MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqscut Structured version   Visualization version   GIF version

Theorem eqscut 27751
Description: Condition for equality to a surreal cut. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
eqscut ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))))
Distinct variable groups:   𝑦,𝐿   𝑦,𝑅
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem eqscut
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 scutval 27746 . . . . 5 (𝐿 <<s 𝑅 → (𝐿 |s 𝑅) = (𝑥 ∈ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
21adantr 480 . . . 4 ((𝐿 <<s 𝑅𝑋 No ) → (𝐿 |s 𝑅) = (𝑥 ∈ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
3 sneq 4595 . . . . . . 7 (𝑥 = 𝑦 → {𝑥} = {𝑦})
43breq2d 5114 . . . . . 6 (𝑥 = 𝑦 → (𝐿 <<s {𝑥} ↔ 𝐿 <<s {𝑦}))
53breq1d 5112 . . . . . 6 (𝑥 = 𝑦 → ({𝑥} <<s 𝑅 ↔ {𝑦} <<s 𝑅))
64, 5anbi12d 632 . . . . 5 (𝑥 = 𝑦 → ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ↔ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)))
76riotarab 7368 . . . 4 (𝑥 ∈ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) = (𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
82, 7eqtrdi 2780 . . 3 ((𝐿 <<s 𝑅𝑋 No ) → (𝐿 |s 𝑅) = (𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))))
98eqeq1d 2731 . 2 ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) = 𝑋))
10 conway 27745 . . . 4 (𝐿 <<s 𝑅 → ∃!𝑥 ∈ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))
116reurab 3669 . . . 4 (∃!𝑥 ∈ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}) ↔ ∃!𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
1210, 11sylib 218 . . 3 (𝐿 <<s 𝑅 → ∃!𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
13 df-3an 1088 . . . . . 6 ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅 ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
14 sneq 4595 . . . . . . . 8 (𝑥 = 𝑋 → {𝑥} = {𝑋})
1514breq2d 5114 . . . . . . 7 (𝑥 = 𝑋 → (𝐿 <<s {𝑥} ↔ 𝐿 <<s {𝑋}))
1614breq1d 5112 . . . . . . 7 (𝑥 = 𝑋 → ({𝑥} <<s 𝑅 ↔ {𝑋} <<s 𝑅))
17 fveqeq2 6849 . . . . . . 7 (𝑥 = 𝑋 → (( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}) ↔ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
1815, 16, 173anbi123d 1438 . . . . . 6 (𝑥 = 𝑋 → ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅 ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))))
1913, 18bitr3id 285 . . . . 5 (𝑥 = 𝑋 → (((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))))
2019riota2 7351 . . . 4 ((𝑋 No ∧ ∃!𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) → ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) = 𝑋))
2120ancoms 458 . . 3 ((∃!𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ∧ 𝑋 No ) → ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) = 𝑋))
2212, 21sylan 580 . 2 ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) = 𝑋))
239, 22bitr4d 282 1 ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  ∃!wreu 3349  {crab 3402  {csn 4585   cint 4906   class class class wbr 5102  cima 5634  cfv 6499  crio 7325  (class class class)co 7369   No csur 27584   bday cbday 27586   <<s csslt 27726   |s cscut 27728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1o 8411  df-2o 8412  df-no 27587  df-slt 27588  df-bday 27589  df-sslt 27727  df-scut 27729
This theorem is referenced by:  eqscut2  27752  cuteq0  27781  madebdaylemlrcut  27848  cofcut1  27868
  Copyright terms: Public domain W3C validator