩)
118111, 117eqtrd 2768 . . . . . . . . 9 ((((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩)
11997ad4ant13 751 . . . . . . . . 9 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) → ∃𝑓 ∈ (𝑃 supp 0 )𝑤 = ⟨“(𝑃𝑓)𝑓”⟩)
120118, 119r19.29a 3141 . . . . . . . 8 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑒 = (𝑤‘1)) → 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩)
121 simpr 484 . . . . . . . . . 10 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩) → 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩)
122121fveq1d 6833 . . . . . . . . 9 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩) → (𝑤‘1) = (⟨“(𝑃𝑒)𝑒”⟩‘1))
123 s2fv1 14802 . . . . . . . . . 10 (𝑒 ∈ (𝑃 supp 0 ) → (⟨“(𝑃𝑒)𝑒”⟩‘1) = 𝑒)
124123ad3antlr 731 . . . . . . . . 9 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩) → (⟨“(𝑃𝑒)𝑒”⟩‘1) = 𝑒)
125122, 124eqtr2d 2769 . . . . . . . 8 ((((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) ∧ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩) → 𝑒 = (𝑤‘1))
126120, 125impbida 800 . . . . . . 7 (((𝜑𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤𝑇) → (𝑒 = (𝑤‘1) ↔ 𝑤 = ⟨“(𝑃𝑒)𝑒”⟩))
127110, 126reu6dv 32473 . . . . . 6 ((𝜑𝑒 ∈ (𝑃 supp 0 )) → ∃!𝑤𝑇 𝑒 = (𝑤‘1))
12880, 51, 52, 83, 55, 43, 84, 86, 98, 127gsummptf1o 19883 . . . . 5 (𝜑 → (𝑅 Σg (𝑒 ∈ (𝑃 supp 0 ) ↦ ((𝑃𝑒) · 𝑒))) = (𝑅 Σg (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1)))))
12979, 128eqtrd 2768 . . . 4 (𝜑 → (𝑅 Σg (𝑒𝐹 ↦ ((𝑃𝑒) · 𝑒))) = (𝑅 Σg (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1)))))
130 elrgspnsubrunlem1.x . . . 4 (𝜑𝑋 = (𝑅 Σg (𝑒𝐹 ↦ ((𝑃𝑒) · 𝑒))))
13113adantr 480 . . . . . . . . 9 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → Word (𝐸𝐹) ∈ V)
13231adantr 480 . . . . . . . . 9 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → 𝑇 ⊆ Word (𝐸𝐹))
133 simpr 484 . . . . . . . . 9 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → 𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇))
134 ind0 32865 . . . . . . . . 9 ((Word (𝐸𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸𝐹) ∧ 𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) = 0)
135131, 132, 133, 134syl3anc 1373 . . . . . . . 8 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) = 0)
136135oveq1d 7370 . . . . . . 7 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
137 eqid 2733 . . . . . . . . . . . 12 (mulGrp‘𝑅) = (mulGrp‘𝑅)
138137crngmgp 20167 . . . . . . . . . . 11 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
13953, 138syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
140139cmnmndd 19724 . . . . . . . . 9 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
14174, 67unssd 4141 . . . . . . . . . . . 12 (𝜑 → (𝐸𝐹) ⊆ 𝐵)
142 sswrd 14436 . . . . . . . . . . . 12 ((𝐸𝐹) ⊆ 𝐵 → Word (𝐸𝐹) ⊆ Word 𝐵)
143141, 142syl 17 . . . . . . . . . . 11 (𝜑 → Word (𝐸𝐹) ⊆ Word 𝐵)
144143ssdifssd 4096 . . . . . . . . . 10 (𝜑 → (Word (𝐸𝐹) ∖ 𝑇) ⊆ Word 𝐵)
145144sselda 3930 . . . . . . . . 9 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → 𝑤 ∈ Word 𝐵)
146137, 51mgpbas 20071 . . . . . . . . . 10 𝐵 = (Base‘(mulGrp‘𝑅))
147146gsumwcl 18755 . . . . . . . . 9 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑤 ∈ Word 𝐵) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
148140, 145, 147syl2an2r 685 . . . . . . . 8 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
149 eqid 2733 . . . . . . . . 9 (.g𝑅) = (.g𝑅)
15051, 52, 149mulg0 18995 . . . . . . . 8 (((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵 → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
151148, 150syl 17 . . . . . . 7 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → (0(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
152136, 151eqtrd 2768 . . . . . 6 ((𝜑𝑤 ∈ (Word (𝐸𝐹) ∖ 𝑇)) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 )
15353crnggrpd 20173 . . . . . . . 8 (𝜑𝑅 ∈ Grp)
154153adantr 480 . . . . . . 7 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝑅 ∈ Grp)
15537ffvelcdmda 7026 . . . . . . 7 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) ∈ ℤ)
156143sselda 3930 . . . . . . . 8 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → 𝑤 ∈ Word 𝐵)
157140, 156, 147syl2an2r 685 . . . . . . 7 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
15851, 149, 154, 155, 157mulgcld 19017 . . . . . 6 ((𝜑𝑤 ∈ Word (𝐸𝐹)) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵)
15951, 52, 55, 13, 152, 47, 158, 31gsummptres2 33064 . . . . 5 (𝜑 → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤𝑇 ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
16031, 143sstrd 3941 . . . . . . . . . . 11 (𝜑𝑇 ⊆ Word 𝐵)
161160sselda 3930 . . . . . . . . . 10 ((𝜑𝑤𝑇) → 𝑤 ∈ Word 𝐵)
162140, 161, 147syl2an2r 685 . . . . . . . . 9 ((𝜑𝑤𝑇) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵)
16351, 149mulg1 19002 . . . . . . . . 9 (((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵 → (1(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = ((mulGrp‘𝑅) Σg 𝑤))
164162, 163syl 17 . . . . . . . 8 ((𝜑𝑤𝑇) → (1(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = ((mulGrp‘𝑅) Σg 𝑤))
16513adantr 480 . . . . . . . . . 10 ((𝜑𝑤𝑇) → Word (𝐸𝐹) ∈ V)
16631adantr 480 . . . . . . . . . 10 ((𝜑𝑤𝑇) → 𝑇 ⊆ Word (𝐸𝐹))
167 simpr 484 . . . . . . . . . 10 ((𝜑𝑤𝑇) → 𝑤𝑇)
168 ind1 32864 . . . . . . . . . 10 ((Word (𝐸𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸𝐹) ∧ 𝑤𝑇) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) = 1)
169165, 166, 167, 168syl3anc 1373 . . . . . . . . 9 ((𝜑𝑤𝑇) → (((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤) = 1)
170169oveq1d 7370 . . . . . . . 8 ((𝜑𝑤𝑇) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = (1(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))
171140ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (mulGrp‘𝑅) ∈ Mnd)
17275ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑃:𝐹𝐵)
17320ad4ant13 751 . . . . . . . . . . . 12 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑓𝐹)
174172, 173ffvelcdmd 7027 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑃𝑓) ∈ 𝐵)
175106ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑃 supp 0 ) ⊆ 𝐵)
176175, 92sseldd 3931 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑓𝐵)
177137, 64mgpplusg 20070 . . . . . . . . . . . 12 · = (+g‘(mulGrp‘𝑅))
178146, 177gsumws2 18758 . . . . . . . . . . 11 (((mulGrp‘𝑅) ∈ Mnd ∧ (𝑃𝑓) ∈ 𝐵𝑓𝐵) → ((mulGrp‘𝑅) Σg ⟨“(𝑃𝑓)𝑓”⟩) = ((𝑃𝑓) · 𝑓))
179171, 174, 176, 178syl3anc 1373 . . . . . . . . . 10 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ((mulGrp‘𝑅) Σg ⟨“(𝑃𝑓)𝑓”⟩) = ((𝑃𝑓) · 𝑓))
180 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩)
181180oveq2d 7371 . . . . . . . . . 10 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ((mulGrp‘𝑅) Σg 𝑤) = ((mulGrp‘𝑅) Σg ⟨“(𝑃𝑓)𝑓”⟩))
18291fveq2d 6835 . . . . . . . . . . 11 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → (𝑃‘(𝑤‘1)) = (𝑃𝑓))
183182, 91oveq12d 7373 . . . . . . . . . 10 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ((𝑃‘(𝑤‘1)) · (𝑤‘1)) = ((𝑃𝑓) · 𝑓))
184179, 181, 1833eqtr4rd 2779 . . . . . . . . 9 ((((𝜑𝑤𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = ⟨“(𝑃𝑓)𝑓”⟩) → ((𝑃‘(𝑤‘1)) · (𝑤‘1)) = ((mulGrp‘𝑅) Σg 𝑤))
185184, 97r19.29a 3141 . . . . . . . 8 ((𝜑𝑤𝑇) → ((𝑃‘(𝑤‘1)) · (𝑤‘1)) = ((mulGrp‘𝑅) Σg 𝑤))
186164, 170, 1853eqtr4d 2778 . . . . . . 7 ((𝜑𝑤𝑇) → ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)) = ((𝑃‘(𝑤‘1)) · (𝑤‘1)))
187186mpteq2dva 5188 . . . . . 6 (𝜑 → (𝑤𝑇 ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))) = (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1))))
188187oveq2d 7371 . . . . 5 (𝜑 → (𝑅 Σg (𝑤𝑇 ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1)))))
189159, 188eqtrd 2768 . . . 4 (𝜑 → (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1)))))
190129, 130, 1893eqtr4d 2778 . . 3 (𝜑𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((((𝟭‘Word (𝐸𝐹))‘𝑇)‘𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
1915, 50, 190rspcedvdw 3576 . 2 (𝜑 → ∃𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤)))))
192 elrgspnsubrun.n . . 3 𝑁 = (RingSpan‘𝑅)
193 breq1 5098 . . . 4 ( = 𝑖 → ( finSupp 0 ↔ 𝑖 finSupp 0))
194193cbvrabv 3406 . . 3 { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0} = {𝑖 ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ 𝑖 finSupp 0}
19551, 137, 149, 192, 194, 54, 141elrgspn 33256 . 2 (𝜑 → (𝑋 ∈ (𝑁‘(𝐸𝐹)) ↔ ∃𝑔 ∈ { ∈ (ℤ ↑m Word (𝐸𝐹)) ∣ finSupp 0}𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸𝐹) ↦ ((𝑔𝑤)(.g𝑅)((mulGrp‘𝑅) Σg 𝑤))))))
196191, 195mpbird 257 1 (𝜑𝑋 ∈ (𝑁‘(𝐸𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  cdif 3895  cun 3896  wss 3898  {cpr 4579   class class class wbr 5095  cmpt 5176  ran crn 5622   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355   supp csupp 8099  m cmap 8759  Fincfn 8879   finSupp cfsupp 9256  0cc0 11017  1c1 11018  cz 12479  Word cword 14427  ⟨“cs2 14755  Basecbs 17127  .rcmulr 17169  0gc0g 17350   Σg cgsu 17351  Mndcmnd 18650  Grpcgrp 18854  .gcmg 18988  CMndccmn 19700  mulGrpcmgp 20066  Ringcrg 20159  CRingccrg 20160  SubRingcsubrg 20493  RingSpancrgspn 20534  𝟭cind 32857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-sup 9337  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-rp 12897  df-fz 13415  df-fzo 13562  df-seq 13916  df-exp 13976  df-hash 14245  df-word 14428  df-concat 14485  df-s1 14511  df-substr 14556  df-pfx 14586  df-s2 14762  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-sum 15601  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-0g 17352  df-gsum 17353  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-mhm 18699  df-submnd 18700  df-grp 18857  df-minusg 18858  df-mulg 18989  df-subg 19044  df-ghm 19133  df-cntz 19237  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161  df-cring 20162  df-oppr 20264  df-subrng 20470  df-subrg 20494  df-rgspn 20535  df-cnfld 21301  df-zring 21393  df-ind 32858
This theorem is referenced by:  elrgspnsubrun  33259
  Copyright terms: Public domain W3C validator