| Step | Hyp | Ref
| Expression |
| 1 | | scutval 27846 |
. . . . 5
⊢ (𝐿 <<s 𝑅 → (𝐿 |s 𝑅) = (℩𝑥 ∈ {𝑦 ∈ No
∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) |
| 2 | 1 | adantr 480 |
. . . 4
⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No )
→ (𝐿 |s 𝑅) = (℩𝑥 ∈ {𝑦 ∈ No
∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) |
| 3 | | sneq 4635 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) |
| 4 | 3 | breq2d 5154 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐿 <<s {𝑥} ↔ 𝐿 <<s {𝑦})) |
| 5 | 3 | breq1d 5152 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ({𝑥} <<s 𝑅 ↔ {𝑦} <<s 𝑅)) |
| 6 | 4, 5 | anbi12d 632 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ↔ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅))) |
| 7 | 6 | riotarab 7431 |
. . . 4
⊢
(℩𝑥
∈ {𝑦 ∈ No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})) = (℩𝑥 ∈ No
((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) |
| 8 | 2, 7 | eqtrdi 2792 |
. . 3
⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No )
→ (𝐿 |s 𝑅) = (℩𝑥 ∈
No ((𝐿 <<s
{𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})))) |
| 9 | 8 | eqeq1d 2738 |
. 2
⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No )
→ ((𝐿 |s 𝑅) = 𝑋 ↔ (℩𝑥 ∈ No
((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) = 𝑋)) |
| 10 | | conway 27845 |
. . . 4
⊢ (𝐿 <<s 𝑅 → ∃!𝑥 ∈ {𝑦 ∈ No
∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})) |
| 11 | 6 | reurab 3706 |
. . . 4
⊢
(∃!𝑥 ∈
{𝑦 ∈ No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}) ↔ ∃!𝑥 ∈ No
((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) |
| 12 | 10, 11 | sylib 218 |
. . 3
⊢ (𝐿 <<s 𝑅 → ∃!𝑥 ∈ No
((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) |
| 13 | | df-3an 1088 |
. . . . . 6
⊢ ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅 ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) |
| 14 | | sneq 4635 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) |
| 15 | 14 | breq2d 5154 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝐿 <<s {𝑥} ↔ 𝐿 <<s {𝑋})) |
| 16 | 14 | breq1d 5152 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → ({𝑥} <<s 𝑅 ↔ {𝑋} <<s 𝑅)) |
| 17 | | fveqeq2 6914 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}) ↔ ( bday
‘𝑋) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) |
| 18 | 15, 16, 17 | 3anbi123d 1437 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅 ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday
‘𝑋) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})))) |
| 19 | 13, 18 | bitr3id 285 |
. . . . 5
⊢ (𝑥 = 𝑋 → (((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday
‘𝑋) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})))) |
| 20 | 19 | riota2 7414 |
. . . 4
⊢ ((𝑋 ∈
No ∧ ∃!𝑥
∈ No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) → ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday
‘𝑋) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (℩𝑥 ∈
No ((𝐿 <<s
{𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) = 𝑋)) |
| 21 | 20 | ancoms 458 |
. . 3
⊢
((∃!𝑥 ∈
No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ∧ 𝑋 ∈ No )
→ ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday
‘𝑋) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (℩𝑥 ∈
No ((𝐿 <<s
{𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) = 𝑋)) |
| 22 | 12, 21 | sylan 580 |
. 2
⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No )
→ ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday
‘𝑋) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (℩𝑥 ∈
No ((𝐿 <<s
{𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) = 𝑋)) |
| 23 | 9, 22 | bitr4d 282 |
1
⊢ ((𝐿 <<s 𝑅 ∧ 𝑋 ∈ No )
→ ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday
‘𝑋) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝐿
<<s {𝑦} ∧ {𝑦} <<s 𝑅)})))) |