Step | Hyp | Ref
| Expression |
1 | | fveq1 6903 |
. . . . . . 7
⊢ (𝑔 = ((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇) → (𝑔‘𝑤) = (((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)) |
2 | 1 | oveq1d 7444 |
. . . . . 6
⊢ (𝑔 = ((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇) → ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) = ((((𝟭‘Word
(𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))) |
3 | 2 | mpteq2dv 5242 |
. . . . 5
⊢ (𝑔 = ((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇) → (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))) = (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))) |
4 | 3 | oveq2d 7445 |
. . . 4
⊢ (𝑔 = ((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇) → (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) |
5 | 4 | eqeq2d 2747 |
. . 3
⊢ (𝑔 = ((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇) → (𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))) ↔ 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))))) |
6 | | breq1 5144 |
. . . 4
⊢ (ℎ = ((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇) → (ℎ finSupp 0 ↔ ((𝟭‘Word
(𝐸 ∪ 𝐹))‘𝑇) finSupp 0)) |
7 | | zex 12618 |
. . . . . 6
⊢ ℤ
∈ V |
8 | 7 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℤ ∈
V) |
9 | | elrgspnsubrun.e |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈ (SubRing‘𝑅)) |
10 | | elrgspnsubrun.f |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝑅)) |
11 | 9, 10 | unexd 7770 |
. . . . . 6
⊢ (𝜑 → (𝐸 ∪ 𝐹) ∈ V) |
12 | | wrdexg 14558 |
. . . . . 6
⊢ ((𝐸 ∪ 𝐹) ∈ V → Word (𝐸 ∪ 𝐹) ∈ V) |
13 | 11, 12 | syl 17 |
. . . . 5
⊢ (𝜑 → Word (𝐸 ∪ 𝐹) ∈ V) |
14 | | elrgspnsubrunlem1.t |
. . . . . . . 8
⊢ 𝑇 = ran (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉) |
15 | | ssun1 4177 |
. . . . . . . . . . . 12
⊢ 𝐸 ⊆ (𝐸 ∪ 𝐹) |
16 | | elrgspnsubrunlem1.p1 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑃:𝐹⟶𝐸) |
17 | 16 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑃 supp 0 )) → 𝑃:𝐹⟶𝐸) |
18 | | suppssdm 8198 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 supp 0 ) ⊆ dom 𝑃 |
19 | 18, 16 | fssdm 6753 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑃 supp 0 ) ⊆ 𝐹) |
20 | 19 | sselda 3982 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑃 supp 0 )) → 𝑓 ∈ 𝐹) |
21 | 17, 20 | ffvelcdmd 7103 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑃 supp 0 )) → (𝑃‘𝑓) ∈ 𝐸) |
22 | 15, 21 | sselid 3980 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑃 supp 0 )) → (𝑃‘𝑓) ∈ (𝐸 ∪ 𝐹)) |
23 | | ssun2 4178 |
. . . . . . . . . . . . 13
⊢ 𝐹 ⊆ (𝐸 ∪ 𝐹) |
24 | 19, 23 | sstrdi 3995 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑃 supp 0 ) ⊆ (𝐸 ∪ 𝐹)) |
25 | 24 | sselda 3982 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑃 supp 0 )) → 𝑓 ∈ (𝐸 ∪ 𝐹)) |
26 | 22, 25 | s2cld 14906 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑃 supp 0 )) →
〈“(𝑃‘𝑓)𝑓”〉 ∈ Word (𝐸 ∪ 𝐹)) |
27 | 26 | ralrimiva 3145 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑓 ∈ (𝑃 supp 0 )〈“(𝑃‘𝑓)𝑓”〉 ∈ Word (𝐸 ∪ 𝐹)) |
28 | | eqid 2736 |
. . . . . . . . . 10
⊢ (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉) = (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉) |
29 | 28 | rnmptss 7141 |
. . . . . . . . 9
⊢
(∀𝑓 ∈
(𝑃 supp 0 )〈“(𝑃‘𝑓)𝑓”〉 ∈ Word (𝐸 ∪ 𝐹) → ran (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉) ⊆ Word (𝐸 ∪ 𝐹)) |
30 | 27, 29 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ran (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉) ⊆ Word (𝐸 ∪ 𝐹)) |
31 | 14, 30 | eqsstrid 4021 |
. . . . . . 7
⊢ (𝜑 → 𝑇 ⊆ Word (𝐸 ∪ 𝐹)) |
32 | | indf 32827 |
. . . . . . 7
⊢ ((Word
(𝐸 ∪ 𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸 ∪ 𝐹)) → ((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇):Word (𝐸 ∪ 𝐹)⟶{0, 1}) |
33 | 13, 31, 32 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((𝟭‘Word
(𝐸 ∪ 𝐹))‘𝑇):Word (𝐸 ∪ 𝐹)⟶{0, 1}) |
34 | | 0zd 12621 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℤ) |
35 | | 1zzd 12644 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℤ) |
36 | 34, 35 | prssd 4820 |
. . . . . 6
⊢ (𝜑 → {0, 1} ⊆
ℤ) |
37 | 33, 36 | fssd 6751 |
. . . . 5
⊢ (𝜑 → ((𝟭‘Word
(𝐸 ∪ 𝐹))‘𝑇):Word (𝐸 ∪ 𝐹)⟶ℤ) |
38 | 8, 13, 37 | elmapdd 8877 |
. . . 4
⊢ (𝜑 → ((𝟭‘Word
(𝐸 ∪ 𝐹))‘𝑇) ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹))) |
39 | 33 | ffund 6738 |
. . . . 5
⊢ (𝜑 → Fun ((𝟭‘Word
(𝐸 ∪ 𝐹))‘𝑇)) |
40 | | indsupp 32839 |
. . . . . . 7
⊢ ((Word
(𝐸 ∪ 𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸 ∪ 𝐹)) → (((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇) supp 0) = 𝑇) |
41 | 13, 31, 40 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (((𝟭‘Word
(𝐸 ∪ 𝐹))‘𝑇) supp 0) = 𝑇) |
42 | | elrgspnsubrunlem1.p2 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 finSupp 0 ) |
43 | 42 | fsuppimpd 9405 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 supp 0 ) ∈
Fin) |
44 | | mptfi 9387 |
. . . . . . . 8
⊢ ((𝑃 supp 0 ) ∈ Fin → (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉) ∈ Fin) |
45 | | rnfi 9376 |
. . . . . . . 8
⊢ ((𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉) ∈ Fin → ran (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉) ∈ Fin) |
46 | 43, 44, 45 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → ran (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉) ∈ Fin) |
47 | 14, 46 | eqeltrid 2844 |
. . . . . 6
⊢ (𝜑 → 𝑇 ∈ Fin) |
48 | 41, 47 | eqeltrd 2840 |
. . . . 5
⊢ (𝜑 → (((𝟭‘Word
(𝐸 ∪ 𝐹))‘𝑇) supp 0) ∈ Fin) |
49 | 38, 34, 39, 48 | isfsuppd 9402 |
. . . 4
⊢ (𝜑 → ((𝟭‘Word
(𝐸 ∪ 𝐹))‘𝑇) finSupp 0) |
50 | 6, 38, 49 | elrabd 3693 |
. . 3
⊢ (𝜑 → ((𝟭‘Word
(𝐸 ∪ 𝐹))‘𝑇) ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}) |
51 | | elrgspnsubrun.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
52 | | elrgspnsubrun.z |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
53 | | elrgspnsubrun.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ CRing) |
54 | 53 | crngringd 20239 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
55 | 54 | ringcmnd 20273 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ CMnd) |
56 | 16 | ffnd 6735 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 Fn 𝐹) |
57 | 56 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑃 Fn 𝐹) |
58 | 10 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝐹 ∈ (SubRing‘𝑅)) |
59 | 52 | fvexi 6918 |
. . . . . . . . . 10
⊢ 0 ∈
V |
60 | 59 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 0 ∈
V) |
61 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) |
62 | 57, 58, 60, 61 | fvdifsupp 8192 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → (𝑃‘𝑒) = 0 ) |
63 | 62 | oveq1d 7444 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → ((𝑃‘𝑒) · 𝑒) = ( 0 · 𝑒)) |
64 | | elrgspnsubrun.t |
. . . . . . . 8
⊢ · =
(.r‘𝑅) |
65 | 54 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑅 ∈ Ring) |
66 | 51 | subrgss 20564 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (SubRing‘𝑅) → 𝐹 ⊆ 𝐵) |
67 | 10, 66 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ⊆ 𝐵) |
68 | 67 | ssdifssd 4146 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ∖ (𝑃 supp 0 )) ⊆ 𝐵) |
69 | 68 | sselda 3982 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → 𝑒 ∈ 𝐵) |
70 | 51, 64, 52, 65, 69 | ringlzd 20284 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → ( 0 · 𝑒) = 0 ) |
71 | 63, 70 | eqtrd 2776 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ (𝐹 ∖ (𝑃 supp 0 ))) → ((𝑃‘𝑒) · 𝑒) = 0 ) |
72 | 54 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ 𝐹) → 𝑅 ∈ Ring) |
73 | 51 | subrgss 20564 |
. . . . . . . . . 10
⊢ (𝐸 ∈ (SubRing‘𝑅) → 𝐸 ⊆ 𝐵) |
74 | 9, 73 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ⊆ 𝐵) |
75 | 16, 74 | fssd 6751 |
. . . . . . . 8
⊢ (𝜑 → 𝑃:𝐹⟶𝐵) |
76 | 75 | ffvelcdmda 7102 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ 𝐹) → (𝑃‘𝑒) ∈ 𝐵) |
77 | 67 | sselda 3982 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ 𝐹) → 𝑒 ∈ 𝐵) |
78 | 51, 64, 72, 76, 77 | ringcld 20252 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ 𝐹) → ((𝑃‘𝑒) · 𝑒) ∈ 𝐵) |
79 | 51, 52, 55, 10, 71, 43, 78, 19 | gsummptres2 33041 |
. . . . 5
⊢ (𝜑 → (𝑅 Σg (𝑒 ∈ 𝐹 ↦ ((𝑃‘𝑒) · 𝑒))) = (𝑅 Σg (𝑒 ∈ (𝑃 supp 0 ) ↦ ((𝑃‘𝑒) · 𝑒)))) |
80 | | nfcv 2904 |
. . . . . 6
⊢
Ⅎ𝑒((𝑃‘(𝑤‘1)) · (𝑤‘1)) |
81 | | fveq2 6904 |
. . . . . . 7
⊢ (𝑒 = (𝑤‘1) → (𝑃‘𝑒) = (𝑃‘(𝑤‘1))) |
82 | | id 22 |
. . . . . . 7
⊢ (𝑒 = (𝑤‘1) → 𝑒 = (𝑤‘1)) |
83 | 81, 82 | oveq12d 7447 |
. . . . . 6
⊢ (𝑒 = (𝑤‘1) → ((𝑃‘𝑒) · 𝑒) = ((𝑃‘(𝑤‘1)) · (𝑤‘1))) |
84 | | ssidd 4006 |
. . . . . 6
⊢ (𝜑 → 𝐵 ⊆ 𝐵) |
85 | 19 | sselda 3982 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) → 𝑒 ∈ 𝐹) |
86 | 85, 78 | syldan 591 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) → ((𝑃‘𝑒) · 𝑒) ∈ 𝐵) |
87 | | fveq1 6903 |
. . . . . . . . . 10
⊢ (𝑤 = 〈“(𝑃‘𝑓)𝑓”〉 → (𝑤‘1) = (〈“(𝑃‘𝑓)𝑓”〉‘1)) |
88 | 87 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → (𝑤‘1) = (〈“(𝑃‘𝑓)𝑓”〉‘1)) |
89 | | s2fv1 14923 |
. . . . . . . . . 10
⊢ (𝑓 ∈ (𝑃 supp 0 ) →
(〈“(𝑃‘𝑓)𝑓”〉‘1) = 𝑓) |
90 | 89 | ad2antlr 727 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → (〈“(𝑃‘𝑓)𝑓”〉‘1) = 𝑓) |
91 | 88, 90 | eqtrd 2776 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → (𝑤‘1) = 𝑓) |
92 | | simplr 769 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → 𝑓 ∈ (𝑃 supp 0 )) |
93 | 91, 92 | eqeltrd 2840 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → (𝑤‘1) ∈ (𝑃 supp 0 )) |
94 | 14 | eleq2i 2832 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝑇 ↔ 𝑤 ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉)) |
95 | 94 | biimpi 216 |
. . . . . . . . 9
⊢ (𝑤 ∈ 𝑇 → 𝑤 ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉)) |
96 | 95 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → 𝑤 ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉)) |
97 | 28, 96 | elrnmpt2d 5975 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → ∃𝑓 ∈ (𝑃 supp 0 )𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) |
98 | 93, 97 | r19.29a 3161 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → (𝑤‘1) ∈ (𝑃 supp 0 )) |
99 | | fveq2 6904 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑒 → (𝑃‘𝑓) = (𝑃‘𝑒)) |
100 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑒 → 𝑓 = 𝑒) |
101 | 99, 100 | s2eqd 14898 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑒 → 〈“(𝑃‘𝑓)𝑓”〉 = 〈“(𝑃‘𝑒)𝑒”〉) |
102 | 101 | cbvmptv 5253 |
. . . . . . . . 9
⊢ (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉) = (𝑒 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑒)𝑒”〉) |
103 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) → 𝑒 ∈ (𝑃 supp 0 )) |
104 | 75 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) → 𝑃:𝐹⟶𝐵) |
105 | 104, 85 | ffvelcdmd 7103 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) → (𝑃‘𝑒) ∈ 𝐵) |
106 | 19, 67 | sstrd 3993 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑃 supp 0 ) ⊆ 𝐵) |
107 | 106 | sselda 3982 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) → 𝑒 ∈ 𝐵) |
108 | 105, 107 | s2cld 14906 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) →
〈“(𝑃‘𝑒)𝑒”〉 ∈ Word 𝐵) |
109 | 102, 103,
108 | elrnmpt1d 5973 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) →
〈“(𝑃‘𝑒)𝑒”〉 ∈ ran (𝑓 ∈ (𝑃 supp 0 ) ↦
〈“(𝑃‘𝑓)𝑓”〉)) |
110 | 109, 14 | eleqtrrdi 2851 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) →
〈“(𝑃‘𝑒)𝑒”〉 ∈ 𝑇) |
111 | | simpr 484 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) |
112 | 82 | ad3antlr 731 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → 𝑒 = (𝑤‘1)) |
113 | 111 | fveq1d 6906 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → (𝑤‘1) = (〈“(𝑃‘𝑓)𝑓”〉‘1)) |
114 | 89 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → (〈“(𝑃‘𝑓)𝑓”〉‘1) = 𝑓) |
115 | 112, 113,
114 | 3eqtrrd 2781 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → 𝑓 = 𝑒) |
116 | 115 | fveq2d 6908 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → (𝑃‘𝑓) = (𝑃‘𝑒)) |
117 | 116, 115 | s2eqd 14898 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → 〈“(𝑃‘𝑓)𝑓”〉 = 〈“(𝑃‘𝑒)𝑒”〉) |
118 | 111, 117 | eqtrd 2776 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑒 = (𝑤‘1)) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → 𝑤 = 〈“(𝑃‘𝑒)𝑒”〉) |
119 | 97 | ad4ant13 751 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑒 = (𝑤‘1)) → ∃𝑓 ∈ (𝑃 supp 0 )𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) |
120 | 118, 119 | r19.29a 3161 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑒 = (𝑤‘1)) → 𝑤 = 〈“(𝑃‘𝑒)𝑒”〉) |
121 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑤 = 〈“(𝑃‘𝑒)𝑒”〉) → 𝑤 = 〈“(𝑃‘𝑒)𝑒”〉) |
122 | 121 | fveq1d 6906 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑤 = 〈“(𝑃‘𝑒)𝑒”〉) → (𝑤‘1) = (〈“(𝑃‘𝑒)𝑒”〉‘1)) |
123 | | s2fv1 14923 |
. . . . . . . . . 10
⊢ (𝑒 ∈ (𝑃 supp 0 ) →
(〈“(𝑃‘𝑒)𝑒”〉‘1) = 𝑒) |
124 | 123 | ad3antlr 731 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑤 = 〈“(𝑃‘𝑒)𝑒”〉) → (〈“(𝑃‘𝑒)𝑒”〉‘1) = 𝑒) |
125 | 122, 124 | eqtr2d 2777 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) ∧ 𝑤 = 〈“(𝑃‘𝑒)𝑒”〉) → 𝑒 = (𝑤‘1)) |
126 | 120, 125 | impbida 801 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) ∧ 𝑤 ∈ 𝑇) → (𝑒 = (𝑤‘1) ↔ 𝑤 = 〈“(𝑃‘𝑒)𝑒”〉)) |
127 | 110, 126 | reu6dv 32481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ (𝑃 supp 0 )) → ∃!𝑤 ∈ 𝑇 𝑒 = (𝑤‘1)) |
128 | 80, 51, 52, 83, 55, 43, 84, 86, 98, 127 | gsummptf1o 19977 |
. . . . 5
⊢ (𝜑 → (𝑅 Σg (𝑒 ∈ (𝑃 supp 0 ) ↦ ((𝑃‘𝑒) · 𝑒))) = (𝑅 Σg (𝑤 ∈ 𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1))))) |
129 | 79, 128 | eqtrd 2776 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑒 ∈ 𝐹 ↦ ((𝑃‘𝑒) · 𝑒))) = (𝑅 Σg (𝑤 ∈ 𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1))))) |
130 | | elrgspnsubrunlem1.x |
. . . 4
⊢ (𝜑 → 𝑋 = (𝑅 Σg (𝑒 ∈ 𝐹 ↦ ((𝑃‘𝑒) · 𝑒)))) |
131 | 13 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ 𝑇)) → Word (𝐸 ∪ 𝐹) ∈ V) |
132 | 31 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ 𝑇)) → 𝑇 ⊆ Word (𝐸 ∪ 𝐹)) |
133 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ 𝑇)) → 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ 𝑇)) |
134 | | ind0 32830 |
. . . . . . . . 9
⊢ ((Word
(𝐸 ∪ 𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸 ∪ 𝐹) ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ 𝑇)) → (((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤) = 0) |
135 | 131, 132,
133, 134 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ 𝑇)) → (((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤) = 0) |
136 | 135 | oveq1d 7444 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ 𝑇)) → ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) =
(0(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))) |
137 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
138 | 137 | crngmgp 20234 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ CRing →
(mulGrp‘𝑅) ∈
CMnd) |
139 | 53, 138 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (mulGrp‘𝑅) ∈ CMnd) |
140 | 139 | cmnmndd 19818 |
. . . . . . . . 9
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
141 | 74, 67 | unssd 4191 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸 ∪ 𝐹) ⊆ 𝐵) |
142 | | sswrd 14556 |
. . . . . . . . . . . 12
⊢ ((𝐸 ∪ 𝐹) ⊆ 𝐵 → Word (𝐸 ∪ 𝐹) ⊆ Word 𝐵) |
143 | 141, 142 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → Word (𝐸 ∪ 𝐹) ⊆ Word 𝐵) |
144 | 143 | ssdifssd 4146 |
. . . . . . . . . 10
⊢ (𝜑 → (Word (𝐸 ∪ 𝐹) ∖ 𝑇) ⊆ Word 𝐵) |
145 | 144 | sselda 3982 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ 𝑇)) → 𝑤 ∈ Word 𝐵) |
146 | 137, 51 | mgpbas 20138 |
. . . . . . . . . 10
⊢ 𝐵 =
(Base‘(mulGrp‘𝑅)) |
147 | 146 | gsumwcl 18848 |
. . . . . . . . 9
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ 𝑤 ∈
Word 𝐵) →
((mulGrp‘𝑅)
Σg 𝑤) ∈ 𝐵) |
148 | 140, 145,
147 | syl2an2r 685 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ 𝑇)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵) |
149 | | eqid 2736 |
. . . . . . . . 9
⊢
(.g‘𝑅) = (.g‘𝑅) |
150 | 51, 52, 149 | mulg0 19088 |
. . . . . . . 8
⊢
(((mulGrp‘𝑅)
Σg 𝑤) ∈ 𝐵 → (0(.g‘𝑅)((mulGrp‘𝑅) Σg
𝑤)) = 0 ) |
151 | 148, 150 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ 𝑇)) → (0(.g‘𝑅)((mulGrp‘𝑅) Σg
𝑤)) = 0 ) |
152 | 136, 151 | eqtrd 2776 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (Word (𝐸 ∪ 𝐹) ∖ 𝑇)) → ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) = 0 ) |
153 | 53 | crnggrpd 20240 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Grp) |
154 | 153 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) → 𝑅 ∈ Grp) |
155 | 37 | ffvelcdmda 7102 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) → (((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤) ∈ ℤ) |
156 | 143 | sselda 3982 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) → 𝑤 ∈ Word 𝐵) |
157 | 140, 156,
147 | syl2an2r 685 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵) |
158 | 51, 149, 154, 155, 157 | mulgcld 19110 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ Word (𝐸 ∪ 𝐹)) → ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) ∈ 𝐵) |
159 | 51, 52, 55, 13, 152, 47, 158, 31 | gsummptres2 33041 |
. . . . 5
⊢ (𝜑 → (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ 𝑇 ↦ ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) |
160 | 31, 143 | sstrd 3993 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇 ⊆ Word 𝐵) |
161 | 160 | sselda 3982 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → 𝑤 ∈ Word 𝐵) |
162 | 140, 161,
147 | syl2an2r 685 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → ((mulGrp‘𝑅) Σg 𝑤) ∈ 𝐵) |
163 | 51, 149 | mulg1 19095 |
. . . . . . . . 9
⊢
(((mulGrp‘𝑅)
Σg 𝑤) ∈ 𝐵 → (1(.g‘𝑅)((mulGrp‘𝑅) Σg
𝑤)) = ((mulGrp‘𝑅) Σg
𝑤)) |
164 | 162, 163 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → (1(.g‘𝑅)((mulGrp‘𝑅) Σg
𝑤)) = ((mulGrp‘𝑅) Σg
𝑤)) |
165 | 13 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → Word (𝐸 ∪ 𝐹) ∈ V) |
166 | 31 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → 𝑇 ⊆ Word (𝐸 ∪ 𝐹)) |
167 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → 𝑤 ∈ 𝑇) |
168 | | ind1 32829 |
. . . . . . . . . 10
⊢ ((Word
(𝐸 ∪ 𝐹) ∈ V ∧ 𝑇 ⊆ Word (𝐸 ∪ 𝐹) ∧ 𝑤 ∈ 𝑇) → (((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤) = 1) |
169 | 165, 166,
167, 168 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → (((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤) = 1) |
170 | 169 | oveq1d 7444 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) =
(1(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))) |
171 | 140 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → (mulGrp‘𝑅) ∈ Mnd) |
172 | 75 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → 𝑃:𝐹⟶𝐵) |
173 | 20 | ad4ant13 751 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → 𝑓 ∈ 𝐹) |
174 | 172, 173 | ffvelcdmd 7103 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → (𝑃‘𝑓) ∈ 𝐵) |
175 | 106 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → (𝑃 supp 0 ) ⊆ 𝐵) |
176 | 175, 92 | sseldd 3983 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → 𝑓 ∈ 𝐵) |
177 | 137, 64 | mgpplusg 20137 |
. . . . . . . . . . . 12
⊢ · =
(+g‘(mulGrp‘𝑅)) |
178 | 146, 177 | gsumws2 18851 |
. . . . . . . . . . 11
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ (𝑃‘𝑓) ∈ 𝐵 ∧ 𝑓 ∈ 𝐵) → ((mulGrp‘𝑅) Σg
〈“(𝑃‘𝑓)𝑓”〉) = ((𝑃‘𝑓) · 𝑓)) |
179 | 171, 174,
176, 178 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → ((mulGrp‘𝑅) Σg
〈“(𝑃‘𝑓)𝑓”〉) = ((𝑃‘𝑓) · 𝑓)) |
180 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) |
181 | 180 | oveq2d 7445 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → ((mulGrp‘𝑅) Σg
𝑤) = ((mulGrp‘𝑅) Σg
〈“(𝑃‘𝑓)𝑓”〉)) |
182 | 91 | fveq2d 6908 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → (𝑃‘(𝑤‘1)) = (𝑃‘𝑓)) |
183 | 182, 91 | oveq12d 7447 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → ((𝑃‘(𝑤‘1)) · (𝑤‘1)) = ((𝑃‘𝑓) · 𝑓)) |
184 | 179, 181,
183 | 3eqtr4rd 2787 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑤 ∈ 𝑇) ∧ 𝑓 ∈ (𝑃 supp 0 )) ∧ 𝑤 = 〈“(𝑃‘𝑓)𝑓”〉) → ((𝑃‘(𝑤‘1)) · (𝑤‘1)) = ((mulGrp‘𝑅) Σg 𝑤)) |
185 | 184, 97 | r19.29a 3161 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → ((𝑃‘(𝑤‘1)) · (𝑤‘1)) = ((mulGrp‘𝑅) Σg 𝑤)) |
186 | 164, 170,
185 | 3eqtr4d 2786 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑇) → ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)) = ((𝑃‘(𝑤‘1)) · (𝑤‘1))) |
187 | 186 | mpteq2dva 5240 |
. . . . . 6
⊢ (𝜑 → (𝑤 ∈ 𝑇 ↦ ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))) = (𝑤 ∈ 𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1)))) |
188 | 187 | oveq2d 7445 |
. . . . 5
⊢ (𝜑 → (𝑅 Σg (𝑤 ∈ 𝑇 ↦ ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ 𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1))))) |
189 | 159, 188 | eqtrd 2776 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))) = (𝑅 Σg (𝑤 ∈ 𝑇 ↦ ((𝑃‘(𝑤‘1)) · (𝑤‘1))))) |
190 | 129, 130,
189 | 3eqtr4d 2786 |
. . 3
⊢ (𝜑 → 𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((((𝟭‘Word (𝐸 ∪ 𝐹))‘𝑇)‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) |
191 | 5, 50, 190 | rspcedvdw 3624 |
. 2
⊢ (𝜑 → ∃𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤))))) |
192 | | elrgspnsubrun.n |
. . 3
⊢ 𝑁 = (RingSpan‘𝑅) |
193 | | breq1 5144 |
. . . 4
⊢ (ℎ = 𝑖 → (ℎ finSupp 0 ↔ 𝑖 finSupp 0)) |
194 | 193 | cbvrabv 3446 |
. . 3
⊢ {ℎ ∈ (ℤ
↑m Word (𝐸
∪ 𝐹)) ∣ ℎ finSupp 0} = {𝑖 ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ 𝑖 finSupp 0} |
195 | 51, 137, 149, 192, 194, 54, 141 | elrgspn 33238 |
. 2
⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹)) ↔ ∃𝑔 ∈ {ℎ ∈ (ℤ ↑m Word
(𝐸 ∪ 𝐹)) ∣ ℎ finSupp 0}𝑋 = (𝑅 Σg (𝑤 ∈ Word (𝐸 ∪ 𝐹) ↦ ((𝑔‘𝑤)(.g‘𝑅)((mulGrp‘𝑅) Σg 𝑤)))))) |
196 | 191, 195 | mpbird 257 |
1
⊢ (𝜑 → 𝑋 ∈ (𝑁‘(𝐸 ∪ 𝐹))) |