MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuss Structured version   Visualization version   GIF version

Theorem reuss 4316
Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999.)
Assertion
Ref Expression
reuss ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → ∃!𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reuss
StepHypRef Expression
1 id 22 . . . 4 (𝜑𝜑)
21rgenw 3065 . . 3 𝑥𝐴 (𝜑𝜑)
3 reuss2 4315 . . 3 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜑)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑)) → ∃!𝑥𝐴 𝜑)
42, 3mpanl2 699 . 2 ((𝐴𝐵 ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑)) → ∃!𝑥𝐴 𝜑)
543impb 1115 1 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → ∃!𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087  wral 3061  wrex 3070  ∃!wreu 3374  wss 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089  df-tru 1544  df-ex 1782  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-reu 3377  df-v 3476  df-in 3955  df-ss 3965
This theorem is referenced by:  euelss  4321  riotass  7399  adjbdln  31591  tfsconcatlem  42388  tfsconcatfv  42393
  Copyright terms: Public domain W3C validator