Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotaocN Structured version   Visualization version   GIF version

Theorem riotaocN 36778
 Description: The orthocomplement of the unique poset element such that 𝜓. (riotaneg 11649 analog.) (Contributed by NM, 16-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
riotaoc.b 𝐵 = (Base‘𝐾)
riotaoc.o = (oc‘𝐾)
riotaoc.a (𝑥 = ( 𝑦) → (𝜑𝜓))
Assertion
Ref Expression
riotaocN ((𝐾 ∈ OP ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐵 𝜑) = ( ‘(𝑦𝐵 𝜓)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥, ,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem riotaocN
StepHypRef Expression
1 nfcv 2920 . . 3 𝑦
2 nfriota1 7116 . . 3 𝑦(𝑦𝐵 𝜓)
31, 2nffv 6669 . 2 𝑦( ‘(𝑦𝐵 𝜓))
4 riotaoc.b . . 3 𝐵 = (Base‘𝐾)
5 riotaoc.o . . 3 = (oc‘𝐾)
64, 5opoccl 36763 . 2 ((𝐾 ∈ OP ∧ 𝑦𝐵) → ( 𝑦) ∈ 𝐵)
74, 5opoccl 36763 . 2 ((𝐾 ∈ OP ∧ (𝑦𝐵 𝜓) ∈ 𝐵) → ( ‘(𝑦𝐵 𝜓)) ∈ 𝐵)
8 riotaoc.a . 2 (𝑥 = ( 𝑦) → (𝜑𝜓))
9 fveq2 6659 . 2 (𝑦 = (𝑦𝐵 𝜓) → ( 𝑦) = ( ‘(𝑦𝐵 𝜓)))
104, 5opoccl 36763 . . 3 ((𝐾 ∈ OP ∧ 𝑥𝐵) → ( 𝑥) ∈ 𝐵)
114, 5opcon2b 36766 . . 3 ((𝐾 ∈ OP ∧ 𝑥𝐵𝑦𝐵) → (𝑥 = ( 𝑦) ↔ 𝑦 = ( 𝑥)))
1210, 11reuhypd 5289 . 2 ((𝐾 ∈ OP ∧ 𝑥𝐵) → ∃!𝑦𝐵 𝑥 = ( 𝑦))
133, 6, 7, 8, 9, 12riotaxfrd 7143 1 ((𝐾 ∈ OP ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐵 𝜑) = ( ‘(𝑦𝐵 𝜓)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400   = wceq 1539   ∈ wcel 2112  ∃!wreu 3073  ‘cfv 6336  ℩crio 7108  Basecbs 16534  occoc 16624  OPcops 36741 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-nul 5177 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-br 5034  df-dm 5535  df-iota 6295  df-fv 6344  df-riota 7109  df-ov 7154  df-oposet 36745 This theorem is referenced by:  glbconN  36946
 Copyright terms: Public domain W3C validator