| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanl12 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
| Ref | Expression |
|---|---|
| mpanl12.1 | ⊢ 𝜑 |
| mpanl12.2 | ⊢ 𝜓 |
| mpanl12.3 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanl12 | ⊢ (𝜒 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl12.2 | . 2 ⊢ 𝜓 | |
| 2 | mpanl12.1 | . . 3 ⊢ 𝜑 | |
| 3 | mpanl12.3 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mpanl1 700 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpan 690 | 1 ⊢ (𝜒 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: reuun1 4281 frminex 5602 tz6.26i 6300 wfii 6302 tfr2ALT 8330 tfr3ALT 8331 opthreg 9533 unsnen 10466 axcnre 11077 addgt0 11624 addgegt0 11625 addgtge0 11626 addge0 11627 addgt0i 11677 addge0i 11678 addgegt0i 11679 add20i 11681 mulge0i 11685 recextlem1 11768 recne0 11810 recdiv 11848 rec11i 11883 recgt1 12039 prodgt0i 12050 xadddi2 13217 iccshftri 13408 iccshftli 13410 iccdili 13412 icccntri 13414 mulexpz 14027 expaddz 14031 m1expeven 14034 iexpcyc 14132 cnpart 15165 resqrex 15175 sqreulem 15285 amgm2 15295 rlim 15420 ello12 15441 elo12 15452 bpolylem 15973 ege2le3 16015 dvdslelem 16238 divalglem1 16323 divalglem6 16327 divalglem9 16330 gcdaddmlem 16453 sqnprm 16631 prmlem1 17037 prmlem2 17049 m1expaddsub 19395 psgnuni 19396 gzrngunitlem 21357 lmres 23203 zdis 24721 iihalf1 24841 lmclimf 25220 vitali 25530 ismbf 25545 ismbfcn 25546 mbfconst 25550 cncombf 25575 cnmbf 25576 limcfval 25789 dvnfre 25872 quotlem 26224 ulmval 26305 ulmpm 26308 abelthlem2 26358 abelthlem3 26359 abelthlem5 26361 abelthlem7 26364 efcvx 26375 logtayl 26585 logccv 26588 cxpcn3 26674 emcllem2 26923 zetacvg 26941 basellem5 27011 bposlem7 27217 chebbnd1lem3 27398 dchrisumlem3 27418 iscgrgd 28476 axcontlem2 28928 nv1 30637 blocnilem 30766 ipasslem8 30799 siii 30815 ubthlem1 30832 norm1 31211 hhshsslem2 31230 hoscli 31724 hodcli 31725 cnlnadjlem7 32035 adjbdln 32045 pjnmopi 32110 strlem1 32212 rexdiv 32879 tpr2rico 33878 qqhre 33986 signsply0 34518 subfacval3 35161 erdszelem4 35166 erdszelem8 35170 elmrsubrn 35492 rdgprc 35767 fwddifval 36135 fwddifnval 36136 exrecfnlem 37352 poimirlem29 37628 ismblfin 37640 itg2addnclem 37650 caures 37739 sswfaxreg 44961 cjnpoly 46874 pgnbgreunbgrlem1 48098 pgnbgreunbgrlem4 48104 iooii 48903 icccldii 48904 |
| Copyright terms: Public domain | W3C validator |