MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuun1 Structured version   Visualization version   GIF version

Theorem reuun1 4251
Description: Transfer uniqueness to a smaller class. (Contributed by NM, 21-Oct-2005.)
Assertion
Ref Expression
reuun1 ((∃𝑥𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴𝐵)(𝜑𝜓)) → ∃!𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem reuun1
StepHypRef Expression
1 ssun1 4106 . 2 𝐴 ⊆ (𝐴𝐵)
2 orc 864 . . 3 (𝜑 → (𝜑𝜓))
32rgenw 3076 . 2 𝑥𝐴 (𝜑 → (𝜑𝜓))
4 reuss2 4249 . 2 (((𝐴 ⊆ (𝐴𝐵) ∧ ∀𝑥𝐴 (𝜑 → (𝜑𝜓))) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴𝐵)(𝜑𝜓))) → ∃!𝑥𝐴 𝜑)
51, 3, 4mpanl12 699 1 ((∃𝑥𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴𝐵)(𝜑𝜓)) → ∃!𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  wral 3064  wrex 3065  ∃!wreu 3066  cun 3885  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-reu 3072  df-v 3434  df-un 3892  df-in 3894  df-ss 3904
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator