| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanl12 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
| Ref | Expression |
|---|---|
| mpanl12.1 | ⊢ 𝜑 |
| mpanl12.2 | ⊢ 𝜓 |
| mpanl12.3 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanl12 | ⊢ (𝜒 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl12.2 | . 2 ⊢ 𝜓 | |
| 2 | mpanl12.1 | . . 3 ⊢ 𝜑 | |
| 3 | mpanl12.3 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mpanl1 700 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpan 690 | 1 ⊢ (𝜒 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: reuun1 4291 frminex 5617 tz6.26i 6321 wfii 6323 tfr2ALT 8369 tfr3ALT 8370 opthreg 9571 unsnen 10506 axcnre 11117 addgt0 11664 addgegt0 11665 addgtge0 11666 addge0 11667 addgt0i 11717 addge0i 11718 addgegt0i 11719 add20i 11721 mulge0i 11725 recextlem1 11808 recne0 11850 recdiv 11888 rec11i 11923 recgt1 12079 prodgt0i 12090 xadddi2 13257 iccshftri 13448 iccshftli 13450 iccdili 13452 icccntri 13454 mulexpz 14067 expaddz 14071 m1expeven 14074 iexpcyc 14172 cnpart 15206 resqrex 15216 sqreulem 15326 amgm2 15336 rlim 15461 ello12 15482 elo12 15493 bpolylem 16014 ege2le3 16056 dvdslelem 16279 divalglem1 16364 divalglem6 16368 divalglem9 16371 gcdaddmlem 16494 sqnprm 16672 prmlem1 17078 prmlem2 17090 m1expaddsub 19428 psgnuni 19429 gzrngunitlem 21349 lmres 23187 zdis 24705 iihalf1 24825 lmclimf 25204 vitali 25514 ismbf 25529 ismbfcn 25530 mbfconst 25534 cncombf 25559 cnmbf 25560 limcfval 25773 dvnfre 25856 quotlem 26208 ulmval 26289 ulmpm 26292 abelthlem2 26342 abelthlem3 26343 abelthlem5 26345 abelthlem7 26348 efcvx 26359 logtayl 26569 logccv 26572 cxpcn3 26658 emcllem2 26907 zetacvg 26925 basellem5 26995 bposlem7 27201 chebbnd1lem3 27382 dchrisumlem3 27402 iscgrgd 28440 axcontlem2 28892 nv1 30604 blocnilem 30733 ipasslem8 30766 siii 30782 ubthlem1 30799 norm1 31178 hhshsslem2 31197 hoscli 31691 hodcli 31692 cnlnadjlem7 32002 adjbdln 32012 pjnmopi 32077 strlem1 32179 rexdiv 32846 tpr2rico 33902 qqhre 34010 signsply0 34542 subfacval3 35176 erdszelem4 35181 erdszelem8 35185 elmrsubrn 35507 rdgprc 35782 fwddifval 36150 fwddifnval 36151 exrecfnlem 37367 poimirlem29 37643 ismblfin 37655 itg2addnclem 37665 caures 37754 sswfaxreg 44977 cjnpoly 46890 pgnbgreunbgrlem1 48103 pgnbgreunbgrlem4 48109 iooii 48906 icccldii 48907 |
| Copyright terms: Public domain | W3C validator |