Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reupick3 | Structured version Visualization version GIF version |
Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016.) |
Ref | Expression |
---|---|
reupick3 | ⊢ ((∃!𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ∧ 𝑥 ∈ 𝐴) → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 3070 | . . . 4 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | df-rex 3069 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
3 | anass 468 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
4 | 3 | exbii 1851 | . . . . 5 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) |
5 | 2, 4 | bitr4i 277 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) |
6 | eupick 2635 | . . . 4 ⊢ ((∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓)) | |
7 | 1, 5, 6 | syl2anb 597 | . . 3 ⊢ ((∃!𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓)) |
8 | 7 | expd 415 | . 2 ⊢ ((∃!𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) → (𝑥 ∈ 𝐴 → (𝜑 → 𝜓))) |
9 | 8 | 3impia 1115 | 1 ⊢ ((∃!𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ∧ 𝑥 ∈ 𝐴) → (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∃wex 1783 ∈ wcel 2108 ∃!weu 2568 ∃wrex 3064 ∃!wreu 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-ex 1784 df-nf 1788 df-mo 2540 df-eu 2569 df-rex 3069 df-reu 3070 |
This theorem is referenced by: reupick2 4251 fvineqsneq 35510 |
Copyright terms: Public domain | W3C validator |