|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rexrab2 | Structured version Visualization version GIF version | ||
| Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| ralab2.1 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| rexrab2 | ⊢ (∃𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜓 ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-rab 3436 | . . 3 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | 1 | rexeqi 3324 | . 2 ⊢ (∃𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜓 ↔ ∃𝑥 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}𝜓) | 
| 3 | ralab2.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | rexab2 3704 | . 2 ⊢ (∃𝑥 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}𝜓 ↔ ∃𝑦((𝑦 ∈ 𝐴 ∧ 𝜑) ∧ 𝜒)) | 
| 5 | anass 468 | . . . 4 ⊢ (((𝑦 ∈ 𝐴 ∧ 𝜑) ∧ 𝜒) ↔ (𝑦 ∈ 𝐴 ∧ (𝜑 ∧ 𝜒))) | |
| 6 | 5 | exbii 1847 | . . 3 ⊢ (∃𝑦((𝑦 ∈ 𝐴 ∧ 𝜑) ∧ 𝜒) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ (𝜑 ∧ 𝜒))) | 
| 7 | df-rex 3070 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜒) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ (𝜑 ∧ 𝜒))) | |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ (∃𝑦((𝑦 ∈ 𝐴 ∧ 𝜑) ∧ 𝜒) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜒)) | 
| 9 | 2, 4, 8 | 3bitri 297 | 1 ⊢ (∃𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜓 ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1778 ∈ wcel 2107 {cab 2713 ∃wrex 3069 {crab 3435 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-rex 3070 df-rab 3436 | 
| This theorem is referenced by: frminex 5663 sstotbnd3 37784 | 
| Copyright terms: Public domain | W3C validator |