Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supminfrnmpt Structured version   Visualization version   GIF version

Theorem supminfrnmpt 41261
Description: The indexed supremum of a bounded-above set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
supminfrnmpt.x 𝑥𝜑
supminfrnmpt.a (𝜑𝐴 ≠ ∅)
supminfrnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
supminfrnmpt.y (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
Assertion
Ref Expression
supminfrnmpt (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ, < ) = -inf(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem supminfrnmpt
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supminfrnmpt.x . . . 4 𝑥𝜑
2 eqid 2795 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 supminfrnmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
41, 2, 3rnmptssd 40998 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ)
5 supminfrnmpt.a . . . 4 (𝜑𝐴 ≠ ∅)
61, 3, 2, 5rnmptn0 41024 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ≠ ∅)
7 supminfrnmpt.y . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
81, 3rnmptbd 41069 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
97, 8mpbid 233 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
10 supminf 12184 . . 3 ((ran (𝑥𝐴𝐵) ⊆ ℝ ∧ ran (𝑥𝐴𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦) → sup(ran (𝑥𝐴𝐵), ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ))
114, 6, 9, 10syl3anc 1364 . 2 (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ))
12 eqid 2795 . . . . . . . . 9 (𝑥𝐴 ↦ -𝐵) = (𝑥𝐴 ↦ -𝐵)
13 simpr 485 . . . . . . . . . . . 12 ((𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → -𝑤 ∈ ran (𝑥𝐴𝐵))
14 renegcl 10797 . . . . . . . . . . . . . 14 (𝑤 ∈ ℝ → -𝑤 ∈ ℝ)
152elrnmpt 5710 . . . . . . . . . . . . . 14 (-𝑤 ∈ ℝ → (-𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑤 = 𝐵))
1614, 15syl 17 . . . . . . . . . . . . 13 (𝑤 ∈ ℝ → (-𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑤 = 𝐵))
1716adantr 481 . . . . . . . . . . . 12 ((𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → (-𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑤 = 𝐵))
1813, 17mpbid 233 . . . . . . . . . . 11 ((𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 -𝑤 = 𝐵)
1918adantll 710 . . . . . . . . . 10 (((𝜑𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 -𝑤 = 𝐵)
20 nfv 1892 . . . . . . . . . . . . 13 𝑥 𝑤 ∈ ℝ
211, 20nfan 1881 . . . . . . . . . . . 12 𝑥(𝜑𝑤 ∈ ℝ)
22 negeq 10725 . . . . . . . . . . . . . . . . . . 19 (-𝑤 = 𝐵 → --𝑤 = -𝐵)
2322eqcomd 2801 . . . . . . . . . . . . . . . . . 18 (-𝑤 = 𝐵 → -𝐵 = --𝑤)
2423adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ -𝑤 = 𝐵) → -𝐵 = --𝑤)
25 recn 10473 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ℝ → 𝑤 ∈ ℂ)
2625negnegd 10836 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℝ → --𝑤 = 𝑤)
2726adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ -𝑤 = 𝐵) → --𝑤 = 𝑤)
2824, 27eqtr2d 2832 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ -𝑤 = 𝐵) → 𝑤 = -𝐵)
2928ex 413 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℝ → (-𝑤 = 𝐵𝑤 = -𝐵))
3029adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ ℝ) → (-𝑤 = 𝐵𝑤 = -𝐵))
3130adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → (-𝑤 = 𝐵𝑤 = -𝐵))
32 negeq 10725 . . . . . . . . . . . . . . . . 17 (𝑤 = -𝐵 → -𝑤 = --𝐵)
3332adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑤 = -𝐵) → -𝑤 = --𝐵)
343recnd 10515 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
3534negnegd 10836 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → --𝐵 = 𝐵)
3635adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑤 = -𝐵) → --𝐵 = 𝐵)
3733, 36eqtrd 2831 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑤 = -𝐵) → -𝑤 = 𝐵)
3837ex 413 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (𝑤 = -𝐵 → -𝑤 = 𝐵))
3938adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → (𝑤 = -𝐵 → -𝑤 = 𝐵))
4031, 39impbid 213 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → (-𝑤 = 𝐵𝑤 = -𝐵))
4121, 40rexbida 3279 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ℝ) → (∃𝑥𝐴 -𝑤 = 𝐵 ↔ ∃𝑥𝐴 𝑤 = -𝐵))
4241adantr 481 . . . . . . . . . 10 (((𝜑𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → (∃𝑥𝐴 -𝑤 = 𝐵 ↔ ∃𝑥𝐴 𝑤 = -𝐵))
4319, 42mpbid 233 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 𝑤 = -𝐵)
44 simplr 765 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → 𝑤 ∈ ℝ)
4512, 43, 44elrnmptd 40980 . . . . . . . 8 (((𝜑𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵))
4645ex 413 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → (-𝑤 ∈ ran (𝑥𝐴𝐵) → 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)))
4746ralrimiva 3149 . . . . . 6 (𝜑 → ∀𝑤 ∈ ℝ (-𝑤 ∈ ran (𝑥𝐴𝐵) → 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)))
48 rabss 3969 . . . . . 6 ({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝐵) ↔ ∀𝑤 ∈ ℝ (-𝑤 ∈ ran (𝑥𝐴𝐵) → 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)))
4947, 48sylibr 235 . . . . 5 (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝐵))
50 nfcv 2949 . . . . . . . 8 𝑥-𝑤
51 nfmpt1 5058 . . . . . . . . 9 𝑥(𝑥𝐴𝐵)
5251nfrn 5706 . . . . . . . 8 𝑥ran (𝑥𝐴𝐵)
5350, 52nfel 2961 . . . . . . 7 𝑥-𝑤 ∈ ran (𝑥𝐴𝐵)
54 nfcv 2949 . . . . . . 7 𝑥
5553, 54nfrab 3345 . . . . . 6 𝑥{𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}
5632eleq1d 2867 . . . . . . 7 (𝑤 = -𝐵 → (-𝑤 ∈ ran (𝑥𝐴𝐵) ↔ --𝐵 ∈ ran (𝑥𝐴𝐵)))
573renegcld 10915 . . . . . . 7 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
58 simpr 485 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
592elrnmpt1 5712 . . . . . . . . 9 ((𝑥𝐴𝐵 ∈ ℝ) → 𝐵 ∈ ran (𝑥𝐴𝐵))
6058, 3, 59syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
6135, 60eqeltrd 2883 . . . . . . 7 ((𝜑𝑥𝐴) → --𝐵 ∈ ran (𝑥𝐴𝐵))
6256, 57, 61elrabd 3620 . . . . . 6 ((𝜑𝑥𝐴) → -𝐵 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)})
631, 55, 12, 62rnmptssdf 41067 . . . . 5 (𝜑 → ran (𝑥𝐴 ↦ -𝐵) ⊆ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)})
6449, 63eqssd 3906 . . . 4 (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} = ran (𝑥𝐴 ↦ -𝐵))
6564infeq1d 8787 . . 3 (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ) = inf(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
6665negeqd 10727 . 2 (𝜑 → -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ) = -inf(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
6711, 66eqtrd 2831 1 (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ, < ) = -inf(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wnf 1765  wcel 2081  wne 2984  wral 3105  wrex 3106  {crab 3109  wss 3859  c0 4211   class class class wbr 4962  cmpt 5041  ran crn 5444  supcsup 8750  infcinf 8751  cr 10382   < clt 10521  cle 10522  -cneg 10718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-po 5362  df-so 5363  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-sup 8752  df-inf 8753  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator