| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanl12 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
| Ref | Expression |
|---|---|
| mpanl12.1 | ⊢ 𝜑 |
| mpanl12.2 | ⊢ 𝜓 |
| mpanl12.3 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanl12 | ⊢ (𝜒 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl12.2 | . 2 ⊢ 𝜓 | |
| 2 | mpanl12.1 | . . 3 ⊢ 𝜑 | |
| 3 | mpanl12.3 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mpanl1 700 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpan 690 | 1 ⊢ (𝜒 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: reuun1 4277 frminex 5598 tz6.26i 6300 wfii 6302 tfr2ALT 8326 tfr3ALT 8327 opthreg 9515 unsnen 10451 axcnre 11062 addgt0 11610 addgegt0 11611 addgtge0 11612 addge0 11613 addgt0i 11663 addge0i 11664 addgegt0i 11665 add20i 11667 mulge0i 11671 recextlem1 11754 recne0 11796 recdiv 11834 rec11i 11869 recgt1 12025 prodgt0i 12036 xadddi2 13198 iccshftri 13389 iccshftli 13391 iccdili 13393 icccntri 13395 mulexpz 14011 expaddz 14015 m1expeven 14018 iexpcyc 14116 cnpart 15149 resqrex 15159 sqreulem 15269 amgm2 15279 rlim 15404 ello12 15425 elo12 15436 bpolylem 15957 ege2le3 15999 dvdslelem 16222 divalglem1 16307 divalglem6 16311 divalglem9 16314 gcdaddmlem 16437 sqnprm 16615 prmlem1 17021 prmlem2 17033 m1expaddsub 19412 psgnuni 19413 gzrngunitlem 21371 lmres 23216 zdis 24733 iihalf1 24853 lmclimf 25232 vitali 25542 ismbf 25557 ismbfcn 25558 mbfconst 25562 cncombf 25587 cnmbf 25588 limcfval 25801 dvnfre 25884 quotlem 26236 ulmval 26317 ulmpm 26320 abelthlem2 26370 abelthlem3 26371 abelthlem5 26373 abelthlem7 26376 efcvx 26387 logtayl 26597 logccv 26600 cxpcn3 26686 emcllem2 26935 zetacvg 26953 basellem5 27023 bposlem7 27229 chebbnd1lem3 27410 dchrisumlem3 27430 iscgrgd 28492 axcontlem2 28945 nv1 30657 blocnilem 30786 ipasslem8 30819 siii 30835 ubthlem1 30852 norm1 31231 hhshsslem2 31250 hoscli 31744 hodcli 31745 cnlnadjlem7 32055 adjbdln 32065 pjnmopi 32130 strlem1 32232 rexdiv 32913 tpr2rico 33946 qqhre 34054 signsply0 34585 subfacval3 35254 erdszelem4 35259 erdszelem8 35263 elmrsubrn 35585 rdgprc 35857 fwddifval 36227 fwddifnval 36228 exrecfnlem 37444 poimirlem29 37709 ismblfin 37721 itg2addnclem 37731 caures 37820 sswfaxreg 45104 nthrucw 47008 cjnpoly 47013 pgnbgreunbgrlem1 48237 pgnbgreunbgrlem4 48243 iooii 49042 icccldii 49043 |
| Copyright terms: Public domain | W3C validator |