Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupre2mpt Structured version   Visualization version   GIF version

Theorem limsupre2mpt 45702
Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupre2mpt.p 𝑥𝜑
limsupre2mpt.a (𝜑𝐴 ⊆ ℝ)
limsupre2mpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
limsupre2mpt (𝜑 → ((lim sup‘(𝑥𝐴𝐵)) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦 < 𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵 < 𝑦))))
Distinct variable groups:   𝐴,𝑘,𝑥,𝑦   𝐵,𝑘,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑘)   𝐵(𝑥)

Proof of Theorem limsupre2mpt
Dummy variables 𝑗 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfmpt1 5230 . . 3 𝑥(𝑥𝐴𝐵)
2 limsupre2mpt.a . . 3 (𝜑𝐴 ⊆ ℝ)
3 limsupre2mpt.p . . . 4 𝑥𝜑
4 limsupre2mpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
53, 4fmptd2f 45197 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ*)
61, 2, 5limsupre2 45697 . 2 (𝜑 → ((lim sup‘(𝑥𝐴𝐵)) ∈ ℝ ↔ (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 < ((𝑥𝐴𝐵)‘𝑥)) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) < 𝑤))))
7 eqid 2734 . . . . . . . . . 10 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
87a1i 11 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
98, 4fvmpt2d 7009 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
109breq2d 5135 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑤 < ((𝑥𝐴𝐵)‘𝑥) ↔ 𝑤 < 𝐵))
1110anbi2d 630 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑗𝑥𝑤 < ((𝑥𝐴𝐵)‘𝑥)) ↔ (𝑗𝑥𝑤 < 𝐵)))
123, 11rexbida 3257 . . . . 5 (𝜑 → (∃𝑥𝐴 (𝑗𝑥𝑤 < ((𝑥𝐴𝐵)‘𝑥)) ↔ ∃𝑥𝐴 (𝑗𝑥𝑤 < 𝐵)))
1312ralbidv 3165 . . . 4 (𝜑 → (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 < ((𝑥𝐴𝐵)‘𝑥)) ↔ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 < 𝐵)))
1413rexbidv 3166 . . 3 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 < ((𝑥𝐴𝐵)‘𝑥)) ↔ ∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 < 𝐵)))
159breq1d 5133 . . . . . . 7 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) < 𝑤𝐵 < 𝑤))
1615imbi2d 340 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) < 𝑤) ↔ (𝑗𝑥𝐵 < 𝑤)))
173, 16ralbida 3256 . . . . 5 (𝜑 → (∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) < 𝑤) ↔ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑤)))
1817rexbidv 3166 . . . 4 (𝜑 → (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) < 𝑤) ↔ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑤)))
1918rexbidv 3166 . . 3 (𝜑 → (∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) < 𝑤) ↔ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑤)))
2014, 19anbi12d 632 . 2 (𝜑 → ((∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 < ((𝑥𝐴𝐵)‘𝑥)) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) < 𝑤)) ↔ (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 < 𝐵) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑤))))
21 breq1 5126 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤 < 𝐵𝑦 < 𝐵))
2221anbi2d 630 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑗𝑥𝑤 < 𝐵) ↔ (𝑗𝑥𝑦 < 𝐵)))
2322rexbidv 3166 . . . . . . 7 (𝑤 = 𝑦 → (∃𝑥𝐴 (𝑗𝑥𝑤 < 𝐵) ↔ ∃𝑥𝐴 (𝑗𝑥𝑦 < 𝐵)))
2423ralbidv 3165 . . . . . 6 (𝑤 = 𝑦 → (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 < 𝐵) ↔ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑦 < 𝐵)))
25 breq1 5126 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑗𝑥𝑘𝑥))
2625anbi1d 631 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑗𝑥𝑦 < 𝐵) ↔ (𝑘𝑥𝑦 < 𝐵)))
2726rexbidv 3166 . . . . . . . 8 (𝑗 = 𝑘 → (∃𝑥𝐴 (𝑗𝑥𝑦 < 𝐵) ↔ ∃𝑥𝐴 (𝑘𝑥𝑦 < 𝐵)))
2827cbvralvw 3223 . . . . . . 7 (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑦 < 𝐵) ↔ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦 < 𝐵))
2928a1i 11 . . . . . 6 (𝑤 = 𝑦 → (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑦 < 𝐵) ↔ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦 < 𝐵)))
3024, 29bitrd 279 . . . . 5 (𝑤 = 𝑦 → (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 < 𝐵) ↔ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦 < 𝐵)))
3130cbvrexvw 3224 . . . 4 (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 < 𝐵) ↔ ∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦 < 𝐵))
32 breq2 5127 . . . . . . . . 9 (𝑤 = 𝑦 → (𝐵 < 𝑤𝐵 < 𝑦))
3332imbi2d 340 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑗𝑥𝐵 < 𝑤) ↔ (𝑗𝑥𝐵 < 𝑦)))
3433ralbidv 3165 . . . . . . 7 (𝑤 = 𝑦 → (∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑤) ↔ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑦)))
3534rexbidv 3166 . . . . . 6 (𝑤 = 𝑦 → (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑤) ↔ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑦)))
3625imbi1d 341 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑗𝑥𝐵 < 𝑦) ↔ (𝑘𝑥𝐵 < 𝑦)))
3736ralbidv 3165 . . . . . . . 8 (𝑗 = 𝑘 → (∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑦) ↔ ∀𝑥𝐴 (𝑘𝑥𝐵 < 𝑦)))
3837cbvrexvw 3224 . . . . . . 7 (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵 < 𝑦))
3938a1i 11 . . . . . 6 (𝑤 = 𝑦 → (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵 < 𝑦)))
4035, 39bitrd 279 . . . . 5 (𝑤 = 𝑦 → (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑤) ↔ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵 < 𝑦)))
4140cbvrexvw 3224 . . . 4 (∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑤) ↔ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵 < 𝑦))
4231, 41anbi12i 628 . . 3 ((∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 < 𝐵) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑤)) ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦 < 𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵 < 𝑦)))
4342a1i 11 . 2 (𝜑 → ((∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 < 𝐵) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑤)) ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦 < 𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵 < 𝑦))))
446, 20, 433bitrd 305 1 (𝜑 → ((lim sup‘(𝑥𝐴𝐵)) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦 < 𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵 < 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wnf 1782  wcel 2107  wral 3050  wrex 3059  wss 3931   class class class wbr 5123  cmpt 5205  cfv 6541  cr 11136  *cxr 11276   < clt 11277  cle 11278  lim supclsp 15488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-po 5572  df-so 5573  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-ico 13375  df-limsup 15489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator