Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpanl12 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
Ref | Expression |
---|---|
mpanl12.1 | ⊢ 𝜑 |
mpanl12.2 | ⊢ 𝜓 |
mpanl12.3 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpanl12 | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl12.2 | . 2 ⊢ 𝜓 | |
2 | mpanl12.1 | . . 3 ⊢ 𝜑 | |
3 | mpanl12.3 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mpanl1 696 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | mpan 686 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: reuun1 4248 frminex 5560 tz6.26i 6237 wfii 6240 wfr3OLD 8140 tfr2ALT 8203 tfr3ALT 8204 opthreg 9306 unsnen 10240 axcnre 10851 addgt0 11391 addgegt0 11392 addgtge0 11393 addge0 11394 addgt0i 11444 addge0i 11445 addgegt0i 11446 add20i 11448 mulge0i 11452 recextlem1 11535 recne0 11576 recdiv 11611 rec11i 11646 recgt1 11801 prodgt0i 11812 xadddi2 12960 iccshftri 13148 iccshftli 13150 iccdili 13152 icccntri 13154 mulexpz 13751 expaddz 13755 m1expeven 13758 iexpcyc 13851 cnpart 14879 resqrex 14890 sqreulem 14999 amgm2 15009 rlim 15132 ello12 15153 elo12 15164 bpolylem 15686 ege2le3 15727 dvdslelem 15946 divalglem1 16031 divalglem6 16035 divalglem9 16038 gcdaddmlem 16159 sqnprm 16335 prmlem1 16737 prmlem2 16749 m1expaddsub 19021 psgnuni 19022 gzrngunitlem 20575 lmres 22359 zdis 23885 iihalf1 24000 lmclimf 24373 vitali 24682 ismbf 24697 ismbfcn 24698 mbfconst 24702 cncombf 24727 cnmbf 24728 limcfval 24941 dvnfre 25021 quotlem 25365 ulmval 25444 ulmpm 25447 abelthlem2 25496 abelthlem3 25497 abelthlem5 25499 abelthlem7 25502 efcvx 25513 logtayl 25720 logccv 25723 cxpcn3 25806 emcllem2 26051 zetacvg 26069 basellem5 26139 bposlem7 26343 chebbnd1lem3 26524 dchrisumlem3 26544 iscgrgd 26778 axcontlem2 27236 nv1 28938 blocnilem 29067 ipasslem8 29100 siii 29116 ubthlem1 29133 norm1 29512 hhshsslem2 29531 hoscli 30025 hodcli 30026 cnlnadjlem7 30336 adjbdln 30346 pjnmopi 30411 strlem1 30513 rexdiv 31102 tpr2rico 31764 qqhre 31870 signsply0 32430 subfacval3 33051 erdszelem4 33056 erdszelem8 33060 elmrsubrn 33382 rdgprc 33676 fwddifval 34391 fwddifnval 34392 exrecfnlem 35477 poimirlem29 35733 ismblfin 35745 itg2addnclem 35755 caures 35845 iooii 46099 icccldii 46100 |
Copyright terms: Public domain | W3C validator |