Step | Hyp | Ref
| Expression |
1 | | supminfrnmpt.x |
. . . 4
⊢
Ⅎ𝑥𝜑 |
2 | | eqid 2738 |
. . . 4
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
3 | | supminfrnmpt.b |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
4 | 1, 2, 3 | rnmptssd 42735 |
. . 3
⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
5 | | supminfrnmpt.a |
. . . 4
⊢ (𝜑 → 𝐴 ≠ ∅) |
6 | 1, 3, 2, 5 | rnmptn0 6147 |
. . 3
⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅) |
7 | | supminfrnmpt.y |
. . . 4
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
8 | 1, 7 | rnmptbdd 42790 |
. . 3
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
9 | | supminf 12675 |
. . 3
⊢ ((ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) → sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}, ℝ, < )) |
10 | 4, 6, 8, 9 | syl3anc 1370 |
. 2
⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}, ℝ, < )) |
11 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 ↦ -𝐵) = (𝑥 ∈ 𝐴 ↦ -𝐵) |
12 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
13 | | renegcl 11284 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ ℝ → -𝑤 ∈
ℝ) |
14 | 2 | elrnmpt 5865 |
. . . . . . . . . . . . . 14
⊢ (-𝑤 ∈ ℝ → (-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 -𝑤 = 𝐵)) |
15 | 13, 14 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ ℝ → (-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 -𝑤 = 𝐵)) |
16 | 15 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → (-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 -𝑤 = 𝐵)) |
17 | 12, 16 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → ∃𝑥 ∈ 𝐴 -𝑤 = 𝐵) |
18 | 17 | adantll 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → ∃𝑥 ∈ 𝐴 -𝑤 = 𝐵) |
19 | | nfv 1917 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥 𝑤 ∈ ℝ |
20 | 1, 19 | nfan 1902 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝜑 ∧ 𝑤 ∈ ℝ) |
21 | | negeq 11213 |
. . . . . . . . . . . . . . . . . . 19
⊢ (-𝑤 = 𝐵 → --𝑤 = -𝐵) |
22 | 21 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . 18
⊢ (-𝑤 = 𝐵 → -𝐵 = --𝑤) |
23 | 22 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ ℝ ∧ -𝑤 = 𝐵) → -𝐵 = --𝑤) |
24 | | recn 10961 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ ℝ → 𝑤 ∈
ℂ) |
25 | 24 | negnegd 11323 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ ℝ → --𝑤 = 𝑤) |
26 | 25 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ ℝ ∧ -𝑤 = 𝐵) → --𝑤 = 𝑤) |
27 | 23, 26 | eqtr2d 2779 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ ℝ ∧ -𝑤 = 𝐵) → 𝑤 = -𝐵) |
28 | 27 | ex 413 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ ℝ → (-𝑤 = 𝐵 → 𝑤 = -𝐵)) |
29 | 28 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (-𝑤 = 𝐵 → 𝑤 = -𝐵)) |
30 | 29 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (-𝑤 = 𝐵 → 𝑤 = -𝐵)) |
31 | | negeq 11213 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = -𝐵 → -𝑤 = --𝐵) |
32 | 31 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑤 = -𝐵) → -𝑤 = --𝐵) |
33 | 3 | recnd 11003 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
34 | 33 | negnegd 11323 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → --𝐵 = 𝐵) |
35 | 34 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑤 = -𝐵) → --𝐵 = 𝐵) |
36 | 32, 35 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑤 = -𝐵) → -𝑤 = 𝐵) |
37 | 36 | ex 413 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑤 = -𝐵 → -𝑤 = 𝐵)) |
38 | 37 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝑤 = -𝐵 → -𝑤 = 𝐵)) |
39 | 30, 38 | impbid 211 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (-𝑤 = 𝐵 ↔ 𝑤 = -𝐵)) |
40 | 20, 39 | rexbida 3251 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (∃𝑥 ∈ 𝐴 -𝑤 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑤 = -𝐵)) |
41 | 40 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → (∃𝑥 ∈ 𝐴 -𝑤 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑤 = -𝐵)) |
42 | 18, 41 | mpbid 231 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → ∃𝑥 ∈ 𝐴 𝑤 = -𝐵) |
43 | | simplr 766 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → 𝑤 ∈ ℝ) |
44 | 11, 42, 43 | elrnmptd 5870 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝐵)) |
45 | 44 | ex 413 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝐵))) |
46 | 45 | ralrimiva 3103 |
. . . . . 6
⊢ (𝜑 → ∀𝑤 ∈ ℝ (-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝐵))) |
47 | | rabss 4005 |
. . . . . 6
⊢ ({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} ⊆ ran (𝑥 ∈ 𝐴 ↦ -𝐵) ↔ ∀𝑤 ∈ ℝ (-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝐵))) |
48 | 46, 47 | sylibr 233 |
. . . . 5
⊢ (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} ⊆ ran (𝑥 ∈ 𝐴 ↦ -𝐵)) |
49 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑥-𝑤 |
50 | | nfmpt1 5182 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
51 | 50 | nfrn 5861 |
. . . . . . . 8
⊢
Ⅎ𝑥ran
(𝑥 ∈ 𝐴 ↦ 𝐵) |
52 | 49, 51 | nfel 2921 |
. . . . . . 7
⊢
Ⅎ𝑥-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
53 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑥ℝ |
54 | 52, 53 | nfrabw 3318 |
. . . . . 6
⊢
Ⅎ𝑥{𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} |
55 | 31 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑤 = -𝐵 → (-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ --𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵))) |
56 | 3 | renegcld 11402 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ∈ ℝ) |
57 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
58 | 2 | elrnmpt1 5867 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
59 | 57, 3, 58 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
60 | 34, 59 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → --𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
61 | 55, 56, 60 | elrabd 3626 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}) |
62 | 1, 54, 11, 61 | rnmptssdf 42800 |
. . . . 5
⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ -𝐵) ⊆ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}) |
63 | 48, 62 | eqssd 3938 |
. . . 4
⊢ (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} = ran (𝑥 ∈ 𝐴 ↦ -𝐵)) |
64 | 63 | infeq1d 9236 |
. . 3
⊢ (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}, ℝ, < ) = inf(ran (𝑥 ∈ 𝐴 ↦ -𝐵), ℝ, < )) |
65 | 64 | negeqd 11215 |
. 2
⊢ (𝜑 → -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}, ℝ, < ) = -inf(ran (𝑥 ∈ 𝐴 ↦ -𝐵), ℝ, < )) |
66 | 10, 65 | eqtrd 2778 |
1
⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < ) = -inf(ran (𝑥 ∈ 𝐴 ↦ -𝐵), ℝ, < )) |