Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > reurab | Structured version Visualization version GIF version |
Description: Restricted existential uniqueness of a restricted abstraction. (Contributed by Scott Fenton, 8-Aug-2024.) |
Ref | Expression |
---|---|
reurab.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
reurab | ⊢ (∃!𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓}𝜒 ↔ ∃!𝑥 ∈ 𝐴 (𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reurab.1 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | bicomd 222 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜑)) |
3 | 2 | equcoms 2024 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜑)) |
4 | 3 | elrab 3617 | . . . . 5 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
5 | 4 | anbi1i 623 | . . . 4 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓} ∧ 𝜒) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜒)) |
6 | anass 468 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜒) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜒))) | |
7 | 5, 6 | bitri 274 | . . 3 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓} ∧ 𝜒) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜒))) |
8 | 7 | eubii 2585 | . 2 ⊢ (∃!𝑥(𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓} ∧ 𝜒) ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜒))) |
9 | df-reu 3070 | . 2 ⊢ (∃!𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓}𝜒 ↔ ∃!𝑥(𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓} ∧ 𝜒)) | |
10 | df-reu 3070 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 (𝜑 ∧ 𝜒) ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜒))) | |
11 | 8, 9, 10 | 3bitr4i 302 | 1 ⊢ (∃!𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓}𝜒 ↔ ∃!𝑥 ∈ 𝐴 (𝜑 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∃!weu 2568 ∃!wreu 3065 {crab 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-reu 3070 df-rab 3072 df-v 3424 |
This theorem is referenced by: eqscut 33926 |
Copyright terms: Public domain | W3C validator |