MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuhyp Structured version   Visualization version   GIF version

Theorem reuhyp 5338
Description: A theorem useful for eliminating the restricted existential uniqueness hypotheses in reuxfr1 3682. (Contributed by NM, 15-Nov-2004.)
Hypotheses
Ref Expression
reuhyp.1 (𝑥𝐶𝐵𝐶)
reuhyp.2 ((𝑥𝐶𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))
Assertion
Ref Expression
reuhyp (𝑥𝐶 → ∃!𝑦𝐶 𝑥 = 𝐴)
Distinct variable groups:   𝑦,𝐵   𝑦,𝐶   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem reuhyp
StepHypRef Expression
1 tru 1543 . 2
2 reuhyp.1 . . . 4 (𝑥𝐶𝐵𝐶)
32adantl 481 . . 3 ((⊤ ∧ 𝑥𝐶) → 𝐵𝐶)
4 reuhyp.2 . . . 4 ((𝑥𝐶𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))
543adant1 1128 . . 3 ((⊤ ∧ 𝑥𝐶𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))
63, 5reuhypd 5337 . 2 ((⊤ ∧ 𝑥𝐶) → ∃!𝑦𝐶 𝑥 = 𝐴)
71, 6mpan 686 1 (𝑥𝐶 → ∃!𝑦𝐶 𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wtru 1540  wcel 2108  ∃!wreu 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1542  df-ex 1784  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-reu 3070  df-v 3424
This theorem is referenced by:  riotaneg  11884  zriotaneg  12364  zmax  12614  rebtwnz  12616
  Copyright terms: Public domain W3C validator