MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuss Structured version   Visualization version   GIF version

Theorem reuss 4346
Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999.)
Assertion
Ref Expression
reuss ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → ∃!𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reuss
StepHypRef Expression
1 id 22 . . . 4 (𝜑𝜑)
21rgenw 3071 . . 3 𝑥𝐴 (𝜑𝜑)
3 reuss2 4345 . . 3 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜑)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑)) → ∃!𝑥𝐴 𝜑)
42, 3mpanl2 700 . 2 ((𝐴𝐵 ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑)) → ∃!𝑥𝐴 𝜑)
543impb 1115 1 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → ∃!𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wral 3067  wrex 3076  ∃!wreu 3386  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-ex 1778  df-mo 2543  df-eu 2572  df-clel 2819  df-ral 3068  df-rex 3077  df-reu 3389  df-ss 3993
This theorem is referenced by:  euelss  4351  riotass  7436  adjbdln  32115  tfsconcatlem  43298  tfsconcatfv  43303
  Copyright terms: Public domain W3C validator