Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotaocN Structured version   Visualization version   GIF version

Theorem riotaocN 37150
Description: The orthocomplement of the unique poset element such that 𝜓. (riotaneg 11884 analog.) (Contributed by NM, 16-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
riotaoc.b 𝐵 = (Base‘𝐾)
riotaoc.o = (oc‘𝐾)
riotaoc.a (𝑥 = ( 𝑦) → (𝜑𝜓))
Assertion
Ref Expression
riotaocN ((𝐾 ∈ OP ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐵 𝜑) = ( ‘(𝑦𝐵 𝜓)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥, ,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem riotaocN
StepHypRef Expression
1 nfcv 2906 . . 3 𝑦
2 nfriota1 7219 . . 3 𝑦(𝑦𝐵 𝜓)
31, 2nffv 6766 . 2 𝑦( ‘(𝑦𝐵 𝜓))
4 riotaoc.b . . 3 𝐵 = (Base‘𝐾)
5 riotaoc.o . . 3 = (oc‘𝐾)
64, 5opoccl 37135 . 2 ((𝐾 ∈ OP ∧ 𝑦𝐵) → ( 𝑦) ∈ 𝐵)
74, 5opoccl 37135 . 2 ((𝐾 ∈ OP ∧ (𝑦𝐵 𝜓) ∈ 𝐵) → ( ‘(𝑦𝐵 𝜓)) ∈ 𝐵)
8 riotaoc.a . 2 (𝑥 = ( 𝑦) → (𝜑𝜓))
9 fveq2 6756 . 2 (𝑦 = (𝑦𝐵 𝜓) → ( 𝑦) = ( ‘(𝑦𝐵 𝜓)))
104, 5opoccl 37135 . . 3 ((𝐾 ∈ OP ∧ 𝑥𝐵) → ( 𝑥) ∈ 𝐵)
114, 5opcon2b 37138 . . 3 ((𝐾 ∈ OP ∧ 𝑥𝐵𝑦𝐵) → (𝑥 = ( 𝑦) ↔ 𝑦 = ( 𝑥)))
1210, 11reuhypd 5337 . 2 ((𝐾 ∈ OP ∧ 𝑥𝐵) → ∃!𝑦𝐵 𝑥 = ( 𝑦))
133, 6, 7, 8, 9, 12riotaxfrd 7247 1 ((𝐾 ∈ OP ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐵 𝜑) = ( ‘(𝑦𝐵 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  ∃!wreu 3065  cfv 6418  crio 7211  Basecbs 16840  occoc 16896  OPcops 37113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-dm 5590  df-iota 6376  df-fv 6426  df-riota 7212  df-ov 7258  df-oposet 37117
This theorem is referenced by:  glbconN  37318
  Copyright terms: Public domain W3C validator