| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanl12 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
| Ref | Expression |
|---|---|
| mpanl12.1 | ⊢ 𝜑 |
| mpanl12.2 | ⊢ 𝜓 |
| mpanl12.3 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanl12 | ⊢ (𝜒 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl12.2 | . 2 ⊢ 𝜓 | |
| 2 | mpanl12.1 | . . 3 ⊢ 𝜑 | |
| 3 | mpanl12.3 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mpanl1 700 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpan 690 | 1 ⊢ (𝜒 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: reuun1 4294 frminex 5620 tz6.26i 6324 wfii 6326 tfr2ALT 8372 tfr3ALT 8373 opthreg 9578 unsnen 10513 axcnre 11124 addgt0 11671 addgegt0 11672 addgtge0 11673 addge0 11674 addgt0i 11724 addge0i 11725 addgegt0i 11726 add20i 11728 mulge0i 11732 recextlem1 11815 recne0 11857 recdiv 11895 rec11i 11930 recgt1 12086 prodgt0i 12097 xadddi2 13264 iccshftri 13455 iccshftli 13457 iccdili 13459 icccntri 13461 mulexpz 14074 expaddz 14078 m1expeven 14081 iexpcyc 14179 cnpart 15213 resqrex 15223 sqreulem 15333 amgm2 15343 rlim 15468 ello12 15489 elo12 15500 bpolylem 16021 ege2le3 16063 dvdslelem 16286 divalglem1 16371 divalglem6 16375 divalglem9 16378 gcdaddmlem 16501 sqnprm 16679 prmlem1 17085 prmlem2 17097 m1expaddsub 19435 psgnuni 19436 gzrngunitlem 21356 lmres 23194 zdis 24712 iihalf1 24832 lmclimf 25211 vitali 25521 ismbf 25536 ismbfcn 25537 mbfconst 25541 cncombf 25566 cnmbf 25567 limcfval 25780 dvnfre 25863 quotlem 26215 ulmval 26296 ulmpm 26299 abelthlem2 26349 abelthlem3 26350 abelthlem5 26352 abelthlem7 26355 efcvx 26366 logtayl 26576 logccv 26579 cxpcn3 26665 emcllem2 26914 zetacvg 26932 basellem5 27002 bposlem7 27208 chebbnd1lem3 27389 dchrisumlem3 27409 iscgrgd 28447 axcontlem2 28899 nv1 30611 blocnilem 30740 ipasslem8 30773 siii 30789 ubthlem1 30806 norm1 31185 hhshsslem2 31204 hoscli 31698 hodcli 31699 cnlnadjlem7 32009 adjbdln 32019 pjnmopi 32084 strlem1 32186 rexdiv 32853 tpr2rico 33909 qqhre 34017 signsply0 34549 subfacval3 35183 erdszelem4 35188 erdszelem8 35192 elmrsubrn 35514 rdgprc 35789 fwddifval 36157 fwddifnval 36158 exrecfnlem 37374 poimirlem29 37650 ismblfin 37662 itg2addnclem 37672 caures 37761 sswfaxreg 44984 pgnbgreunbgrlem1 48107 pgnbgreunbgrlem4 48113 iooii 48910 icccldii 48911 |
| Copyright terms: Public domain | W3C validator |