Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpanl12 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
Ref | Expression |
---|---|
mpanl12.1 | ⊢ 𝜑 |
mpanl12.2 | ⊢ 𝜓 |
mpanl12.3 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpanl12 | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl12.2 | . 2 ⊢ 𝜓 | |
2 | mpanl12.1 | . . 3 ⊢ 𝜑 | |
3 | mpanl12.3 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mpanl1 697 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | mpan 687 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: reuun1 4252 frminex 5570 tz6.26i 6256 wfii 6259 wfr3OLD 8178 tfr2ALT 8241 tfr3ALT 8242 opthreg 9385 unsnen 10318 axcnre 10929 addgt0 11470 addgegt0 11471 addgtge0 11472 addge0 11473 addgt0i 11523 addge0i 11524 addgegt0i 11525 add20i 11527 mulge0i 11531 recextlem1 11614 recne0 11655 recdiv 11690 rec11i 11725 recgt1 11880 prodgt0i 11891 xadddi2 13040 iccshftri 13228 iccshftli 13230 iccdili 13232 icccntri 13234 mulexpz 13832 expaddz 13836 m1expeven 13839 iexpcyc 13932 cnpart 14960 resqrex 14971 sqreulem 15080 amgm2 15090 rlim 15213 ello12 15234 elo12 15245 bpolylem 15767 ege2le3 15808 dvdslelem 16027 divalglem1 16112 divalglem6 16116 divalglem9 16119 gcdaddmlem 16240 sqnprm 16416 prmlem1 16818 prmlem2 16830 m1expaddsub 19115 psgnuni 19116 gzrngunitlem 20672 lmres 22460 zdis 23988 iihalf1 24103 lmclimf 24477 vitali 24786 ismbf 24801 ismbfcn 24802 mbfconst 24806 cncombf 24831 cnmbf 24832 limcfval 25045 dvnfre 25125 quotlem 25469 ulmval 25548 ulmpm 25551 abelthlem2 25600 abelthlem3 25601 abelthlem5 25603 abelthlem7 25606 efcvx 25617 logtayl 25824 logccv 25827 cxpcn3 25910 emcllem2 26155 zetacvg 26173 basellem5 26243 bposlem7 26447 chebbnd1lem3 26628 dchrisumlem3 26648 iscgrgd 26883 axcontlem2 27342 nv1 29046 blocnilem 29175 ipasslem8 29208 siii 29224 ubthlem1 29241 norm1 29620 hhshsslem2 29639 hoscli 30133 hodcli 30134 cnlnadjlem7 30444 adjbdln 30454 pjnmopi 30519 strlem1 30621 rexdiv 31209 tpr2rico 31871 qqhre 31979 signsply0 32539 subfacval3 33160 erdszelem4 33165 erdszelem8 33169 elmrsubrn 33491 rdgprc 33779 fwddifval 34473 fwddifnval 34474 exrecfnlem 35559 poimirlem29 35815 ismblfin 35827 itg2addnclem 35837 caures 35927 iooii 46222 icccldii 46223 |
Copyright terms: Public domain | W3C validator |