![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reuun1 | Structured version Visualization version GIF version |
Description: Transfer uniqueness to a smaller class. (Contributed by NM, 21-Oct-2005.) |
Ref | Expression |
---|---|
reuun1 | ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴 ∪ 𝐵)(𝜑 ∨ 𝜓)) → ∃!𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4172 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
2 | orc 864 | . . 3 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
3 | 2 | rgenw 3064 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → (𝜑 ∨ 𝜓)) |
4 | reuss2 4315 | . 2 ⊢ (((𝐴 ⊆ (𝐴 ∪ 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝜑 → (𝜑 ∨ 𝜓))) ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴 ∪ 𝐵)(𝜑 ∨ 𝜓))) → ∃!𝑥 ∈ 𝐴 𝜑) | |
5 | 1, 3, 4 | mpanl12 699 | 1 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴 ∪ 𝐵)(𝜑 ∨ 𝜓)) → ∃!𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 ∀wral 3060 ∃wrex 3069 ∃!wreu 3373 ∪ cun 3946 ⊆ wss 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-reu 3376 df-v 3475 df-un 3953 df-in 3955 df-ss 3965 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |