![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reuhyp | Structured version Visualization version GIF version |
Description: A theorem useful for eliminating the restricted existential uniqueness hypotheses in reuxfr1 3747. (Contributed by NM, 15-Nov-2004.) |
Ref | Expression |
---|---|
reuhyp.1 | ⊢ (𝑥 ∈ 𝐶 → 𝐵 ∈ 𝐶) |
reuhyp.2 | ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) |
Ref | Expression |
---|---|
reuhyp | ⊢ (𝑥 ∈ 𝐶 → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1543 | . 2 ⊢ ⊤ | |
2 | reuhyp.1 | . . . 4 ⊢ (𝑥 ∈ 𝐶 → 𝐵 ∈ 𝐶) | |
3 | 2 | adantl 480 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝐶) |
4 | reuhyp.2 | . . . 4 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) | |
5 | 4 | 3adant1 1128 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) |
6 | 3, 5 | reuhypd 5416 | . 2 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐶) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
7 | 1, 6 | mpan 686 | 1 ⊢ (𝑥 ∈ 𝐶 → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ⊤wtru 1540 ∈ wcel 2104 ∃!wreu 3372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 df-tru 1542 df-ex 1780 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-reu 3375 df-v 3474 |
This theorem is referenced by: riotaneg 12197 zriotaneg 12679 zmax 12933 rebtwnz 12935 |
Copyright terms: Public domain | W3C validator |