MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reupick Structured version   Visualization version   GIF version

Theorem reupick 4249
Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by NM, 21-Aug-1999.)
Assertion
Ref Expression
reupick (((𝐴𝐵 ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑)) ∧ 𝜑) → (𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reupick
StepHypRef Expression
1 ssel 3910 . . 3 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21ad2antrr 722 . 2 (((𝐴𝐵 ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑)) ∧ 𝜑) → (𝑥𝐴𝑥𝐵))
3 df-rex 3069 . . . . . 6 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-reu 3070 . . . . . 6 (∃!𝑥𝐵 𝜑 ↔ ∃!𝑥(𝑥𝐵𝜑))
53, 4anbi12i 626 . . . . 5 ((∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃!𝑥(𝑥𝐵𝜑)))
61ancrd 551 . . . . . . . . . . 11 (𝐴𝐵 → (𝑥𝐴 → (𝑥𝐵𝑥𝐴)))
76anim1d 610 . . . . . . . . . 10 (𝐴𝐵 → ((𝑥𝐴𝜑) → ((𝑥𝐵𝑥𝐴) ∧ 𝜑)))
8 an32 642 . . . . . . . . . 10 (((𝑥𝐵𝑥𝐴) ∧ 𝜑) ↔ ((𝑥𝐵𝜑) ∧ 𝑥𝐴))
97, 8syl6ib 250 . . . . . . . . 9 (𝐴𝐵 → ((𝑥𝐴𝜑) → ((𝑥𝐵𝜑) ∧ 𝑥𝐴)))
109eximdv 1921 . . . . . . . 8 (𝐴𝐵 → (∃𝑥(𝑥𝐴𝜑) → ∃𝑥((𝑥𝐵𝜑) ∧ 𝑥𝐴)))
11 eupick 2635 . . . . . . . . 9 ((∃!𝑥(𝑥𝐵𝜑) ∧ ∃𝑥((𝑥𝐵𝜑) ∧ 𝑥𝐴)) → ((𝑥𝐵𝜑) → 𝑥𝐴))
1211ex 412 . . . . . . . 8 (∃!𝑥(𝑥𝐵𝜑) → (∃𝑥((𝑥𝐵𝜑) ∧ 𝑥𝐴) → ((𝑥𝐵𝜑) → 𝑥𝐴)))
1310, 12syl9 77 . . . . . . 7 (𝐴𝐵 → (∃!𝑥(𝑥𝐵𝜑) → (∃𝑥(𝑥𝐴𝜑) → ((𝑥𝐵𝜑) → 𝑥𝐴))))
1413com23 86 . . . . . 6 (𝐴𝐵 → (∃𝑥(𝑥𝐴𝜑) → (∃!𝑥(𝑥𝐵𝜑) → ((𝑥𝐵𝜑) → 𝑥𝐴))))
1514imp32 418 . . . . 5 ((𝐴𝐵 ∧ (∃𝑥(𝑥𝐴𝜑) ∧ ∃!𝑥(𝑥𝐵𝜑))) → ((𝑥𝐵𝜑) → 𝑥𝐴))
165, 15sylan2b 593 . . . 4 ((𝐴𝐵 ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑)) → ((𝑥𝐵𝜑) → 𝑥𝐴))
1716expcomd 416 . . 3 ((𝐴𝐵 ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑)) → (𝜑 → (𝑥𝐵𝑥𝐴)))
1817imp 406 . 2 (((𝐴𝐵 ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑)) ∧ 𝜑) → (𝑥𝐵𝑥𝐴))
192, 18impbid 211 1 (((𝐴𝐵 ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑)) ∧ 𝜑) → (𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wex 1783  wcel 2108  ∃!weu 2568  wrex 3064  ∃!wreu 3065  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-rex 3069  df-reu 3070  df-v 3424  df-in 3890  df-ss 3900
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator