| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanl12 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
| Ref | Expression |
|---|---|
| mpanl12.1 | ⊢ 𝜑 |
| mpanl12.2 | ⊢ 𝜓 |
| mpanl12.3 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanl12 | ⊢ (𝜒 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl12.2 | . 2 ⊢ 𝜓 | |
| 2 | mpanl12.1 | . . 3 ⊢ 𝜑 | |
| 3 | mpanl12.3 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mpanl1 700 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpan 690 | 1 ⊢ (𝜒 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: reuun1 4303 frminex 5633 tz6.26i 6338 wfii 6341 wfr3OLD 8350 tfr2ALT 8413 tfr3ALT 8414 opthreg 9630 unsnen 10565 axcnre 11176 addgt0 11721 addgegt0 11722 addgtge0 11723 addge0 11724 addgt0i 11774 addge0i 11775 addgegt0i 11776 add20i 11778 mulge0i 11782 recextlem1 11865 recne0 11907 recdiv 11945 rec11i 11980 recgt1 12136 prodgt0i 12147 xadddi2 13311 iccshftri 13502 iccshftli 13504 iccdili 13506 icccntri 13508 mulexpz 14118 expaddz 14122 m1expeven 14125 iexpcyc 14223 cnpart 15257 resqrex 15267 sqreulem 15376 amgm2 15386 rlim 15509 ello12 15530 elo12 15541 bpolylem 16062 ege2le3 16104 dvdslelem 16326 divalglem1 16411 divalglem6 16415 divalglem9 16418 gcdaddmlem 16541 sqnprm 16719 prmlem1 17125 prmlem2 17137 m1expaddsub 19477 psgnuni 19478 gzrngunitlem 21398 lmres 23236 zdis 24754 iihalf1 24874 lmclimf 25254 vitali 25564 ismbf 25579 ismbfcn 25580 mbfconst 25584 cncombf 25609 cnmbf 25610 limcfval 25823 dvnfre 25906 quotlem 26258 ulmval 26339 ulmpm 26342 abelthlem2 26392 abelthlem3 26393 abelthlem5 26395 abelthlem7 26398 efcvx 26409 logtayl 26619 logccv 26622 cxpcn3 26708 emcllem2 26957 zetacvg 26975 basellem5 27045 bposlem7 27251 chebbnd1lem3 27432 dchrisumlem3 27452 iscgrgd 28438 axcontlem2 28890 nv1 30602 blocnilem 30731 ipasslem8 30764 siii 30780 ubthlem1 30797 norm1 31176 hhshsslem2 31195 hoscli 31689 hodcli 31690 cnlnadjlem7 32000 adjbdln 32010 pjnmopi 32075 strlem1 32177 rexdiv 32846 tpr2rico 33889 qqhre 33997 signsply0 34529 subfacval3 35157 erdszelem4 35162 erdszelem8 35166 elmrsubrn 35488 rdgprc 35758 fwddifval 36126 fwddifnval 36127 exrecfnlem 37343 poimirlem29 37619 ismblfin 37631 itg2addnclem 37641 caures 37730 sswfaxreg 44960 iooii 48840 icccldii 48841 |
| Copyright terms: Public domain | W3C validator |