| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > riotaocN | Structured version Visualization version GIF version | ||
| Description: The orthocomplement of the unique poset element such that 𝜓. (riotaneg 12221 analog.) (Contributed by NM, 16-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| riotaoc.b | ⊢ 𝐵 = (Base‘𝐾) |
| riotaoc.o | ⊢ ⊥ = (oc‘𝐾) |
| riotaoc.a | ⊢ (𝑥 = ( ⊥ ‘𝑦) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| riotaocN | ⊢ ((𝐾 ∈ OP ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐵 𝜑) = ( ⊥ ‘(℩𝑦 ∈ 𝐵 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2898 | . . 3 ⊢ Ⅎ𝑦 ⊥ | |
| 2 | nfriota1 7369 | . . 3 ⊢ Ⅎ𝑦(℩𝑦 ∈ 𝐵 𝜓) | |
| 3 | 1, 2 | nffv 6886 | . 2 ⊢ Ⅎ𝑦( ⊥ ‘(℩𝑦 ∈ 𝐵 𝜓)) |
| 4 | riotaoc.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | riotaoc.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
| 6 | 4, 5 | opoccl 39212 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑦 ∈ 𝐵) → ( ⊥ ‘𝑦) ∈ 𝐵) |
| 7 | 4, 5 | opoccl 39212 | . 2 ⊢ ((𝐾 ∈ OP ∧ (℩𝑦 ∈ 𝐵 𝜓) ∈ 𝐵) → ( ⊥ ‘(℩𝑦 ∈ 𝐵 𝜓)) ∈ 𝐵) |
| 8 | riotaoc.a | . 2 ⊢ (𝑥 = ( ⊥ ‘𝑦) → (𝜑 ↔ 𝜓)) | |
| 9 | fveq2 6876 | . 2 ⊢ (𝑦 = (℩𝑦 ∈ 𝐵 𝜓) → ( ⊥ ‘𝑦) = ( ⊥ ‘(℩𝑦 ∈ 𝐵 𝜓))) | |
| 10 | 4, 5 | opoccl 39212 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵) → ( ⊥ ‘𝑥) ∈ 𝐵) |
| 11 | 4, 5 | opcon2b 39215 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 = ( ⊥ ‘𝑦) ↔ 𝑦 = ( ⊥ ‘𝑥))) |
| 12 | 10, 11 | reuhypd 5389 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 𝑥 = ( ⊥ ‘𝑦)) |
| 13 | 3, 6, 7, 8, 9, 12 | riotaxfrd 7396 | 1 ⊢ ((𝐾 ∈ OP ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐵 𝜑) = ( ⊥ ‘(℩𝑦 ∈ 𝐵 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃!wreu 3357 ‘cfv 6531 ℩crio 7361 Basecbs 17228 occoc 17279 OPcops 39190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-dm 5664 df-iota 6484 df-fv 6539 df-riota 7362 df-ov 7408 df-oposet 39194 |
| This theorem is referenced by: glbconN 39395 glbconNOLD 39396 |
| Copyright terms: Public domain | W3C validator |