Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1366 Structured version   Visualization version   GIF version

Theorem bnj1366 34812
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1366.1 (𝜓 ↔ (𝐴 ∈ V ∧ ∀𝑥𝐴 ∃!𝑦𝜑𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝜑}))
Assertion
Ref Expression
bnj1366 (𝜓𝐵 ∈ V)
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem bnj1366
StepHypRef Expression
1 bnj1366.1 . . . 4 (𝜓 ↔ (𝐴 ∈ V ∧ ∀𝑥𝐴 ∃!𝑦𝜑𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝜑}))
21simp3bi 1147 . . 3 (𝜓𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝜑})
31simp2bi 1146 . . . . 5 (𝜓 → ∀𝑥𝐴 ∃!𝑦𝜑)
4 nfcv 2891 . . . . . . 7 𝑦𝐴
5 nfeu1 2581 . . . . . . 7 𝑦∃!𝑦𝜑
64, 5nfralw 3283 . . . . . 6 𝑦𝑥𝐴 ∃!𝑦𝜑
7 nfra1 3259 . . . . . . . 8 𝑥𝑥𝐴 ∃!𝑦𝜑
8 rspa 3224 . . . . . . . . 9 ((∀𝑥𝐴 ∃!𝑦𝜑𝑥𝐴) → ∃!𝑦𝜑)
9 iota1 6476 . . . . . . . . . 10 (∃!𝑦𝜑 → (𝜑 ↔ (℩𝑦𝜑) = 𝑦))
10 eqcom 2736 . . . . . . . . . 10 ((℩𝑦𝜑) = 𝑦𝑦 = (℩𝑦𝜑))
119, 10bitrdi 287 . . . . . . . . 9 (∃!𝑦𝜑 → (𝜑𝑦 = (℩𝑦𝜑)))
128, 11syl 17 . . . . . . . 8 ((∀𝑥𝐴 ∃!𝑦𝜑𝑥𝐴) → (𝜑𝑦 = (℩𝑦𝜑)))
137, 12rexbida 3247 . . . . . . 7 (∀𝑥𝐴 ∃!𝑦𝜑 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 𝑦 = (℩𝑦𝜑)))
14 abid 2711 . . . . . . 7 (𝑦 ∈ {𝑦 ∣ ∃𝑥𝐴 𝜑} ↔ ∃𝑥𝐴 𝜑)
15 eqid 2729 . . . . . . . 8 (𝑥𝐴 ↦ (℩𝑦𝜑)) = (𝑥𝐴 ↦ (℩𝑦𝜑))
16 iotaex 6472 . . . . . . . 8 (℩𝑦𝜑) ∈ V
1715, 16elrnmpti 5915 . . . . . . 7 (𝑦 ∈ ran (𝑥𝐴 ↦ (℩𝑦𝜑)) ↔ ∃𝑥𝐴 𝑦 = (℩𝑦𝜑))
1813, 14, 173bitr4g 314 . . . . . 6 (∀𝑥𝐴 ∃!𝑦𝜑 → (𝑦 ∈ {𝑦 ∣ ∃𝑥𝐴 𝜑} ↔ 𝑦 ∈ ran (𝑥𝐴 ↦ (℩𝑦𝜑))))
196, 18alrimi 2214 . . . . 5 (∀𝑥𝐴 ∃!𝑦𝜑 → ∀𝑦(𝑦 ∈ {𝑦 ∣ ∃𝑥𝐴 𝜑} ↔ 𝑦 ∈ ran (𝑥𝐴 ↦ (℩𝑦𝜑))))
203, 19syl 17 . . . 4 (𝜓 → ∀𝑦(𝑦 ∈ {𝑦 ∣ ∃𝑥𝐴 𝜑} ↔ 𝑦 ∈ ran (𝑥𝐴 ↦ (℩𝑦𝜑))))
21 nfab1 2893 . . . . 5 𝑦{𝑦 ∣ ∃𝑥𝐴 𝜑}
22 nfiota1 6454 . . . . . . 7 𝑦(℩𝑦𝜑)
234, 22nfmpt 5200 . . . . . 6 𝑦(𝑥𝐴 ↦ (℩𝑦𝜑))
2423nfrn 5905 . . . . 5 𝑦ran (𝑥𝐴 ↦ (℩𝑦𝜑))
2521, 24cleqf 2920 . . . 4 ({𝑦 ∣ ∃𝑥𝐴 𝜑} = ran (𝑥𝐴 ↦ (℩𝑦𝜑)) ↔ ∀𝑦(𝑦 ∈ {𝑦 ∣ ∃𝑥𝐴 𝜑} ↔ 𝑦 ∈ ran (𝑥𝐴 ↦ (℩𝑦𝜑))))
2620, 25sylibr 234 . . 3 (𝜓 → {𝑦 ∣ ∃𝑥𝐴 𝜑} = ran (𝑥𝐴 ↦ (℩𝑦𝜑)))
272, 26eqtrd 2764 . 2 (𝜓𝐵 = ran (𝑥𝐴 ↦ (℩𝑦𝜑)))
281simp1bi 1145 . . 3 (𝜓𝐴 ∈ V)
29 mptexg 7177 . . 3 (𝐴 ∈ V → (𝑥𝐴 ↦ (℩𝑦𝜑)) ∈ V)
30 rnexg 7858 . . 3 ((𝑥𝐴 ↦ (℩𝑦𝜑)) ∈ V → ran (𝑥𝐴 ↦ (℩𝑦𝜑)) ∈ V)
3128, 29, 303syl 18 . 2 (𝜓 → ran (𝑥𝐴 ↦ (℩𝑦𝜑)) ∈ V)
3227, 31eqeltrd 2828 1 (𝜓𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  ∃!weu 2561  {cab 2707  wral 3044  wrex 3053  Vcvv 3444  cmpt 5183  ran crn 5632  cio 6450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507
This theorem is referenced by:  bnj1489  35039
  Copyright terms: Public domain W3C validator