Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supminfrnmpt Structured version   Visualization version   GIF version

Theorem supminfrnmpt 44616
Description: The indexed supremum of a bounded-above set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
supminfrnmpt.x 𝑥𝜑
supminfrnmpt.a (𝜑𝐴 ≠ ∅)
supminfrnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
supminfrnmpt.y (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
Assertion
Ref Expression
supminfrnmpt (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ, < ) = -inf(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem supminfrnmpt
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supminfrnmpt.x . . . 4 𝑥𝜑
2 eqid 2731 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 supminfrnmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
41, 2, 3rnmptssd 44356 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ)
5 supminfrnmpt.a . . . 4 (𝜑𝐴 ≠ ∅)
61, 3, 2, 5rnmptn0 6243 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ≠ ∅)
7 supminfrnmpt.y . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
81, 7rnmptbdd 44410 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
9 supminf 12926 . . 3 ((ran (𝑥𝐴𝐵) ⊆ ℝ ∧ ran (𝑥𝐴𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦) → sup(ran (𝑥𝐴𝐵), ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ))
104, 6, 8, 9syl3anc 1370 . 2 (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ))
11 eqid 2731 . . . . . . . . 9 (𝑥𝐴 ↦ -𝐵) = (𝑥𝐴 ↦ -𝐵)
12 simpr 484 . . . . . . . . . . . 12 ((𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → -𝑤 ∈ ran (𝑥𝐴𝐵))
13 renegcl 11530 . . . . . . . . . . . . . 14 (𝑤 ∈ ℝ → -𝑤 ∈ ℝ)
142elrnmpt 5955 . . . . . . . . . . . . . 14 (-𝑤 ∈ ℝ → (-𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑤 = 𝐵))
1513, 14syl 17 . . . . . . . . . . . . 13 (𝑤 ∈ ℝ → (-𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑤 = 𝐵))
1615adantr 480 . . . . . . . . . . . 12 ((𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → (-𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑤 = 𝐵))
1712, 16mpbid 231 . . . . . . . . . . 11 ((𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 -𝑤 = 𝐵)
1817adantll 711 . . . . . . . . . 10 (((𝜑𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 -𝑤 = 𝐵)
19 nfv 1916 . . . . . . . . . . . . 13 𝑥 𝑤 ∈ ℝ
201, 19nfan 1901 . . . . . . . . . . . 12 𝑥(𝜑𝑤 ∈ ℝ)
21 negeq 11459 . . . . . . . . . . . . . . . . . . 19 (-𝑤 = 𝐵 → --𝑤 = -𝐵)
2221eqcomd 2737 . . . . . . . . . . . . . . . . . 18 (-𝑤 = 𝐵 → -𝐵 = --𝑤)
2322adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ -𝑤 = 𝐵) → -𝐵 = --𝑤)
24 recn 11206 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ℝ → 𝑤 ∈ ℂ)
2524negnegd 11569 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℝ → --𝑤 = 𝑤)
2625adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ -𝑤 = 𝐵) → --𝑤 = 𝑤)
2723, 26eqtr2d 2772 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ -𝑤 = 𝐵) → 𝑤 = -𝐵)
2827ex 412 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℝ → (-𝑤 = 𝐵𝑤 = -𝐵))
2928adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ ℝ) → (-𝑤 = 𝐵𝑤 = -𝐵))
3029adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → (-𝑤 = 𝐵𝑤 = -𝐵))
31 negeq 11459 . . . . . . . . . . . . . . . . 17 (𝑤 = -𝐵 → -𝑤 = --𝐵)
3231adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑤 = -𝐵) → -𝑤 = --𝐵)
333recnd 11249 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
3433negnegd 11569 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → --𝐵 = 𝐵)
3534adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑤 = -𝐵) → --𝐵 = 𝐵)
3632, 35eqtrd 2771 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑤 = -𝐵) → -𝑤 = 𝐵)
3736ex 412 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (𝑤 = -𝐵 → -𝑤 = 𝐵))
3837adantlr 712 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → (𝑤 = -𝐵 → -𝑤 = 𝐵))
3930, 38impbid 211 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → (-𝑤 = 𝐵𝑤 = -𝐵))
4020, 39rexbida 3268 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ℝ) → (∃𝑥𝐴 -𝑤 = 𝐵 ↔ ∃𝑥𝐴 𝑤 = -𝐵))
4140adantr 480 . . . . . . . . . 10 (((𝜑𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → (∃𝑥𝐴 -𝑤 = 𝐵 ↔ ∃𝑥𝐴 𝑤 = -𝐵))
4218, 41mpbid 231 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 𝑤 = -𝐵)
43 simplr 766 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → 𝑤 ∈ ℝ)
4411, 42, 43elrnmptd 5960 . . . . . . . 8 (((𝜑𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵))
4544ex 412 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → (-𝑤 ∈ ran (𝑥𝐴𝐵) → 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)))
4645ralrimiva 3145 . . . . . 6 (𝜑 → ∀𝑤 ∈ ℝ (-𝑤 ∈ ran (𝑥𝐴𝐵) → 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)))
47 rabss 4069 . . . . . 6 ({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝐵) ↔ ∀𝑤 ∈ ℝ (-𝑤 ∈ ran (𝑥𝐴𝐵) → 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)))
4846, 47sylibr 233 . . . . 5 (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝐵))
49 nfcv 2902 . . . . . . . 8 𝑥-𝑤
50 nfmpt1 5256 . . . . . . . . 9 𝑥(𝑥𝐴𝐵)
5150nfrn 5951 . . . . . . . 8 𝑥ran (𝑥𝐴𝐵)
5249, 51nfel 2916 . . . . . . 7 𝑥-𝑤 ∈ ran (𝑥𝐴𝐵)
53 nfcv 2902 . . . . . . 7 𝑥
5452, 53nfrabw 3467 . . . . . 6 𝑥{𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}
5531eleq1d 2817 . . . . . . 7 (𝑤 = -𝐵 → (-𝑤 ∈ ran (𝑥𝐴𝐵) ↔ --𝐵 ∈ ran (𝑥𝐴𝐵)))
563renegcld 11648 . . . . . . 7 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
57 simpr 484 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
582elrnmpt1 5957 . . . . . . . . 9 ((𝑥𝐴𝐵 ∈ ℝ) → 𝐵 ∈ ran (𝑥𝐴𝐵))
5957, 3, 58syl2anc 583 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
6034, 59eqeltrd 2832 . . . . . . 7 ((𝜑𝑥𝐴) → --𝐵 ∈ ran (𝑥𝐴𝐵))
6155, 56, 60elrabd 3685 . . . . . 6 ((𝜑𝑥𝐴) → -𝐵 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)})
621, 54, 11, 61rnmptssdf 44419 . . . . 5 (𝜑 → ran (𝑥𝐴 ↦ -𝐵) ⊆ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)})
6348, 62eqssd 3999 . . . 4 (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} = ran (𝑥𝐴 ↦ -𝐵))
6463infeq1d 9478 . . 3 (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ) = inf(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
6564negeqd 11461 . 2 (𝜑 → -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ) = -inf(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
6610, 65eqtrd 2771 1 (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ, < ) = -inf(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wnf 1784  wcel 2105  wne 2939  wral 3060  wrex 3069  {crab 3431  wss 3948  c0 4322   class class class wbr 5148  cmpt 5231  ran crn 5677  supcsup 9441  infcinf 9442  cr 11115   < clt 11255  cle 11256  -cneg 11452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-sup 9443  df-inf 9444  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator