Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > riotaocN | Structured version Visualization version GIF version |
Description: The orthocomplement of the unique poset element such that 𝜓. (riotaneg 11649 analog.) (Contributed by NM, 16-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
riotaoc.b | ⊢ 𝐵 = (Base‘𝐾) |
riotaoc.o | ⊢ ⊥ = (oc‘𝐾) |
riotaoc.a | ⊢ (𝑥 = ( ⊥ ‘𝑦) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
riotaocN | ⊢ ((𝐾 ∈ OP ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐵 𝜑) = ( ⊥ ‘(℩𝑦 ∈ 𝐵 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2920 | . . 3 ⊢ Ⅎ𝑦 ⊥ | |
2 | nfriota1 7116 | . . 3 ⊢ Ⅎ𝑦(℩𝑦 ∈ 𝐵 𝜓) | |
3 | 1, 2 | nffv 6669 | . 2 ⊢ Ⅎ𝑦( ⊥ ‘(℩𝑦 ∈ 𝐵 𝜓)) |
4 | riotaoc.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
5 | riotaoc.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
6 | 4, 5 | opoccl 36763 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑦 ∈ 𝐵) → ( ⊥ ‘𝑦) ∈ 𝐵) |
7 | 4, 5 | opoccl 36763 | . 2 ⊢ ((𝐾 ∈ OP ∧ (℩𝑦 ∈ 𝐵 𝜓) ∈ 𝐵) → ( ⊥ ‘(℩𝑦 ∈ 𝐵 𝜓)) ∈ 𝐵) |
8 | riotaoc.a | . 2 ⊢ (𝑥 = ( ⊥ ‘𝑦) → (𝜑 ↔ 𝜓)) | |
9 | fveq2 6659 | . 2 ⊢ (𝑦 = (℩𝑦 ∈ 𝐵 𝜓) → ( ⊥ ‘𝑦) = ( ⊥ ‘(℩𝑦 ∈ 𝐵 𝜓))) | |
10 | 4, 5 | opoccl 36763 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵) → ( ⊥ ‘𝑥) ∈ 𝐵) |
11 | 4, 5 | opcon2b 36766 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 = ( ⊥ ‘𝑦) ↔ 𝑦 = ( ⊥ ‘𝑥))) |
12 | 10, 11 | reuhypd 5289 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 𝑥 = ( ⊥ ‘𝑦)) |
13 | 3, 6, 7, 8, 9, 12 | riotaxfrd 7143 | 1 ⊢ ((𝐾 ∈ OP ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐵 𝜑) = ( ⊥ ‘(℩𝑦 ∈ 𝐵 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∃!wreu 3073 ‘cfv 6336 ℩crio 7108 Basecbs 16534 occoc 16624 OPcops 36741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-nul 5177 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-dm 5535 df-iota 6295 df-fv 6344 df-riota 7109 df-ov 7154 df-oposet 36745 |
This theorem is referenced by: glbconN 36946 |
Copyright terms: Public domain | W3C validator |