|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > reuhyp | Structured version Visualization version GIF version | ||
| Description: A theorem useful for eliminating the restricted existential uniqueness hypotheses in reuxfr1 3758. (Contributed by NM, 15-Nov-2004.) | 
| Ref | Expression | 
|---|---|
| reuhyp.1 | ⊢ (𝑥 ∈ 𝐶 → 𝐵 ∈ 𝐶) | 
| reuhyp.2 | ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) | 
| Ref | Expression | 
|---|---|
| reuhyp | ⊢ (𝑥 ∈ 𝐶 → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tru 1544 | . 2 ⊢ ⊤ | |
| 2 | reuhyp.1 | . . . 4 ⊢ (𝑥 ∈ 𝐶 → 𝐵 ∈ 𝐶) | |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝐶) | 
| 4 | reuhyp.2 | . . . 4 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) | |
| 5 | 4 | 3adant1 1131 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) | 
| 6 | 3, 5 | reuhypd 5419 | . 2 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐶) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) | 
| 7 | 1, 6 | mpan 690 | 1 ⊢ (𝑥 ∈ 𝐶 → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ∃!wreu 3378 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1543 df-ex 1780 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-reu 3381 df-v 3482 | 
| This theorem is referenced by: riotaneg 12247 zriotaneg 12731 zmax 12987 rebtwnz 12989 | 
| Copyright terms: Public domain | W3C validator |