| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reuun1 | Structured version Visualization version GIF version | ||
| Description: Transfer uniqueness to a smaller class. (Contributed by NM, 21-Oct-2005.) |
| Ref | Expression |
|---|---|
| reuun1 | ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴 ∪ 𝐵)(𝜑 ∨ 𝜓)) → ∃!𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4158 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 2 | orc 867 | . . 3 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
| 3 | 2 | rgenw 3056 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → (𝜑 ∨ 𝜓)) |
| 4 | reuss2 4306 | . 2 ⊢ (((𝐴 ⊆ (𝐴 ∪ 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝜑 → (𝜑 ∨ 𝜓))) ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴 ∪ 𝐵)(𝜑 ∨ 𝜓))) → ∃!𝑥 ∈ 𝐴 𝜑) | |
| 5 | 1, 3, 4 | mpanl12 702 | 1 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴 ∪ 𝐵)(𝜑 ∨ 𝜓)) → ∃!𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∀wral 3052 ∃wrex 3061 ∃!wreu 3362 ∪ cun 3929 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-reu 3365 df-v 3466 df-un 3936 df-ss 3948 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |