| Step | Hyp | Ref
| Expression |
| 1 | | supminfrnmpt.x |
. . . 4
⊢
Ⅎ𝑥𝜑 |
| 2 | | eqid 2737 |
. . . 4
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 3 | | supminfrnmpt.b |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 4 | 1, 2, 3 | rnmptssd 45201 |
. . 3
⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
| 5 | | supminfrnmpt.a |
. . . 4
⊢ (𝜑 → 𝐴 ≠ ∅) |
| 6 | 1, 3, 2, 5 | rnmptn0 6264 |
. . 3
⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅) |
| 7 | | supminfrnmpt.y |
. . . 4
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
| 8 | 1, 7 | rnmptbdd 45252 |
. . 3
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
| 9 | | supminf 12977 |
. . 3
⊢ ((ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) → sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}, ℝ, < )) |
| 10 | 4, 6, 8, 9 | syl3anc 1373 |
. 2
⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}, ℝ, < )) |
| 11 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 ↦ -𝐵) = (𝑥 ∈ 𝐴 ↦ -𝐵) |
| 12 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 13 | | renegcl 11572 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ ℝ → -𝑤 ∈
ℝ) |
| 14 | 2 | elrnmpt 5969 |
. . . . . . . . . . . . . 14
⊢ (-𝑤 ∈ ℝ → (-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 -𝑤 = 𝐵)) |
| 15 | 13, 14 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ ℝ → (-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 -𝑤 = 𝐵)) |
| 16 | 15 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → (-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 -𝑤 = 𝐵)) |
| 17 | 12, 16 | mpbid 232 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → ∃𝑥 ∈ 𝐴 -𝑤 = 𝐵) |
| 18 | 17 | adantll 714 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → ∃𝑥 ∈ 𝐴 -𝑤 = 𝐵) |
| 19 | | nfv 1914 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥 𝑤 ∈ ℝ |
| 20 | 1, 19 | nfan 1899 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝜑 ∧ 𝑤 ∈ ℝ) |
| 21 | | negeq 11500 |
. . . . . . . . . . . . . . . . . . 19
⊢ (-𝑤 = 𝐵 → --𝑤 = -𝐵) |
| 22 | 21 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . 18
⊢ (-𝑤 = 𝐵 → -𝐵 = --𝑤) |
| 23 | 22 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ ℝ ∧ -𝑤 = 𝐵) → -𝐵 = --𝑤) |
| 24 | | recn 11245 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ ℝ → 𝑤 ∈
ℂ) |
| 25 | 24 | negnegd 11611 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ ℝ → --𝑤 = 𝑤) |
| 26 | 25 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ ℝ ∧ -𝑤 = 𝐵) → --𝑤 = 𝑤) |
| 27 | 23, 26 | eqtr2d 2778 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ ℝ ∧ -𝑤 = 𝐵) → 𝑤 = -𝐵) |
| 28 | 27 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ ℝ → (-𝑤 = 𝐵 → 𝑤 = -𝐵)) |
| 29 | 28 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (-𝑤 = 𝐵 → 𝑤 = -𝐵)) |
| 30 | 29 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (-𝑤 = 𝐵 → 𝑤 = -𝐵)) |
| 31 | | negeq 11500 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = -𝐵 → -𝑤 = --𝐵) |
| 32 | 31 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑤 = -𝐵) → -𝑤 = --𝐵) |
| 33 | 3 | recnd 11289 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 34 | 33 | negnegd 11611 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → --𝐵 = 𝐵) |
| 35 | 34 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑤 = -𝐵) → --𝐵 = 𝐵) |
| 36 | 32, 35 | eqtrd 2777 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑤 = -𝐵) → -𝑤 = 𝐵) |
| 37 | 36 | ex 412 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑤 = -𝐵 → -𝑤 = 𝐵)) |
| 38 | 37 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝑤 = -𝐵 → -𝑤 = 𝐵)) |
| 39 | 30, 38 | impbid 212 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (-𝑤 = 𝐵 ↔ 𝑤 = -𝐵)) |
| 40 | 20, 39 | rexbida 3272 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (∃𝑥 ∈ 𝐴 -𝑤 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑤 = -𝐵)) |
| 41 | 40 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → (∃𝑥 ∈ 𝐴 -𝑤 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑤 = -𝐵)) |
| 42 | 18, 41 | mpbid 232 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → ∃𝑥 ∈ 𝐴 𝑤 = -𝐵) |
| 43 | | simplr 769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → 𝑤 ∈ ℝ) |
| 44 | 11, 42, 43 | elrnmptd 5974 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝐵)) |
| 45 | 44 | ex 412 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝐵))) |
| 46 | 45 | ralrimiva 3146 |
. . . . . 6
⊢ (𝜑 → ∀𝑤 ∈ ℝ (-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝐵))) |
| 47 | | rabss 4072 |
. . . . . 6
⊢ ({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} ⊆ ran (𝑥 ∈ 𝐴 ↦ -𝐵) ↔ ∀𝑤 ∈ ℝ (-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝐵))) |
| 48 | 46, 47 | sylibr 234 |
. . . . 5
⊢ (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} ⊆ ran (𝑥 ∈ 𝐴 ↦ -𝐵)) |
| 49 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑥-𝑤 |
| 50 | | nfmpt1 5250 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
| 51 | 50 | nfrn 5963 |
. . . . . . . 8
⊢
Ⅎ𝑥ran
(𝑥 ∈ 𝐴 ↦ 𝐵) |
| 52 | 49, 51 | nfel 2920 |
. . . . . . 7
⊢
Ⅎ𝑥-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 53 | | nfcv 2905 |
. . . . . . 7
⊢
Ⅎ𝑥ℝ |
| 54 | 52, 53 | nfrabw 3475 |
. . . . . 6
⊢
Ⅎ𝑥{𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} |
| 55 | 31 | eleq1d 2826 |
. . . . . . 7
⊢ (𝑤 = -𝐵 → (-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ --𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵))) |
| 56 | 3 | renegcld 11690 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ∈ ℝ) |
| 57 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 58 | 2 | elrnmpt1 5971 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 59 | 57, 3, 58 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 60 | 34, 59 | eqeltrd 2841 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → --𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 61 | 55, 56, 60 | elrabd 3694 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}) |
| 62 | 1, 54, 11, 61 | rnmptssdf 45261 |
. . . . 5
⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ -𝐵) ⊆ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}) |
| 63 | 48, 62 | eqssd 4001 |
. . . 4
⊢ (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} = ran (𝑥 ∈ 𝐴 ↦ -𝐵)) |
| 64 | 63 | infeq1d 9517 |
. . 3
⊢ (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}, ℝ, < ) = inf(ran (𝑥 ∈ 𝐴 ↦ -𝐵), ℝ, < )) |
| 65 | 64 | negeqd 11502 |
. 2
⊢ (𝜑 → -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}, ℝ, < ) = -inf(ran (𝑥 ∈ 𝐴 ↦ -𝐵), ℝ, < )) |
| 66 | 10, 65 | eqtrd 2777 |
1
⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < ) = -inf(ran (𝑥 ∈ 𝐴 ↦ -𝐵), ℝ, < )) |