| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > riotaocN | Structured version Visualization version GIF version | ||
| Description: The orthocomplement of the unique poset element such that 𝜓. (riotaneg 12098 analog.) (Contributed by NM, 16-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| riotaoc.b | ⊢ 𝐵 = (Base‘𝐾) |
| riotaoc.o | ⊢ ⊥ = (oc‘𝐾) |
| riotaoc.a | ⊢ (𝑥 = ( ⊥ ‘𝑦) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| riotaocN | ⊢ ((𝐾 ∈ OP ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐵 𝜑) = ( ⊥ ‘(℩𝑦 ∈ 𝐵 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2894 | . . 3 ⊢ Ⅎ𝑦 ⊥ | |
| 2 | nfriota1 7310 | . . 3 ⊢ Ⅎ𝑦(℩𝑦 ∈ 𝐵 𝜓) | |
| 3 | 1, 2 | nffv 6832 | . 2 ⊢ Ⅎ𝑦( ⊥ ‘(℩𝑦 ∈ 𝐵 𝜓)) |
| 4 | riotaoc.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | riotaoc.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
| 6 | 4, 5 | opoccl 39232 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑦 ∈ 𝐵) → ( ⊥ ‘𝑦) ∈ 𝐵) |
| 7 | 4, 5 | opoccl 39232 | . 2 ⊢ ((𝐾 ∈ OP ∧ (℩𝑦 ∈ 𝐵 𝜓) ∈ 𝐵) → ( ⊥ ‘(℩𝑦 ∈ 𝐵 𝜓)) ∈ 𝐵) |
| 8 | riotaoc.a | . 2 ⊢ (𝑥 = ( ⊥ ‘𝑦) → (𝜑 ↔ 𝜓)) | |
| 9 | fveq2 6822 | . 2 ⊢ (𝑦 = (℩𝑦 ∈ 𝐵 𝜓) → ( ⊥ ‘𝑦) = ( ⊥ ‘(℩𝑦 ∈ 𝐵 𝜓))) | |
| 10 | 4, 5 | opoccl 39232 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵) → ( ⊥ ‘𝑥) ∈ 𝐵) |
| 11 | 4, 5 | opcon2b 39235 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 = ( ⊥ ‘𝑦) ↔ 𝑦 = ( ⊥ ‘𝑥))) |
| 12 | 10, 11 | reuhypd 5357 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 𝑥 = ( ⊥ ‘𝑦)) |
| 13 | 3, 6, 7, 8, 9, 12 | riotaxfrd 7337 | 1 ⊢ ((𝐾 ∈ OP ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐵 𝜑) = ( ⊥ ‘(℩𝑦 ∈ 𝐵 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃!wreu 3344 ‘cfv 6481 ℩crio 7302 Basecbs 17117 occoc 17166 OPcops 39210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-dm 5626 df-iota 6437 df-fv 6489 df-riota 7303 df-ov 7349 df-oposet 39214 |
| This theorem is referenced by: glbconN 39415 |
| Copyright terms: Public domain | W3C validator |