Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supminfrnmpt Structured version   Visualization version   GIF version

Theorem supminfrnmpt 42985
Description: The indexed supremum of a bounded-above set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
supminfrnmpt.x 𝑥𝜑
supminfrnmpt.a (𝜑𝐴 ≠ ∅)
supminfrnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
supminfrnmpt.y (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
Assertion
Ref Expression
supminfrnmpt (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ, < ) = -inf(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem supminfrnmpt
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supminfrnmpt.x . . . 4 𝑥𝜑
2 eqid 2738 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 supminfrnmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
41, 2, 3rnmptssd 42735 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ)
5 supminfrnmpt.a . . . 4 (𝜑𝐴 ≠ ∅)
61, 3, 2, 5rnmptn0 6147 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ≠ ∅)
7 supminfrnmpt.y . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
81, 7rnmptbdd 42790 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
9 supminf 12675 . . 3 ((ran (𝑥𝐴𝐵) ⊆ ℝ ∧ ran (𝑥𝐴𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦) → sup(ran (𝑥𝐴𝐵), ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ))
104, 6, 8, 9syl3anc 1370 . 2 (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ))
11 eqid 2738 . . . . . . . . 9 (𝑥𝐴 ↦ -𝐵) = (𝑥𝐴 ↦ -𝐵)
12 simpr 485 . . . . . . . . . . . 12 ((𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → -𝑤 ∈ ran (𝑥𝐴𝐵))
13 renegcl 11284 . . . . . . . . . . . . . 14 (𝑤 ∈ ℝ → -𝑤 ∈ ℝ)
142elrnmpt 5865 . . . . . . . . . . . . . 14 (-𝑤 ∈ ℝ → (-𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑤 = 𝐵))
1513, 14syl 17 . . . . . . . . . . . . 13 (𝑤 ∈ ℝ → (-𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑤 = 𝐵))
1615adantr 481 . . . . . . . . . . . 12 ((𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → (-𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑤 = 𝐵))
1712, 16mpbid 231 . . . . . . . . . . 11 ((𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 -𝑤 = 𝐵)
1817adantll 711 . . . . . . . . . 10 (((𝜑𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 -𝑤 = 𝐵)
19 nfv 1917 . . . . . . . . . . . . 13 𝑥 𝑤 ∈ ℝ
201, 19nfan 1902 . . . . . . . . . . . 12 𝑥(𝜑𝑤 ∈ ℝ)
21 negeq 11213 . . . . . . . . . . . . . . . . . . 19 (-𝑤 = 𝐵 → --𝑤 = -𝐵)
2221eqcomd 2744 . . . . . . . . . . . . . . . . . 18 (-𝑤 = 𝐵 → -𝐵 = --𝑤)
2322adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ -𝑤 = 𝐵) → -𝐵 = --𝑤)
24 recn 10961 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ℝ → 𝑤 ∈ ℂ)
2524negnegd 11323 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℝ → --𝑤 = 𝑤)
2625adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ -𝑤 = 𝐵) → --𝑤 = 𝑤)
2723, 26eqtr2d 2779 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ -𝑤 = 𝐵) → 𝑤 = -𝐵)
2827ex 413 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℝ → (-𝑤 = 𝐵𝑤 = -𝐵))
2928adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ ℝ) → (-𝑤 = 𝐵𝑤 = -𝐵))
3029adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → (-𝑤 = 𝐵𝑤 = -𝐵))
31 negeq 11213 . . . . . . . . . . . . . . . . 17 (𝑤 = -𝐵 → -𝑤 = --𝐵)
3231adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑤 = -𝐵) → -𝑤 = --𝐵)
333recnd 11003 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
3433negnegd 11323 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → --𝐵 = 𝐵)
3534adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑤 = -𝐵) → --𝐵 = 𝐵)
3632, 35eqtrd 2778 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑤 = -𝐵) → -𝑤 = 𝐵)
3736ex 413 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (𝑤 = -𝐵 → -𝑤 = 𝐵))
3837adantlr 712 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → (𝑤 = -𝐵 → -𝑤 = 𝐵))
3930, 38impbid 211 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → (-𝑤 = 𝐵𝑤 = -𝐵))
4020, 39rexbida 3251 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ℝ) → (∃𝑥𝐴 -𝑤 = 𝐵 ↔ ∃𝑥𝐴 𝑤 = -𝐵))
4140adantr 481 . . . . . . . . . 10 (((𝜑𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → (∃𝑥𝐴 -𝑤 = 𝐵 ↔ ∃𝑥𝐴 𝑤 = -𝐵))
4218, 41mpbid 231 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 𝑤 = -𝐵)
43 simplr 766 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → 𝑤 ∈ ℝ)
4411, 42, 43elrnmptd 5870 . . . . . . . 8 (((𝜑𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵))
4544ex 413 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → (-𝑤 ∈ ran (𝑥𝐴𝐵) → 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)))
4645ralrimiva 3103 . . . . . 6 (𝜑 → ∀𝑤 ∈ ℝ (-𝑤 ∈ ran (𝑥𝐴𝐵) → 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)))
47 rabss 4005 . . . . . 6 ({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝐵) ↔ ∀𝑤 ∈ ℝ (-𝑤 ∈ ran (𝑥𝐴𝐵) → 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)))
4846, 47sylibr 233 . . . . 5 (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝐵))
49 nfcv 2907 . . . . . . . 8 𝑥-𝑤
50 nfmpt1 5182 . . . . . . . . 9 𝑥(𝑥𝐴𝐵)
5150nfrn 5861 . . . . . . . 8 𝑥ran (𝑥𝐴𝐵)
5249, 51nfel 2921 . . . . . . 7 𝑥-𝑤 ∈ ran (𝑥𝐴𝐵)
53 nfcv 2907 . . . . . . 7 𝑥
5452, 53nfrabw 3318 . . . . . 6 𝑥{𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}
5531eleq1d 2823 . . . . . . 7 (𝑤 = -𝐵 → (-𝑤 ∈ ran (𝑥𝐴𝐵) ↔ --𝐵 ∈ ran (𝑥𝐴𝐵)))
563renegcld 11402 . . . . . . 7 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
57 simpr 485 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
582elrnmpt1 5867 . . . . . . . . 9 ((𝑥𝐴𝐵 ∈ ℝ) → 𝐵 ∈ ran (𝑥𝐴𝐵))
5957, 3, 58syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
6034, 59eqeltrd 2839 . . . . . . 7 ((𝜑𝑥𝐴) → --𝐵 ∈ ran (𝑥𝐴𝐵))
6155, 56, 60elrabd 3626 . . . . . 6 ((𝜑𝑥𝐴) → -𝐵 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)})
621, 54, 11, 61rnmptssdf 42800 . . . . 5 (𝜑 → ran (𝑥𝐴 ↦ -𝐵) ⊆ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)})
6348, 62eqssd 3938 . . . 4 (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} = ran (𝑥𝐴 ↦ -𝐵))
6463infeq1d 9236 . . 3 (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ) = inf(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
6564negeqd 11215 . 2 (𝜑 → -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ) = -inf(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
6610, 65eqtrd 2778 1 (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ, < ) = -inf(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wnf 1786  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  wss 3887  c0 4256   class class class wbr 5074  cmpt 5157  ran crn 5590  supcsup 9199  infcinf 9200  cr 10870   < clt 11009  cle 11010  -cneg 11206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator