| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reuss | Structured version Visualization version GIF version | ||
| Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999.) |
| Ref | Expression |
|---|---|
| reuss | ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ∃!𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝜑 → 𝜑) | |
| 2 | 1 | rgenw 3048 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜑) |
| 3 | reuss2 4289 | . . 3 ⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜑)) ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑)) → ∃!𝑥 ∈ 𝐴 𝜑) | |
| 4 | 2, 3 | mpanl2 701 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑)) → ∃!𝑥 ∈ 𝐴 𝜑) |
| 5 | 4 | 3impb 1114 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ∃!𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∀wral 3044 ∃wrex 3053 ∃!wreu 3352 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1780 df-mo 2533 df-eu 2562 df-clel 2803 df-ral 3045 df-rex 3054 df-reu 3355 df-ss 3931 |
| This theorem is referenced by: euelss 4295 riotass 7375 adjbdln 32012 tfsconcatlem 43325 tfsconcatfv 43330 |
| Copyright terms: Public domain | W3C validator |