Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpanl12 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
Ref | Expression |
---|---|
mpanl12.1 | ⊢ 𝜑 |
mpanl12.2 | ⊢ 𝜓 |
mpanl12.3 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpanl12 | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl12.2 | . 2 ⊢ 𝜓 | |
2 | mpanl12.1 | . . 3 ⊢ 𝜑 | |
3 | mpanl12.3 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mpanl1 697 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | mpan 687 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: reuun1 4257 frminex 5569 tz6.26i 6250 wfii 6253 wfr3OLD 8158 tfr2ALT 8221 tfr3ALT 8222 opthreg 9352 unsnen 10308 axcnre 10919 addgt0 11459 addgegt0 11460 addgtge0 11461 addge0 11462 addgt0i 11512 addge0i 11513 addgegt0i 11514 add20i 11516 mulge0i 11520 recextlem1 11603 recne0 11644 recdiv 11679 rec11i 11714 recgt1 11869 prodgt0i 11880 xadddi2 13028 iccshftri 13216 iccshftli 13218 iccdili 13220 icccntri 13222 mulexpz 13819 expaddz 13823 m1expeven 13826 iexpcyc 13919 cnpart 14947 resqrex 14958 sqreulem 15067 amgm2 15077 rlim 15200 ello12 15221 elo12 15232 bpolylem 15754 ege2le3 15795 dvdslelem 16014 divalglem1 16099 divalglem6 16103 divalglem9 16106 gcdaddmlem 16227 sqnprm 16403 prmlem1 16805 prmlem2 16817 m1expaddsub 19102 psgnuni 19103 gzrngunitlem 20659 lmres 22447 zdis 23975 iihalf1 24090 lmclimf 24464 vitali 24773 ismbf 24788 ismbfcn 24789 mbfconst 24793 cncombf 24818 cnmbf 24819 limcfval 25032 dvnfre 25112 quotlem 25456 ulmval 25535 ulmpm 25538 abelthlem2 25587 abelthlem3 25588 abelthlem5 25590 abelthlem7 25593 efcvx 25604 logtayl 25811 logccv 25814 cxpcn3 25897 emcllem2 26142 zetacvg 26160 basellem5 26230 bposlem7 26434 chebbnd1lem3 26615 dchrisumlem3 26635 iscgrgd 26870 axcontlem2 27329 nv1 29031 blocnilem 29160 ipasslem8 29193 siii 29209 ubthlem1 29226 norm1 29605 hhshsslem2 29624 hoscli 30118 hodcli 30119 cnlnadjlem7 30429 adjbdln 30439 pjnmopi 30504 strlem1 30606 rexdiv 31194 tpr2rico 31856 qqhre 31964 signsply0 32524 subfacval3 33145 erdszelem4 33150 erdszelem8 33154 elmrsubrn 33476 rdgprc 33764 fwddifval 34458 fwddifnval 34459 exrecfnlem 35544 poimirlem29 35800 ismblfin 35812 itg2addnclem 35822 caures 35912 iooii 46178 icccldii 46179 |
Copyright terms: Public domain | W3C validator |