![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpanl12 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
Ref | Expression |
---|---|
mpanl12.1 | ⊢ 𝜑 |
mpanl12.2 | ⊢ 𝜓 |
mpanl12.3 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpanl12 | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl12.2 | . 2 ⊢ 𝜓 | |
2 | mpanl12.1 | . . 3 ⊢ 𝜑 | |
3 | mpanl12.3 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mpanl1 699 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | mpan 689 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: reuun1 4347 frminex 5679 tz6.26i 6381 wfii 6384 wfr3OLD 8394 tfr2ALT 8457 tfr3ALT 8458 opthreg 9687 unsnen 10622 axcnre 11233 addgt0 11776 addgegt0 11777 addgtge0 11778 addge0 11779 addgt0i 11829 addge0i 11830 addgegt0i 11831 add20i 11833 mulge0i 11837 recextlem1 11920 recne0 11962 recdiv 12000 rec11i 12035 recgt1 12191 prodgt0i 12202 xadddi2 13359 iccshftri 13547 iccshftli 13549 iccdili 13551 icccntri 13553 mulexpz 14153 expaddz 14157 m1expeven 14160 iexpcyc 14256 cnpart 15289 resqrex 15299 sqreulem 15408 amgm2 15418 rlim 15541 ello12 15562 elo12 15573 bpolylem 16096 ege2le3 16138 dvdslelem 16357 divalglem1 16442 divalglem6 16446 divalglem9 16449 gcdaddmlem 16570 sqnprm 16749 prmlem1 17155 prmlem2 17167 m1expaddsub 19540 psgnuni 19541 gzrngunitlem 21473 lmres 23329 zdis 24857 iihalf1 24977 lmclimf 25357 vitali 25667 ismbf 25682 ismbfcn 25683 mbfconst 25687 cncombf 25712 cnmbf 25713 limcfval 25927 dvnfre 26010 quotlem 26360 ulmval 26441 ulmpm 26444 abelthlem2 26494 abelthlem3 26495 abelthlem5 26497 abelthlem7 26500 efcvx 26511 logtayl 26720 logccv 26723 cxpcn3 26809 emcllem2 27058 zetacvg 27076 basellem5 27146 bposlem7 27352 chebbnd1lem3 27533 dchrisumlem3 27553 iscgrgd 28539 axcontlem2 28998 nv1 30707 blocnilem 30836 ipasslem8 30869 siii 30885 ubthlem1 30902 norm1 31281 hhshsslem2 31300 hoscli 31794 hodcli 31795 cnlnadjlem7 32105 adjbdln 32115 pjnmopi 32180 strlem1 32282 rexdiv 32890 tpr2rico 33858 qqhre 33966 signsply0 34528 subfacval3 35157 erdszelem4 35162 erdszelem8 35166 elmrsubrn 35488 rdgprc 35758 fwddifval 36126 fwddifnval 36127 exrecfnlem 37345 poimirlem29 37609 ismblfin 37621 itg2addnclem 37631 caures 37720 iooii 48597 icccldii 48598 |
Copyright terms: Public domain | W3C validator |