| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexrab2 | Structured version Visualization version GIF version | ||
| Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| ralab2.1 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexrab2 | ⊢ (∃𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜓 ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3421 | . . 3 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | 1 | rexeqi 3308 | . 2 ⊢ (∃𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜓 ↔ ∃𝑥 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}𝜓) |
| 3 | ralab2.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | rexab2 3687 | . 2 ⊢ (∃𝑥 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}𝜓 ↔ ∃𝑦((𝑦 ∈ 𝐴 ∧ 𝜑) ∧ 𝜒)) |
| 5 | anass 468 | . . . 4 ⊢ (((𝑦 ∈ 𝐴 ∧ 𝜑) ∧ 𝜒) ↔ (𝑦 ∈ 𝐴 ∧ (𝜑 ∧ 𝜒))) | |
| 6 | 5 | exbii 1848 | . . 3 ⊢ (∃𝑦((𝑦 ∈ 𝐴 ∧ 𝜑) ∧ 𝜒) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ (𝜑 ∧ 𝜒))) |
| 7 | df-rex 3062 | . . 3 ⊢ (∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜒) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ (𝜑 ∧ 𝜒))) | |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ (∃𝑦((𝑦 ∈ 𝐴 ∧ 𝜑) ∧ 𝜒) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜒)) |
| 9 | 2, 4, 8 | 3bitri 297 | 1 ⊢ (∃𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜓 ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 {cab 2714 ∃wrex 3061 {crab 3420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-rex 3062 df-rab 3421 |
| This theorem is referenced by: frminex 5638 sstotbnd3 37805 |
| Copyright terms: Public domain | W3C validator |