MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqscut Structured version   Visualization version   GIF version

Theorem eqscut 27654
Description: Condition for equality to a surreal cut. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
eqscut ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))))
Distinct variable groups:   𝑦,𝐿   𝑦,𝑅
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem eqscut
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 scutval 27649 . . . . 5 (𝐿 <<s 𝑅 → (𝐿 |s 𝑅) = (𝑥 ∈ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
21adantr 480 . . . 4 ((𝐿 <<s 𝑅𝑋 No ) → (𝐿 |s 𝑅) = (𝑥 ∈ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
3 sneq 4630 . . . . . . 7 (𝑥 = 𝑦 → {𝑥} = {𝑦})
43breq2d 5150 . . . . . 6 (𝑥 = 𝑦 → (𝐿 <<s {𝑥} ↔ 𝐿 <<s {𝑦}))
53breq1d 5148 . . . . . 6 (𝑥 = 𝑦 → ({𝑥} <<s 𝑅 ↔ {𝑦} <<s 𝑅))
64, 5anbi12d 630 . . . . 5 (𝑥 = 𝑦 → ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ↔ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)))
76riotarab 7400 . . . 4 (𝑥 ∈ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) = (𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
82, 7eqtrdi 2780 . . 3 ((𝐿 <<s 𝑅𝑋 No ) → (𝐿 |s 𝑅) = (𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))))
98eqeq1d 2726 . 2 ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) = 𝑋))
10 conway 27648 . . . 4 (𝐿 <<s 𝑅 → ∃!𝑥 ∈ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))
116reurab 3689 . . . 4 (∃!𝑥 ∈ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}) ↔ ∃!𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
1210, 11sylib 217 . . 3 (𝐿 <<s 𝑅 → ∃!𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
13 df-3an 1086 . . . . . 6 ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅 ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
14 sneq 4630 . . . . . . . 8 (𝑥 = 𝑋 → {𝑥} = {𝑋})
1514breq2d 5150 . . . . . . 7 (𝑥 = 𝑋 → (𝐿 <<s {𝑥} ↔ 𝐿 <<s {𝑋}))
1614breq1d 5148 . . . . . . 7 (𝑥 = 𝑋 → ({𝑥} <<s 𝑅 ↔ {𝑋} <<s 𝑅))
17 fveqeq2 6890 . . . . . . 7 (𝑥 = 𝑋 → (( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}) ↔ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
1815, 16, 173anbi123d 1432 . . . . . 6 (𝑥 = 𝑋 → ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅 ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))))
1913, 18bitr3id 285 . . . . 5 (𝑥 = 𝑋 → (((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))))
2019riota2 7383 . . . 4 ((𝑋 No ∧ ∃!𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) → ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) = 𝑋))
2120ancoms 458 . . 3 ((∃!𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ∧ 𝑋 No ) → ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) = 𝑋))
2212, 21sylan 579 . 2 ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) = 𝑋))
239, 22bitr4d 282 1 ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  ∃!wreu 3366  {crab 3424  {csn 4620   cint 4940   class class class wbr 5138  cima 5669  cfv 6533  crio 7356  (class class class)co 7401   No csur 27489   bday cbday 27491   <<s csslt 27629   |s cscut 27631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-ord 6357  df-on 6358  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1o 8461  df-2o 8462  df-no 27492  df-slt 27493  df-bday 27494  df-sslt 27630  df-scut 27632
This theorem is referenced by:  eqscut2  27655  cuteq0  27681  madebdaylemlrcut  27741  cofcut1  27756
  Copyright terms: Public domain W3C validator