| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanl12 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
| Ref | Expression |
|---|---|
| mpanl12.1 | ⊢ 𝜑 |
| mpanl12.2 | ⊢ 𝜓 |
| mpanl12.3 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanl12 | ⊢ (𝜒 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl12.2 | . 2 ⊢ 𝜓 | |
| 2 | mpanl12.1 | . . 3 ⊢ 𝜑 | |
| 3 | mpanl12.3 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mpanl1 700 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpan 690 | 1 ⊢ (𝜒 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: reuun1 4278 frminex 5595 tz6.26i 6295 wfii 6297 tfr2ALT 8320 tfr3ALT 8321 opthreg 9508 unsnen 10441 axcnre 11052 addgt0 11600 addgegt0 11601 addgtge0 11602 addge0 11603 addgt0i 11653 addge0i 11654 addgegt0i 11655 add20i 11657 mulge0i 11661 recextlem1 11744 recne0 11786 recdiv 11824 rec11i 11859 recgt1 12015 prodgt0i 12026 xadddi2 13193 iccshftri 13384 iccshftli 13386 iccdili 13388 icccntri 13390 mulexpz 14006 expaddz 14010 m1expeven 14013 iexpcyc 14111 cnpart 15144 resqrex 15154 sqreulem 15264 amgm2 15274 rlim 15399 ello12 15420 elo12 15431 bpolylem 15952 ege2le3 15994 dvdslelem 16217 divalglem1 16302 divalglem6 16306 divalglem9 16309 gcdaddmlem 16432 sqnprm 16610 prmlem1 17016 prmlem2 17028 m1expaddsub 19408 psgnuni 19409 gzrngunitlem 21367 lmres 23213 zdis 24730 iihalf1 24850 lmclimf 25229 vitali 25539 ismbf 25554 ismbfcn 25555 mbfconst 25559 cncombf 25584 cnmbf 25585 limcfval 25798 dvnfre 25881 quotlem 26233 ulmval 26314 ulmpm 26317 abelthlem2 26367 abelthlem3 26368 abelthlem5 26370 abelthlem7 26373 efcvx 26384 logtayl 26594 logccv 26597 cxpcn3 26683 emcllem2 26932 zetacvg 26950 basellem5 27020 bposlem7 27226 chebbnd1lem3 27407 dchrisumlem3 27427 iscgrgd 28489 axcontlem2 28941 nv1 30650 blocnilem 30779 ipasslem8 30812 siii 30828 ubthlem1 30845 norm1 31224 hhshsslem2 31243 hoscli 31737 hodcli 31738 cnlnadjlem7 32048 adjbdln 32058 pjnmopi 32123 strlem1 32225 rexdiv 32901 tpr2rico 33920 qqhre 34028 signsply0 34559 subfacval3 35221 erdszelem4 35226 erdszelem8 35230 elmrsubrn 35552 rdgprc 35827 fwddifval 36195 fwddifnval 36196 exrecfnlem 37412 poimirlem29 37688 ismblfin 37700 itg2addnclem 37710 caures 37799 sswfaxreg 45019 cjnpoly 46919 pgnbgreunbgrlem1 48143 pgnbgreunbgrlem4 48149 iooii 48948 icccldii 48949 |
| Copyright terms: Public domain | W3C validator |