Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqscut Structured version   Visualization version   GIF version

Theorem eqscut 33926
Description: Condition for equality to a surreal cut. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
eqscut ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))))
Distinct variable groups:   𝑦,𝐿   𝑦,𝑅
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem eqscut
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 scutval 33921 . . . . 5 (𝐿 <<s 𝑅 → (𝐿 |s 𝑅) = (𝑥 ∈ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
21adantr 480 . . . 4 ((𝐿 <<s 𝑅𝑋 No ) → (𝐿 |s 𝑅) = (𝑥 ∈ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
3 sneq 4568 . . . . . . 7 (𝑥 = 𝑦 → {𝑥} = {𝑦})
43breq2d 5082 . . . . . 6 (𝑥 = 𝑦 → (𝐿 <<s {𝑥} ↔ 𝐿 <<s {𝑦}))
53breq1d 5080 . . . . . 6 (𝑥 = 𝑦 → ({𝑥} <<s 𝑅 ↔ {𝑦} <<s 𝑅))
64, 5anbi12d 630 . . . . 5 (𝑥 = 𝑦 → ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ↔ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)))
76riotarab 33575 . . . 4 (𝑥 ∈ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) = (𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
82, 7eqtrdi 2795 . . 3 ((𝐿 <<s 𝑅𝑋 No ) → (𝐿 |s 𝑅) = (𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))))
98eqeq1d 2740 . 2 ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) = 𝑋))
10 conway 33920 . . . 4 (𝐿 <<s 𝑅 → ∃!𝑥 ∈ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))
116reurab 33576 . . . 4 (∃!𝑥 ∈ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}) ↔ ∃!𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
1210, 11sylib 217 . . 3 (𝐿 <<s 𝑅 → ∃!𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
13 df-3an 1087 . . . . . 6 ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅 ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
14 sneq 4568 . . . . . . . 8 (𝑥 = 𝑋 → {𝑥} = {𝑋})
1514breq2d 5082 . . . . . . 7 (𝑥 = 𝑋 → (𝐿 <<s {𝑥} ↔ 𝐿 <<s {𝑋}))
1614breq1d 5080 . . . . . . 7 (𝑥 = 𝑋 → ({𝑥} <<s 𝑅 ↔ {𝑋} <<s 𝑅))
17 fveqeq2 6765 . . . . . . 7 (𝑥 = 𝑋 → (( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}) ↔ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
1815, 16, 173anbi123d 1434 . . . . . 6 (𝑥 = 𝑋 → ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅 ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))))
1913, 18bitr3id 284 . . . . 5 (𝑥 = 𝑋 → (((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))))
2019riota2 7238 . . . 4 ((𝑋 No ∧ ∃!𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) → ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) = 𝑋))
2120ancoms 458 . . 3 ((∃!𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ∧ 𝑋 No ) → ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) = 𝑋))
2212, 21sylan 579 . 2 ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) = 𝑋))
239, 22bitr4d 281 1 ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  ∃!wreu 3065  {crab 3067  {csn 4558   cint 4876   class class class wbr 5070  cima 5583  cfv 6418  crio 7211  (class class class)co 7255   No csur 33770   bday cbday 33772   <<s csslt 33902   |s cscut 33904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774  df-bday 33775  df-sslt 33903  df-scut 33905
This theorem is referenced by:  eqscut2  33927  madebdaylemlrcut  34006  cofcut1  34017
  Copyright terms: Public domain W3C validator