MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqscut Structured version   Visualization version   GIF version

Theorem eqscut 27144
Description: Condition for equality to a surreal cut. (Contributed by Scott Fenton, 8-Aug-2024.)
Assertion
Ref Expression
eqscut ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))))
Distinct variable groups:   𝑦,𝐿   𝑦,𝑅
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem eqscut
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 scutval 27139 . . . . 5 (𝐿 <<s 𝑅 → (𝐿 |s 𝑅) = (𝑥 ∈ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
21adantr 481 . . . 4 ((𝐿 <<s 𝑅𝑋 No ) → (𝐿 |s 𝑅) = (𝑥 ∈ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
3 sneq 4596 . . . . . . 7 (𝑥 = 𝑦 → {𝑥} = {𝑦})
43breq2d 5117 . . . . . 6 (𝑥 = 𝑦 → (𝐿 <<s {𝑥} ↔ 𝐿 <<s {𝑦}))
53breq1d 5115 . . . . . 6 (𝑥 = 𝑦 → ({𝑥} <<s 𝑅 ↔ {𝑦} <<s 𝑅))
64, 5anbi12d 631 . . . . 5 (𝑥 = 𝑦 → ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ↔ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)))
76riotarab 7356 . . . 4 (𝑥 ∈ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) = (𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
82, 7eqtrdi 2792 . . 3 ((𝐿 <<s 𝑅𝑋 No ) → (𝐿 |s 𝑅) = (𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))))
98eqeq1d 2738 . 2 ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) = 𝑋))
10 conway 27138 . . . 4 (𝐿 <<s 𝑅 → ∃!𝑥 ∈ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))
116reurab 3659 . . . 4 (∃!𝑥 ∈ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}) ↔ ∃!𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
1210, 11sylib 217 . . 3 (𝐿 <<s 𝑅 → ∃!𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
13 df-3an 1089 . . . . . 6 ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅 ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
14 sneq 4596 . . . . . . . 8 (𝑥 = 𝑋 → {𝑥} = {𝑋})
1514breq2d 5117 . . . . . . 7 (𝑥 = 𝑋 → (𝐿 <<s {𝑥} ↔ 𝐿 <<s {𝑋}))
1614breq1d 5115 . . . . . . 7 (𝑥 = 𝑋 → ({𝑥} <<s 𝑅 ↔ {𝑋} <<s 𝑅))
17 fveqeq2 6851 . . . . . . 7 (𝑥 = 𝑋 → (( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}) ↔ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})))
1815, 16, 173anbi123d 1436 . . . . . 6 (𝑥 = 𝑋 → ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅 ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))))
1913, 18bitr3id 284 . . . . 5 (𝑥 = 𝑋 → (((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))))
2019riota2 7339 . . . 4 ((𝑋 No ∧ ∃!𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) → ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) = 𝑋))
2120ancoms 459 . . 3 ((∃!𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ∧ 𝑋 No ) → ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) = 𝑋))
2212, 21sylan 580 . 2 ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)})) ↔ (𝑥 No ((𝐿 <<s {𝑥} ∧ {𝑥} <<s 𝑅) ∧ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))) = 𝑋))
239, 22bitr4d 281 1 ((𝐿 <<s 𝑅𝑋 No ) → ((𝐿 |s 𝑅) = 𝑋 ↔ (𝐿 <<s {𝑋} ∧ {𝑋} <<s 𝑅 ∧ ( bday 𝑋) = ( bday “ {𝑦 No ∣ (𝐿 <<s {𝑦} ∧ {𝑦} <<s 𝑅)}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  ∃!wreu 3351  {crab 3407  {csn 4586   cint 4907   class class class wbr 5105  cima 5636  cfv 6496  crio 7312  (class class class)co 7357   No csur 26988   bday cbday 26990   <<s csslt 27120   |s cscut 27122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1o 8412  df-2o 8413  df-no 26991  df-slt 26992  df-bday 26993  df-sslt 27121  df-scut 27123
This theorem is referenced by:  eqscut2  27145  cuteq0  27171  madebdaylemlrcut  27228  cofcut1  27239
  Copyright terms: Public domain W3C validator