MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reupick3 Structured version   Visualization version   GIF version

Theorem reupick3 4076
Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016.)
Assertion
Ref Expression
reupick3 ((∃!𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 (𝜑𝜓) ∧ 𝑥𝐴) → (𝜑𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem reupick3
StepHypRef Expression
1 df-reu 3062 . . . 4 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 df-rex 3061 . . . . 5 (∃𝑥𝐴 (𝜑𝜓) ↔ ∃𝑥(𝑥𝐴 ∧ (𝜑𝜓)))
3 anass 460 . . . . . 6 (((𝑥𝐴𝜑) ∧ 𝜓) ↔ (𝑥𝐴 ∧ (𝜑𝜓)))
43exbii 1943 . . . . 5 (∃𝑥((𝑥𝐴𝜑) ∧ 𝜓) ↔ ∃𝑥(𝑥𝐴 ∧ (𝜑𝜓)))
52, 4bitr4i 269 . . . 4 (∃𝑥𝐴 (𝜑𝜓) ↔ ∃𝑥((𝑥𝐴𝜑) ∧ 𝜓))
6 eupick 2658 . . . 4 ((∃!𝑥(𝑥𝐴𝜑) ∧ ∃𝑥((𝑥𝐴𝜑) ∧ 𝜓)) → ((𝑥𝐴𝜑) → 𝜓))
71, 5, 6syl2anb 591 . . 3 ((∃!𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 (𝜑𝜓)) → ((𝑥𝐴𝜑) → 𝜓))
87expd 404 . 2 ((∃!𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 (𝜑𝜓)) → (𝑥𝐴 → (𝜑𝜓)))
983impia 1145 1 ((∃!𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 (𝜑𝜓) ∧ 𝑥𝐴) → (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107  wex 1874  wcel 2155  ∃!weu 2581  wrex 3056  ∃!wreu 3057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-10 2183  ax-12 2211
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-ex 1875  df-nf 1879  df-mo 2565  df-eu 2582  df-rex 3061  df-reu 3062
This theorem is referenced by:  reupick2  4077
  Copyright terms: Public domain W3C validator