Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reupick3 | Structured version Visualization version GIF version |
Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016.) |
Ref | Expression |
---|---|
reupick3 | ⊢ ((∃!𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ∧ 𝑥 ∈ 𝐴) → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 3072 | . . . 4 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | df-rex 3070 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
3 | anass 469 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | |
4 | 3 | exbii 1850 | . . . . 5 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) |
5 | 2, 4 | bitr4i 277 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) |
6 | eupick 2635 | . . . 4 ⊢ ((∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜓)) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓)) | |
7 | 1, 5, 6 | syl2anb 598 | . . 3 ⊢ ((∃!𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓)) |
8 | 7 | expd 416 | . 2 ⊢ ((∃!𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) → (𝑥 ∈ 𝐴 → (𝜑 → 𝜓))) |
9 | 8 | 3impia 1116 | 1 ⊢ ((∃!𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ∧ 𝑥 ∈ 𝐴) → (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∃wex 1782 ∈ wcel 2106 ∃!weu 2568 ∃wrex 3065 ∃!wreu 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-ex 1783 df-nf 1787 df-mo 2540 df-eu 2569 df-rex 3070 df-reu 3072 |
This theorem is referenced by: reupick2 4254 fvineqsneq 35583 |
Copyright terms: Public domain | W3C validator |