MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu6i Structured version   Visualization version   GIF version

Theorem reu6i 3682
Description: A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.)
Assertion
Ref Expression
reu6i ((𝐵𝐴 ∧ ∀𝑥𝐴 (𝜑𝑥 = 𝐵)) → ∃!𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reu6i
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2743 . . . . 5 (𝑦 = 𝐵 → (𝑥 = 𝑦𝑥 = 𝐵))
21bibi2d 342 . . . 4 (𝑦 = 𝐵 → ((𝜑𝑥 = 𝑦) ↔ (𝜑𝑥 = 𝐵)))
32ralbidv 3155 . . 3 (𝑦 = 𝐵 → (∀𝑥𝐴 (𝜑𝑥 = 𝑦) ↔ ∀𝑥𝐴 (𝜑𝑥 = 𝐵)))
43rspcev 3572 . 2 ((𝐵𝐴 ∧ ∀𝑥𝐴 (𝜑𝑥 = 𝐵)) → ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦))
5 reu6 3680 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃𝑦𝐴𝑥𝐴 (𝜑𝑥 = 𝑦))
64, 5sylibr 234 1 ((𝐵𝐴 ∧ ∀𝑥𝐴 (𝜑𝑥 = 𝐵)) → ∃!𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  ∃!wreu 3344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-reu 3347
This theorem is referenced by:  eqreu  3683  riota5f  7331  negeu  11350  creur  12119  creui  12120  reuccatpfxs1  14654  lublecl  18265  dfod2  19476  lmieu  28762  reu6dv  32452  esum2dlem  34105  fvineqsneu  37455  poimirlem16  37675  poimirlem17  37676  poimirlem19  37678  poimirlem20  37679  poimirlem22  37681  renegeulemv  42460  sn-subeu  42519  upeu2lem  49128
  Copyright terms: Public domain W3C validator