Step | Hyp | Ref
| Expression |
1 | | scutval 33994 |
. . . . 5
⊢ (𝐿 <<s 𝑅 → (𝐿 |s 𝑅) = (℩𝑥 ∈ {𝑦 ∈ No
∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) |
2 | 1 | adantr 481 |
. . . 4
⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No )
→ (𝐿 |s 𝑅) = (℩𝑥 ∈ {𝑦 ∈ No
∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) |
3 | | sneq 4571 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) |
4 | 3 | breq2d 5086 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐿 <<s {𝑥} ↔ 𝐿 <<s {𝑦})) |
5 | 3 | breq1d 5084 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ({𝑥} <<s 𝑅 ↔ {𝑦} <<s 𝑅)) |
6 | 4, 5 | anbi12d 631 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ↔ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅))) |
7 | 6 | riotarab 33673 |
. . . 4
⊢
(℩𝑥
∈ {𝑦 ∈ No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})) = (℩𝑥 ∈ No
((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) |
8 | 2, 7 | eqtrdi 2794 |
. . 3
⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No )
→ (𝐿 |s 𝑅) = (℩𝑥 ∈
No ((𝐿 <<s
{𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})))) |
9 | 8 | eqeq1d 2740 |
. 2
⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No )
→ ((𝐿 |s 𝑅) = 𝑋 ↔ (℩𝑥 ∈ No
((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) = 𝑋)) |
10 | | conway 33993 |
. . . 4
⊢ (𝐿 <<s 𝑅 → ∃!𝑥 ∈ {𝑦 ∈ No
∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})) |
11 | 6 | reurab 33674 |
. . . 4
⊢
(∃!𝑥 ∈
{𝑦 ∈ No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}) ↔ ∃!𝑥 ∈ No
((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) |
12 | 10, 11 | sylib 217 |
. . 3
⊢ (𝐿 <<s 𝑅 → ∃!𝑥 ∈ No
((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) |
13 | | df-3an 1088 |
. . . . . 6
⊢ ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅 ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) |
14 | | sneq 4571 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) |
15 | 14 | breq2d 5086 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝐿 <<s {𝑥} ↔ 𝐿 <<s {𝑋})) |
16 | 14 | breq1d 5084 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → ({𝑥} <<s 𝑅 ↔ {𝑋} <<s 𝑅)) |
17 | | fveqeq2 6783 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}) ↔ ( bday
‘𝑋) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) |
18 | 15, 16, 17 | 3anbi123d 1435 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅 ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday
‘𝑋) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})))) |
19 | 13, 18 | bitr3id 285 |
. . . . 5
⊢ (𝑥 = 𝑋 → (((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday
‘𝑋) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})))) |
20 | 19 | riota2 7258 |
. . . 4
⊢ ((𝑋 ∈
No ∧ ∃!𝑥
∈ No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) → ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday
‘𝑋) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (℩𝑥 ∈
No ((𝐿 <<s
{𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) = 𝑋)) |
21 | 20 | ancoms 459 |
. . 3
⊢
((∃!𝑥 ∈
No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ∧ 𝑋 ∈ No )
→ ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday
‘𝑋) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (℩𝑥 ∈
No ((𝐿 <<s
{𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) = 𝑋)) |
22 | 12, 21 | sylan 580 |
. 2
⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No )
→ ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday
‘𝑋) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (℩𝑥 ∈
No ((𝐿 <<s
{𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) = 𝑋)) |
23 | 9, 22 | bitr4d 281 |
1
⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No )
→ ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday
‘𝑋) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})))) |