MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu6i Structured version   Visualization version   GIF version

Theorem reu6i 3658
Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.)
Assertion
Ref Expression
reu6i ((𝐵𝐴 ∧ ∀𝑥𝐴 (𝜑𝑥 = 𝐵)) → ∃!𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reu6i
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2750 . . . . 5 (𝑦 = 𝐵 → (𝑥 = 𝑦𝑥 = 𝐵))
21bibi2d 342 . . . 4 (𝑦 = 𝐵 → ((𝜑𝑥 = 𝑦) ↔ (𝜑𝑥 = 𝐵)))
32ralbidv 3120 . . 3 (𝑦 = 𝐵 → (∀𝑥𝐴 (𝜑𝑥 = 𝑦) ↔ ∀𝑥𝐴 (𝜑𝑥 = 𝐵)))
43rspcev 3552 . 2 ((𝐵𝐴 ∧ ∀𝑥𝐴 (𝜑𝑥 = 𝐵)) → ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦))
5 reu6 3656 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦))
64, 5sylibr 233 1 ((𝐵𝐴 ∧ ∀𝑥𝐴 (𝜑𝑥 = 𝐵)) → ∃!𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  ∃!wreu 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-reu 3070
This theorem is referenced by:  eqreu  3659  riota5f  7241  negeu  11141  creur  11897  creui  11898  reuccatpfxs1  14388  lublecl  17994  dfod2  19086  lmieu  27049  esum2dlem  31960  fvineqsneu  35509  poimirlem16  35720  poimirlem17  35721  poimirlem19  35723  poimirlem20  35724  poimirlem22  35726  renegeulemv  40272  sn-subeu  40329
  Copyright terms: Public domain W3C validator