Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supminfrnmpt Structured version   Visualization version   GIF version

Theorem supminfrnmpt 45414
Description: The indexed supremum of a bounded-above set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
supminfrnmpt.x 𝑥𝜑
supminfrnmpt.a (𝜑𝐴 ≠ ∅)
supminfrnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
supminfrnmpt.y (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
Assertion
Ref Expression
supminfrnmpt (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ, < ) = -inf(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem supminfrnmpt
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supminfrnmpt.x . . . 4 𝑥𝜑
2 eqid 2729 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 supminfrnmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
41, 2, 3rnmptssd 45163 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ)
5 supminfrnmpt.a . . . 4 (𝜑𝐴 ≠ ∅)
61, 3, 2, 5rnmptn0 6205 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ≠ ∅)
7 supminfrnmpt.y . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
81, 7rnmptbdd 45212 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
9 supminf 12870 . . 3 ((ran (𝑥𝐴𝐵) ⊆ ℝ ∧ ran (𝑥𝐴𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦) → sup(ran (𝑥𝐴𝐵), ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ))
104, 6, 8, 9syl3anc 1373 . 2 (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ))
11 eqid 2729 . . . . . . . . 9 (𝑥𝐴 ↦ -𝐵) = (𝑥𝐴 ↦ -𝐵)
12 simpr 484 . . . . . . . . . . . 12 ((𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → -𝑤 ∈ ran (𝑥𝐴𝐵))
13 renegcl 11461 . . . . . . . . . . . . . 14 (𝑤 ∈ ℝ → -𝑤 ∈ ℝ)
142elrnmpt 5911 . . . . . . . . . . . . . 14 (-𝑤 ∈ ℝ → (-𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑤 = 𝐵))
1513, 14syl 17 . . . . . . . . . . . . 13 (𝑤 ∈ ℝ → (-𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑤 = 𝐵))
1615adantr 480 . . . . . . . . . . . 12 ((𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → (-𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑤 = 𝐵))
1712, 16mpbid 232 . . . . . . . . . . 11 ((𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 -𝑤 = 𝐵)
1817adantll 714 . . . . . . . . . 10 (((𝜑𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 -𝑤 = 𝐵)
19 nfv 1914 . . . . . . . . . . . . 13 𝑥 𝑤 ∈ ℝ
201, 19nfan 1899 . . . . . . . . . . . 12 𝑥(𝜑𝑤 ∈ ℝ)
21 negeq 11389 . . . . . . . . . . . . . . . . . . 19 (-𝑤 = 𝐵 → --𝑤 = -𝐵)
2221eqcomd 2735 . . . . . . . . . . . . . . . . . 18 (-𝑤 = 𝐵 → -𝐵 = --𝑤)
2322adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ -𝑤 = 𝐵) → -𝐵 = --𝑤)
24 recn 11134 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ℝ → 𝑤 ∈ ℂ)
2524negnegd 11500 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℝ → --𝑤 = 𝑤)
2625adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ -𝑤 = 𝐵) → --𝑤 = 𝑤)
2723, 26eqtr2d 2765 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ -𝑤 = 𝐵) → 𝑤 = -𝐵)
2827ex 412 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℝ → (-𝑤 = 𝐵𝑤 = -𝐵))
2928adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ ℝ) → (-𝑤 = 𝐵𝑤 = -𝐵))
3029adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → (-𝑤 = 𝐵𝑤 = -𝐵))
31 negeq 11389 . . . . . . . . . . . . . . . . 17 (𝑤 = -𝐵 → -𝑤 = --𝐵)
3231adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑤 = -𝐵) → -𝑤 = --𝐵)
333recnd 11178 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
3433negnegd 11500 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → --𝐵 = 𝐵)
3534adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑤 = -𝐵) → --𝐵 = 𝐵)
3632, 35eqtrd 2764 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑤 = -𝐵) → -𝑤 = 𝐵)
3736ex 412 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (𝑤 = -𝐵 → -𝑤 = 𝐵))
3837adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → (𝑤 = -𝐵 → -𝑤 = 𝐵))
3930, 38impbid 212 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → (-𝑤 = 𝐵𝑤 = -𝐵))
4020, 39rexbida 3247 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ℝ) → (∃𝑥𝐴 -𝑤 = 𝐵 ↔ ∃𝑥𝐴 𝑤 = -𝐵))
4140adantr 480 . . . . . . . . . 10 (((𝜑𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → (∃𝑥𝐴 -𝑤 = 𝐵 ↔ ∃𝑥𝐴 𝑤 = -𝐵))
4218, 41mpbid 232 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 𝑤 = -𝐵)
43 simplr 768 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → 𝑤 ∈ ℝ)
4411, 42, 43elrnmptd 5916 . . . . . . . 8 (((𝜑𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)) → 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵))
4544ex 412 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → (-𝑤 ∈ ran (𝑥𝐴𝐵) → 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)))
4645ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑤 ∈ ℝ (-𝑤 ∈ ran (𝑥𝐴𝐵) → 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)))
47 rabss 4031 . . . . . 6 ({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝐵) ↔ ∀𝑤 ∈ ℝ (-𝑤 ∈ ran (𝑥𝐴𝐵) → 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)))
4846, 47sylibr 234 . . . . 5 (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝐵))
49 nfcv 2891 . . . . . . . 8 𝑥-𝑤
50 nfmpt1 5201 . . . . . . . . 9 𝑥(𝑥𝐴𝐵)
5150nfrn 5905 . . . . . . . 8 𝑥ran (𝑥𝐴𝐵)
5249, 51nfel 2906 . . . . . . 7 𝑥-𝑤 ∈ ran (𝑥𝐴𝐵)
53 nfcv 2891 . . . . . . 7 𝑥
5452, 53nfrabw 3440 . . . . . 6 𝑥{𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}
5531eleq1d 2813 . . . . . . 7 (𝑤 = -𝐵 → (-𝑤 ∈ ran (𝑥𝐴𝐵) ↔ --𝐵 ∈ ran (𝑥𝐴𝐵)))
563renegcld 11581 . . . . . . 7 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
57 simpr 484 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
582elrnmpt1 5913 . . . . . . . . 9 ((𝑥𝐴𝐵 ∈ ℝ) → 𝐵 ∈ ran (𝑥𝐴𝐵))
5957, 3, 58syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
6034, 59eqeltrd 2828 . . . . . . 7 ((𝜑𝑥𝐴) → --𝐵 ∈ ran (𝑥𝐴𝐵))
6155, 56, 60elrabd 3658 . . . . . 6 ((𝜑𝑥𝐴) → -𝐵 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)})
621, 54, 11, 61rnmptssdf 45221 . . . . 5 (𝜑 → ran (𝑥𝐴 ↦ -𝐵) ⊆ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)})
6348, 62eqssd 3961 . . . 4 (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} = ran (𝑥𝐴 ↦ -𝐵))
6463infeq1d 9405 . . 3 (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ) = inf(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
6564negeqd 11391 . 2 (𝜑 → -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ) = -inf(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
6610, 65eqtrd 2764 1 (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ, < ) = -inf(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  wss 3911  c0 4292   class class class wbr 5102  cmpt 5183  ran crn 5632  supcsup 9367  infcinf 9368  cr 11043   < clt 11184  cle 11185  -cneg 11382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator