MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexab2OLD Structured version   Visualization version   GIF version

Theorem rexab2OLD 3631
Description: Obsolete version of rexab2 3630 as of 1-Dec-2023. (Contributed by Mario Carneiro, 3-Sep-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ralab2.1 (𝑥 = 𝑦 → (𝜓𝜒))
Assertion
Ref Expression
rexab2OLD (∃𝑥 ∈ {𝑦𝜑}𝜓 ↔ ∃𝑦(𝜑𝜒))
Distinct variable groups:   𝑥,𝑦   𝜒,𝑥   𝜑,𝑥   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem rexab2OLD
StepHypRef Expression
1 df-rex 3069 . 2 (∃𝑥 ∈ {𝑦𝜑}𝜓 ↔ ∃𝑥(𝑥 ∈ {𝑦𝜑} ∧ 𝜓))
2 nfsab1 2723 . . . 4 𝑦 𝑥 ∈ {𝑦𝜑}
3 nfv 1918 . . . 4 𝑦𝜓
42, 3nfan 1903 . . 3 𝑦(𝑥 ∈ {𝑦𝜑} ∧ 𝜓)
5 nfv 1918 . . 3 𝑥(𝜑𝜒)
6 eleq1w 2821 . . . . 5 (𝑥 = 𝑦 → (𝑥 ∈ {𝑦𝜑} ↔ 𝑦 ∈ {𝑦𝜑}))
7 abid 2719 . . . . 5 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
86, 7bitrdi 286 . . . 4 (𝑥 = 𝑦 → (𝑥 ∈ {𝑦𝜑} ↔ 𝜑))
9 ralab2.1 . . . 4 (𝑥 = 𝑦 → (𝜓𝜒))
108, 9anbi12d 630 . . 3 (𝑥 = 𝑦 → ((𝑥 ∈ {𝑦𝜑} ∧ 𝜓) ↔ (𝜑𝜒)))
114, 5, 10cbvexv1 2341 . 2 (∃𝑥(𝑥 ∈ {𝑦𝜑} ∧ 𝜓) ↔ ∃𝑦(𝜑𝜒))
121, 11bitri 274 1 (∃𝑥 ∈ {𝑦𝜑}𝜓 ↔ ∃𝑦(𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wex 1783  wcel 2108  {cab 2715  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-10 2139  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-clel 2817  df-rex 3069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator