Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reuss | Structured version Visualization version GIF version |
Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999.) |
Ref | Expression |
---|---|
reuss | ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ∃!𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝜑 → 𝜑) | |
2 | 1 | rgenw 3076 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜑) |
3 | reuss2 4249 | . . 3 ⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜑)) ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑)) → ∃!𝑥 ∈ 𝐴 𝜑) | |
4 | 2, 3 | mpanl2 698 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑)) → ∃!𝑥 ∈ 𝐴 𝜑) |
5 | 4 | 3impb 1114 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ∃!𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∀wral 3064 ∃wrex 3065 ∃!wreu 3066 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1542 df-ex 1783 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-reu 3072 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: euelss 4255 riotass 7264 adjbdln 30445 |
Copyright terms: Public domain | W3C validator |