Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reuss | Structured version Visualization version GIF version |
Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999.) |
Ref | Expression |
---|---|
reuss | ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ∃!𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝜑 → 𝜑) | |
2 | 1 | rgenw 3075 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜑) |
3 | reuss2 4246 | . . 3 ⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜑)) ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑)) → ∃!𝑥 ∈ 𝐴 𝜑) | |
4 | 2, 3 | mpanl2 697 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑)) → ∃!𝑥 ∈ 𝐴 𝜑) |
5 | 4 | 3impb 1113 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ∃!𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∀wral 3063 ∃wrex 3064 ∃!wreu 3065 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-reu 3070 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: euelss 4252 riotass 7244 adjbdln 30346 |
Copyright terms: Public domain | W3C validator |