Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupre2mpt Structured version   Visualization version   GIF version

Theorem limsupre2mpt 45855
Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupre2mpt.p 𝑥𝜑
limsupre2mpt.a (𝜑𝐴 ⊆ ℝ)
limsupre2mpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
limsupre2mpt (𝜑 → ((lim sup‘(𝑥𝐴𝐵)) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦 < 𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵 < 𝑦))))
Distinct variable groups:   𝐴,𝑘,𝑥,𝑦   𝐵,𝑘,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑘)   𝐵(𝑥)

Proof of Theorem limsupre2mpt
Dummy variables 𝑗 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfmpt1 5194 . . 3 𝑥(𝑥𝐴𝐵)
2 limsupre2mpt.a . . 3 (𝜑𝐴 ⊆ ℝ)
3 limsupre2mpt.p . . . 4 𝑥𝜑
4 limsupre2mpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
53, 4fmptd2f 45359 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ*)
61, 2, 5limsupre2 45850 . 2 (𝜑 → ((lim sup‘(𝑥𝐴𝐵)) ∈ ℝ ↔ (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 < ((𝑥𝐴𝐵)‘𝑥)) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) < 𝑤))))
7 eqid 2733 . . . . . . . . . 10 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
87a1i 11 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
98, 4fvmpt2d 6950 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
109breq2d 5107 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑤 < ((𝑥𝐴𝐵)‘𝑥) ↔ 𝑤 < 𝐵))
1110anbi2d 630 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑗𝑥𝑤 < ((𝑥𝐴𝐵)‘𝑥)) ↔ (𝑗𝑥𝑤 < 𝐵)))
123, 11rexbida 3245 . . . . 5 (𝜑 → (∃𝑥𝐴 (𝑗𝑥𝑤 < ((𝑥𝐴𝐵)‘𝑥)) ↔ ∃𝑥𝐴 (𝑗𝑥𝑤 < 𝐵)))
1312ralbidv 3156 . . . 4 (𝜑 → (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 < ((𝑥𝐴𝐵)‘𝑥)) ↔ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 < 𝐵)))
1413rexbidv 3157 . . 3 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 < ((𝑥𝐴𝐵)‘𝑥)) ↔ ∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 < 𝐵)))
159breq1d 5105 . . . . . . 7 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) < 𝑤𝐵 < 𝑤))
1615imbi2d 340 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) < 𝑤) ↔ (𝑗𝑥𝐵 < 𝑤)))
173, 16ralbida 3244 . . . . 5 (𝜑 → (∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) < 𝑤) ↔ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑤)))
1817rexbidv 3157 . . . 4 (𝜑 → (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) < 𝑤) ↔ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑤)))
1918rexbidv 3157 . . 3 (𝜑 → (∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) < 𝑤) ↔ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑤)))
2014, 19anbi12d 632 . 2 (𝜑 → ((∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 < ((𝑥𝐴𝐵)‘𝑥)) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) < 𝑤)) ↔ (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 < 𝐵) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑤))))
21 breq1 5098 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤 < 𝐵𝑦 < 𝐵))
2221anbi2d 630 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑗𝑥𝑤 < 𝐵) ↔ (𝑗𝑥𝑦 < 𝐵)))
2322rexbidv 3157 . . . . . . 7 (𝑤 = 𝑦 → (∃𝑥𝐴 (𝑗𝑥𝑤 < 𝐵) ↔ ∃𝑥𝐴 (𝑗𝑥𝑦 < 𝐵)))
2423ralbidv 3156 . . . . . 6 (𝑤 = 𝑦 → (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 < 𝐵) ↔ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑦 < 𝐵)))
25 breq1 5098 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑗𝑥𝑘𝑥))
2625anbi1d 631 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑗𝑥𝑦 < 𝐵) ↔ (𝑘𝑥𝑦 < 𝐵)))
2726rexbidv 3157 . . . . . . . 8 (𝑗 = 𝑘 → (∃𝑥𝐴 (𝑗𝑥𝑦 < 𝐵) ↔ ∃𝑥𝐴 (𝑘𝑥𝑦 < 𝐵)))
2827cbvralvw 3211 . . . . . . 7 (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑦 < 𝐵) ↔ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦 < 𝐵))
2928a1i 11 . . . . . 6 (𝑤 = 𝑦 → (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑦 < 𝐵) ↔ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦 < 𝐵)))
3024, 29bitrd 279 . . . . 5 (𝑤 = 𝑦 → (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 < 𝐵) ↔ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦 < 𝐵)))
3130cbvrexvw 3212 . . . 4 (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 < 𝐵) ↔ ∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦 < 𝐵))
32 breq2 5099 . . . . . . . . 9 (𝑤 = 𝑦 → (𝐵 < 𝑤𝐵 < 𝑦))
3332imbi2d 340 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑗𝑥𝐵 < 𝑤) ↔ (𝑗𝑥𝐵 < 𝑦)))
3433ralbidv 3156 . . . . . . 7 (𝑤 = 𝑦 → (∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑤) ↔ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑦)))
3534rexbidv 3157 . . . . . 6 (𝑤 = 𝑦 → (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑤) ↔ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑦)))
3625imbi1d 341 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑗𝑥𝐵 < 𝑦) ↔ (𝑘𝑥𝐵 < 𝑦)))
3736ralbidv 3156 . . . . . . . 8 (𝑗 = 𝑘 → (∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑦) ↔ ∀𝑥𝐴 (𝑘𝑥𝐵 < 𝑦)))
3837cbvrexvw 3212 . . . . . . 7 (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵 < 𝑦))
3938a1i 11 . . . . . 6 (𝑤 = 𝑦 → (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵 < 𝑦)))
4035, 39bitrd 279 . . . . 5 (𝑤 = 𝑦 → (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑤) ↔ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵 < 𝑦)))
4140cbvrexvw 3212 . . . 4 (∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑤) ↔ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵 < 𝑦))
4231, 41anbi12i 628 . . 3 ((∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 < 𝐵) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑤)) ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦 < 𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵 < 𝑦)))
4342a1i 11 . 2 (𝜑 → ((∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 < 𝐵) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵 < 𝑤)) ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦 < 𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵 < 𝑦))))
446, 20, 433bitrd 305 1 (𝜑 → ((lim sup‘(𝑥𝐴𝐵)) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦 < 𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵 < 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wnf 1784  wcel 2113  wral 3048  wrex 3057  wss 3898   class class class wbr 5095  cmpt 5176  cfv 6488  cr 11014  *cxr 11154   < clt 11155  cle 11156  lim supclsp 15381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-sup 9335  df-inf 9336  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-ico 13255  df-limsup 15382
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator