Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1366 Structured version   Visualization version   GIF version

Theorem bnj1366 34805
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1366.1 (𝜓 ↔ (𝐴 ∈ V ∧ ∀𝑥𝐴 ∃!𝑦𝜑𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝜑}))
Assertion
Ref Expression
bnj1366 (𝜓𝐵 ∈ V)
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem bnj1366
StepHypRef Expression
1 bnj1366.1 . . . 4 (𝜓 ↔ (𝐴 ∈ V ∧ ∀𝑥𝐴 ∃!𝑦𝜑𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝜑}))
21simp3bi 1147 . . 3 (𝜓𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝜑})
31simp2bi 1146 . . . . 5 (𝜓 → ∀𝑥𝐴 ∃!𝑦𝜑)
4 nfcv 2908 . . . . . . 7 𝑦𝐴
5 nfeu1 2591 . . . . . . 7 𝑦∃!𝑦𝜑
64, 5nfralw 3317 . . . . . 6 𝑦𝑥𝐴 ∃!𝑦𝜑
7 nfra1 3290 . . . . . . . 8 𝑥𝑥𝐴 ∃!𝑦𝜑
8 rspa 3254 . . . . . . . . 9 ((∀𝑥𝐴 ∃!𝑦𝜑𝑥𝐴) → ∃!𝑦𝜑)
9 iota1 6550 . . . . . . . . . 10 (∃!𝑦𝜑 → (𝜑 ↔ (℩𝑦𝜑) = 𝑦))
10 eqcom 2747 . . . . . . . . . 10 ((℩𝑦𝜑) = 𝑦𝑦 = (℩𝑦𝜑))
119, 10bitrdi 287 . . . . . . . . 9 (∃!𝑦𝜑 → (𝜑𝑦 = (℩𝑦𝜑)))
128, 11syl 17 . . . . . . . 8 ((∀𝑥𝐴 ∃!𝑦𝜑𝑥𝐴) → (𝜑𝑦 = (℩𝑦𝜑)))
137, 12rexbida 3278 . . . . . . 7 (∀𝑥𝐴 ∃!𝑦𝜑 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 𝑦 = (℩𝑦𝜑)))
14 abid 2721 . . . . . . 7 (𝑦 ∈ {𝑦 ∣ ∃𝑥𝐴 𝜑} ↔ ∃𝑥𝐴 𝜑)
15 eqid 2740 . . . . . . . 8 (𝑥𝐴 ↦ (℩𝑦𝜑)) = (𝑥𝐴 ↦ (℩𝑦𝜑))
16 iotaex 6546 . . . . . . . 8 (℩𝑦𝜑) ∈ V
1715, 16elrnmpti 5985 . . . . . . 7 (𝑦 ∈ ran (𝑥𝐴 ↦ (℩𝑦𝜑)) ↔ ∃𝑥𝐴 𝑦 = (℩𝑦𝜑))
1813, 14, 173bitr4g 314 . . . . . 6 (∀𝑥𝐴 ∃!𝑦𝜑 → (𝑦 ∈ {𝑦 ∣ ∃𝑥𝐴 𝜑} ↔ 𝑦 ∈ ran (𝑥𝐴 ↦ (℩𝑦𝜑))))
196, 18alrimi 2214 . . . . 5 (∀𝑥𝐴 ∃!𝑦𝜑 → ∀𝑦(𝑦 ∈ {𝑦 ∣ ∃𝑥𝐴 𝜑} ↔ 𝑦 ∈ ran (𝑥𝐴 ↦ (℩𝑦𝜑))))
203, 19syl 17 . . . 4 (𝜓 → ∀𝑦(𝑦 ∈ {𝑦 ∣ ∃𝑥𝐴 𝜑} ↔ 𝑦 ∈ ran (𝑥𝐴 ↦ (℩𝑦𝜑))))
21 nfab1 2910 . . . . 5 𝑦{𝑦 ∣ ∃𝑥𝐴 𝜑}
22 nfiota1 6527 . . . . . . 7 𝑦(℩𝑦𝜑)
234, 22nfmpt 5273 . . . . . 6 𝑦(𝑥𝐴 ↦ (℩𝑦𝜑))
2423nfrn 5977 . . . . 5 𝑦ran (𝑥𝐴 ↦ (℩𝑦𝜑))
2521, 24cleqf 2940 . . . 4 ({𝑦 ∣ ∃𝑥𝐴 𝜑} = ran (𝑥𝐴 ↦ (℩𝑦𝜑)) ↔ ∀𝑦(𝑦 ∈ {𝑦 ∣ ∃𝑥𝐴 𝜑} ↔ 𝑦 ∈ ran (𝑥𝐴 ↦ (℩𝑦𝜑))))
2620, 25sylibr 234 . . 3 (𝜓 → {𝑦 ∣ ∃𝑥𝐴 𝜑} = ran (𝑥𝐴 ↦ (℩𝑦𝜑)))
272, 26eqtrd 2780 . 2 (𝜓𝐵 = ran (𝑥𝐴 ↦ (℩𝑦𝜑)))
281simp1bi 1145 . . 3 (𝜓𝐴 ∈ V)
29 mptexg 7258 . . 3 (𝐴 ∈ V → (𝑥𝐴 ↦ (℩𝑦𝜑)) ∈ V)
30 rnexg 7942 . . 3 ((𝑥𝐴 ↦ (℩𝑦𝜑)) ∈ V → ran (𝑥𝐴 ↦ (℩𝑦𝜑)) ∈ V)
3128, 29, 303syl 18 . 2 (𝜓 → ran (𝑥𝐴 ↦ (℩𝑦𝜑)) ∈ V)
3227, 31eqeltrd 2844 1 (𝜓𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wal 1535   = wceq 1537  wcel 2108  ∃!weu 2571  {cab 2717  wral 3067  wrex 3076  Vcvv 3488  cmpt 5249  ran crn 5701  cio 6523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581
This theorem is referenced by:  bnj1489  35032
  Copyright terms: Public domain W3C validator