Step | Hyp | Ref
| Expression |
1 | | nfmpt1 5182 |
. . 3
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
2 | | limsupre2mpt.a |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
3 | | limsupre2mpt.p |
. . . 4
⊢
Ⅎ𝑥𝜑 |
4 | | limsupre2mpt.b |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈
ℝ*) |
5 | 3, 4 | fmptd2f 42778 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ*) |
6 | 1, 2, 5 | limsupre2 43266 |
. 2
⊢ (𝜑 → ((lim sup‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ ↔ (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑤)))) |
7 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
8 | 7 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
9 | 8, 4 | fvmpt2d 6888 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
10 | 9 | breq2d 5086 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑤 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ↔ 𝑤 < 𝐵)) |
11 | 10 | anbi2d 629 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑗 ≤ 𝑥 ∧ 𝑤 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ↔ (𝑗 ≤ 𝑥 ∧ 𝑤 < 𝐵))) |
12 | 3, 11 | rexbida 3251 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ↔ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 < 𝐵))) |
13 | 12 | ralbidv 3112 |
. . . 4
⊢ (𝜑 → (∀𝑗 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ↔ ∀𝑗 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 < 𝐵))) |
14 | 13 | rexbidv 3226 |
. . 3
⊢ (𝜑 → (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ↔ ∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 < 𝐵))) |
15 | 9 | breq1d 5084 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑤 ↔ 𝐵 < 𝑤)) |
16 | 15 | imbi2d 341 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑗 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑤) ↔ (𝑗 ≤ 𝑥 → 𝐵 < 𝑤))) |
17 | 3, 16 | ralbida 3159 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑤) ↔ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 < 𝑤))) |
18 | 17 | rexbidv 3226 |
. . . 4
⊢ (𝜑 → (∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑤) ↔ ∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 < 𝑤))) |
19 | 18 | rexbidv 3226 |
. . 3
⊢ (𝜑 → (∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑤) ↔ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 < 𝑤))) |
20 | 14, 19 | anbi12d 631 |
. 2
⊢ (𝜑 → ((∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) < 𝑤)) ↔ (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 < 𝐵) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 < 𝑤)))) |
21 | | breq1 5077 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝑤 < 𝐵 ↔ 𝑦 < 𝐵)) |
22 | 21 | anbi2d 629 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → ((𝑗 ≤ 𝑥 ∧ 𝑤 < 𝐵) ↔ (𝑗 ≤ 𝑥 ∧ 𝑦 < 𝐵))) |
23 | 22 | rexbidv 3226 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 < 𝐵) ↔ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑦 < 𝐵))) |
24 | 23 | ralbidv 3112 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (∀𝑗 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 < 𝐵) ↔ ∀𝑗 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑦 < 𝐵))) |
25 | | breq1 5077 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (𝑗 ≤ 𝑥 ↔ 𝑘 ≤ 𝑥)) |
26 | 25 | anbi1d 630 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → ((𝑗 ≤ 𝑥 ∧ 𝑦 < 𝐵) ↔ (𝑘 ≤ 𝑥 ∧ 𝑦 < 𝐵))) |
27 | 26 | rexbidv 3226 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → (∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑦 < 𝐵) ↔ ∃𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 ∧ 𝑦 < 𝐵))) |
28 | 27 | cbvralvw 3383 |
. . . . . . 7
⊢
(∀𝑗 ∈
ℝ ∃𝑥 ∈
𝐴 (𝑗 ≤ 𝑥 ∧ 𝑦 < 𝐵) ↔ ∀𝑘 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 ∧ 𝑦 < 𝐵)) |
29 | 28 | a1i 11 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (∀𝑗 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑦 < 𝐵) ↔ ∀𝑘 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 ∧ 𝑦 < 𝐵))) |
30 | 24, 29 | bitrd 278 |
. . . . 5
⊢ (𝑤 = 𝑦 → (∀𝑗 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 < 𝐵) ↔ ∀𝑘 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 ∧ 𝑦 < 𝐵))) |
31 | 30 | cbvrexvw 3384 |
. . . 4
⊢
(∃𝑤 ∈
ℝ ∀𝑗 ∈
ℝ ∃𝑥 ∈
𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 < 𝐵) ↔ ∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 ∧ 𝑦 < 𝐵)) |
32 | | breq2 5078 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝐵 < 𝑤 ↔ 𝐵 < 𝑦)) |
33 | 32 | imbi2d 341 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → ((𝑗 ≤ 𝑥 → 𝐵 < 𝑤) ↔ (𝑗 ≤ 𝑥 → 𝐵 < 𝑦))) |
34 | 33 | ralbidv 3112 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 < 𝑤) ↔ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 < 𝑦))) |
35 | 34 | rexbidv 3226 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 < 𝑤) ↔ ∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 < 𝑦))) |
36 | 25 | imbi1d 342 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → ((𝑗 ≤ 𝑥 → 𝐵 < 𝑦) ↔ (𝑘 ≤ 𝑥 → 𝐵 < 𝑦))) |
37 | 36 | ralbidv 3112 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → (∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 < 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 → 𝐵 < 𝑦))) |
38 | 37 | cbvrexvw 3384 |
. . . . . . 7
⊢
(∃𝑗 ∈
ℝ ∀𝑥 ∈
𝐴 (𝑗 ≤ 𝑥 → 𝐵 < 𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 → 𝐵 < 𝑦)) |
39 | 38 | a1i 11 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 < 𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 → 𝐵 < 𝑦))) |
40 | 35, 39 | bitrd 278 |
. . . . 5
⊢ (𝑤 = 𝑦 → (∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 < 𝑤) ↔ ∃𝑘 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 → 𝐵 < 𝑦))) |
41 | 40 | cbvrexvw 3384 |
. . . 4
⊢
(∃𝑤 ∈
ℝ ∃𝑗 ∈
ℝ ∀𝑥 ∈
𝐴 (𝑗 ≤ 𝑥 → 𝐵 < 𝑤) ↔ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 → 𝐵 < 𝑦)) |
42 | 31, 41 | anbi12i 627 |
. . 3
⊢
((∃𝑤 ∈
ℝ ∀𝑗 ∈
ℝ ∃𝑥 ∈
𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 < 𝐵) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 < 𝑤)) ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 ∧ 𝑦 < 𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 → 𝐵 < 𝑦))) |
43 | 42 | a1i 11 |
. 2
⊢ (𝜑 → ((∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 < 𝐵) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 < 𝑤)) ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 ∧ 𝑦 < 𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 → 𝐵 < 𝑦)))) |
44 | 6, 20, 43 | 3bitrd 305 |
1
⊢ (𝜑 → ((lim sup‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 ∧ 𝑦 < 𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 → 𝐵 < 𝑦)))) |