MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuss Structured version   Visualization version   GIF version

Theorem reuss 4316
Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999.)
Assertion
Ref Expression
reuss ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → ∃!𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reuss
StepHypRef Expression
1 id 22 . . . 4 (𝜑𝜑)
21rgenw 3064 . . 3 𝑥𝐴 (𝜑𝜑)
3 reuss2 4315 . . 3 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜑)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑)) → ∃!𝑥𝐴 𝜑)
42, 3mpanl2 698 . 2 ((𝐴𝐵 ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑)) → ∃!𝑥𝐴 𝜑)
543impb 1114 1 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → ∃!𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wral 3060  wrex 3069  ∃!wreu 3373  wss 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1088  df-tru 1543  df-ex 1781  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-reu 3376  df-v 3475  df-in 3955  df-ss 3965
This theorem is referenced by:  euelss  4321  riotass  7400  adjbdln  31771  tfsconcatlem  42552  tfsconcatfv  42557
  Copyright terms: Public domain W3C validator