| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reuun1 | Structured version Visualization version GIF version | ||
| Description: Transfer uniqueness to a smaller class. (Contributed by NM, 21-Oct-2005.) |
| Ref | Expression |
|---|---|
| reuun1 | ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴 ∪ 𝐵)(𝜑 ∨ 𝜓)) → ∃!𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4125 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 2 | orc 867 | . . 3 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
| 3 | 2 | rgenw 3051 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → (𝜑 ∨ 𝜓)) |
| 4 | reuss2 4273 | . 2 ⊢ (((𝐴 ⊆ (𝐴 ∪ 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝜑 → (𝜑 ∨ 𝜓))) ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴 ∪ 𝐵)(𝜑 ∨ 𝜓))) → ∃!𝑥 ∈ 𝐴 𝜑) | |
| 5 | 1, 3, 4 | mpanl12 702 | 1 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴 ∪ 𝐵)(𝜑 ∨ 𝜓)) → ∃!𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∀wral 3047 ∃wrex 3056 ∃!wreu 3344 ∪ cun 3895 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-reu 3347 df-v 3438 df-un 3902 df-ss 3914 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |