MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexrab2 Structured version   Visualization version   GIF version

Theorem rexrab2 3696
Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab2.1 (𝑥 = 𝑦 → (𝜓𝜒))
Assertion
Ref Expression
rexrab2 (∃𝑥 ∈ {𝑦𝐴𝜑}𝜓 ↔ ∃𝑦𝐴 (𝜑𝜒))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜒,𝑥   𝜑,𝑥   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem rexrab2
StepHypRef Expression
1 df-rab 3432 . . 3 {𝑦𝐴𝜑} = {𝑦 ∣ (𝑦𝐴𝜑)}
21rexeqi 3323 . 2 (∃𝑥 ∈ {𝑦𝐴𝜑}𝜓 ↔ ∃𝑥 ∈ {𝑦 ∣ (𝑦𝐴𝜑)}𝜓)
3 ralab2.1 . . 3 (𝑥 = 𝑦 → (𝜓𝜒))
43rexab2 3695 . 2 (∃𝑥 ∈ {𝑦 ∣ (𝑦𝐴𝜑)}𝜓 ↔ ∃𝑦((𝑦𝐴𝜑) ∧ 𝜒))
5 anass 468 . . . 4 (((𝑦𝐴𝜑) ∧ 𝜒) ↔ (𝑦𝐴 ∧ (𝜑𝜒)))
65exbii 1849 . . 3 (∃𝑦((𝑦𝐴𝜑) ∧ 𝜒) ↔ ∃𝑦(𝑦𝐴 ∧ (𝜑𝜒)))
7 df-rex 3070 . . 3 (∃𝑦𝐴 (𝜑𝜒) ↔ ∃𝑦(𝑦𝐴 ∧ (𝜑𝜒)))
86, 7bitr4i 278 . 2 (∃𝑦((𝑦𝐴𝜑) ∧ 𝜒) ↔ ∃𝑦𝐴 (𝜑𝜒))
92, 4, 83bitri 297 1 (∃𝑥 ∈ {𝑦𝐴𝜑}𝜓 ↔ ∃𝑦𝐴 (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wex 1780  wcel 2105  {cab 2708  wrex 3069  {crab 3431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-rex 3070  df-rab 3432
This theorem is referenced by:  frminex  5656  sstotbnd3  37110
  Copyright terms: Public domain W3C validator