Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reu6i | Structured version Visualization version GIF version |
Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
reu6i | ⊢ ((𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵)) → ∃!𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2750 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐵)) | |
2 | 1 | bibi2d 343 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝜑 ↔ 𝑥 = 𝑦) ↔ (𝜑 ↔ 𝑥 = 𝐵))) |
3 | 2 | ralbidv 3112 | . . 3 ⊢ (𝑦 = 𝐵 → (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵))) |
4 | 3 | rspcev 3561 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵)) → ∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦)) |
5 | reu6 3661 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦)) | |
6 | 4, 5 | sylibr 233 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵)) → ∃!𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ∃!wreu 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-reu 3072 |
This theorem is referenced by: eqreu 3664 riota5f 7261 negeu 11211 creur 11967 creui 11968 reuccatpfxs1 14460 lublecl 18079 dfod2 19171 lmieu 27145 esum2dlem 32060 fvineqsneu 35582 poimirlem16 35793 poimirlem17 35794 poimirlem19 35796 poimirlem20 35797 poimirlem22 35799 renegeulemv 40351 sn-subeu 40408 |
Copyright terms: Public domain | W3C validator |