![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpanl12 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
Ref | Expression |
---|---|
mpanl12.1 | ⊢ 𝜑 |
mpanl12.2 | ⊢ 𝜓 |
mpanl12.3 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpanl12 | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl12.2 | . 2 ⊢ 𝜓 | |
2 | mpanl12.1 | . . 3 ⊢ 𝜑 | |
3 | mpanl12.3 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mpanl1 700 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | mpan 690 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: reuun1 4333 frminex 5667 tz6.26i 6371 wfii 6374 wfr3OLD 8376 tfr2ALT 8439 tfr3ALT 8440 opthreg 9655 unsnen 10590 axcnre 11201 addgt0 11746 addgegt0 11747 addgtge0 11748 addge0 11749 addgt0i 11799 addge0i 11800 addgegt0i 11801 add20i 11803 mulge0i 11807 recextlem1 11890 recne0 11932 recdiv 11970 rec11i 12005 recgt1 12161 prodgt0i 12172 xadddi2 13335 iccshftri 13523 iccshftli 13525 iccdili 13527 icccntri 13529 mulexpz 14139 expaddz 14143 m1expeven 14146 iexpcyc 14242 cnpart 15275 resqrex 15285 sqreulem 15394 amgm2 15404 rlim 15527 ello12 15548 elo12 15559 bpolylem 16080 ege2le3 16122 dvdslelem 16342 divalglem1 16427 divalglem6 16431 divalglem9 16434 gcdaddmlem 16557 sqnprm 16735 prmlem1 17141 prmlem2 17153 m1expaddsub 19530 psgnuni 19531 gzrngunitlem 21467 lmres 23323 zdis 24851 iihalf1 24971 lmclimf 25351 vitali 25661 ismbf 25676 ismbfcn 25677 mbfconst 25681 cncombf 25706 cnmbf 25707 limcfval 25921 dvnfre 26004 quotlem 26356 ulmval 26437 ulmpm 26440 abelthlem2 26490 abelthlem3 26491 abelthlem5 26493 abelthlem7 26496 efcvx 26507 logtayl 26716 logccv 26719 cxpcn3 26805 emcllem2 27054 zetacvg 27072 basellem5 27142 bposlem7 27348 chebbnd1lem3 27529 dchrisumlem3 27549 iscgrgd 28535 axcontlem2 28994 nv1 30703 blocnilem 30832 ipasslem8 30865 siii 30881 ubthlem1 30898 norm1 31277 hhshsslem2 31296 hoscli 31790 hodcli 31791 cnlnadjlem7 32101 adjbdln 32111 pjnmopi 32176 strlem1 32278 rexdiv 32892 tpr2rico 33872 qqhre 33982 signsply0 34544 subfacval3 35173 erdszelem4 35178 erdszelem8 35182 elmrsubrn 35504 rdgprc 35775 fwddifval 36143 fwddifnval 36144 exrecfnlem 37361 poimirlem29 37635 ismblfin 37647 itg2addnclem 37657 caures 37746 iooii 48713 icccldii 48714 |
Copyright terms: Public domain | W3C validator |