Step | Hyp | Ref
| Expression |
1 | | supminfrnmpt.x |
. . . 4
⊢
Ⅎ𝑥𝜑 |
2 | | eqid 2758 |
. . . 4
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
3 | | supminfrnmpt.b |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
4 | 1, 2, 3 | rnmptssd 42194 |
. . 3
⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
5 | | supminfrnmpt.a |
. . . 4
⊢ (𝜑 → 𝐴 ≠ ∅) |
6 | 1, 3, 2, 5 | rnmptn0 6073 |
. . 3
⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅) |
7 | | supminfrnmpt.y |
. . . 4
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
8 | 1, 3 | rnmptbd 42262 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
9 | 7, 8 | mpbid 235 |
. . 3
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
10 | | supminf 12375 |
. . 3
⊢ ((ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) → sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}, ℝ, < )) |
11 | 4, 6, 9, 10 | syl3anc 1368 |
. 2
⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}, ℝ, < )) |
12 | | eqid 2758 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 ↦ -𝐵) = (𝑥 ∈ 𝐴 ↦ -𝐵) |
13 | | simpr 488 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
14 | | renegcl 10987 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ ℝ → -𝑤 ∈
ℝ) |
15 | 2 | elrnmpt 5797 |
. . . . . . . . . . . . . 14
⊢ (-𝑤 ∈ ℝ → (-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 -𝑤 = 𝐵)) |
16 | 14, 15 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ ℝ → (-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 -𝑤 = 𝐵)) |
17 | 16 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → (-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 -𝑤 = 𝐵)) |
18 | 13, 17 | mpbid 235 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → ∃𝑥 ∈ 𝐴 -𝑤 = 𝐵) |
19 | 18 | adantll 713 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → ∃𝑥 ∈ 𝐴 -𝑤 = 𝐵) |
20 | | nfv 1915 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥 𝑤 ∈ ℝ |
21 | 1, 20 | nfan 1900 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝜑 ∧ 𝑤 ∈ ℝ) |
22 | | negeq 10916 |
. . . . . . . . . . . . . . . . . . 19
⊢ (-𝑤 = 𝐵 → --𝑤 = -𝐵) |
23 | 22 | eqcomd 2764 |
. . . . . . . . . . . . . . . . . 18
⊢ (-𝑤 = 𝐵 → -𝐵 = --𝑤) |
24 | 23 | adantl 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ ℝ ∧ -𝑤 = 𝐵) → -𝐵 = --𝑤) |
25 | | recn 10665 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ ℝ → 𝑤 ∈
ℂ) |
26 | 25 | negnegd 11026 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ ℝ → --𝑤 = 𝑤) |
27 | 26 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ ℝ ∧ -𝑤 = 𝐵) → --𝑤 = 𝑤) |
28 | 24, 27 | eqtr2d 2794 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ ℝ ∧ -𝑤 = 𝐵) → 𝑤 = -𝐵) |
29 | 28 | ex 416 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ ℝ → (-𝑤 = 𝐵 → 𝑤 = -𝐵)) |
30 | 29 | adantl 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (-𝑤 = 𝐵 → 𝑤 = -𝐵)) |
31 | 30 | adantr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (-𝑤 = 𝐵 → 𝑤 = -𝐵)) |
32 | | negeq 10916 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = -𝐵 → -𝑤 = --𝐵) |
33 | 32 | adantl 485 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑤 = -𝐵) → -𝑤 = --𝐵) |
34 | 3 | recnd 10707 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
35 | 34 | negnegd 11026 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → --𝐵 = 𝐵) |
36 | 35 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑤 = -𝐵) → --𝐵 = 𝐵) |
37 | 33, 36 | eqtrd 2793 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑤 = -𝐵) → -𝑤 = 𝐵) |
38 | 37 | ex 416 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑤 = -𝐵 → -𝑤 = 𝐵)) |
39 | 38 | adantlr 714 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝑤 = -𝐵 → -𝑤 = 𝐵)) |
40 | 31, 39 | impbid 215 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (-𝑤 = 𝐵 ↔ 𝑤 = -𝐵)) |
41 | 21, 40 | rexbida 3242 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (∃𝑥 ∈ 𝐴 -𝑤 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑤 = -𝐵)) |
42 | 41 | adantr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → (∃𝑥 ∈ 𝐴 -𝑤 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑤 = -𝐵)) |
43 | 19, 42 | mpbid 235 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → ∃𝑥 ∈ 𝐴 𝑤 = -𝐵) |
44 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → 𝑤 ∈ ℝ) |
45 | 12, 43, 44 | elrnmptd 5802 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝐵)) |
46 | 45 | ex 416 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝐵))) |
47 | 46 | ralrimiva 3113 |
. . . . . 6
⊢ (𝜑 → ∀𝑤 ∈ ℝ (-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝐵))) |
48 | | rabss 3976 |
. . . . . 6
⊢ ({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} ⊆ ran (𝑥 ∈ 𝐴 ↦ -𝐵) ↔ ∀𝑤 ∈ ℝ (-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝐵))) |
49 | 47, 48 | sylibr 237 |
. . . . 5
⊢ (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} ⊆ ran (𝑥 ∈ 𝐴 ↦ -𝐵)) |
50 | | nfcv 2919 |
. . . . . . . 8
⊢
Ⅎ𝑥-𝑤 |
51 | | nfmpt1 5130 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
52 | 51 | nfrn 5793 |
. . . . . . . 8
⊢
Ⅎ𝑥ran
(𝑥 ∈ 𝐴 ↦ 𝐵) |
53 | 50, 52 | nfel 2933 |
. . . . . . 7
⊢
Ⅎ𝑥-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
54 | | nfcv 2919 |
. . . . . . 7
⊢
Ⅎ𝑥ℝ |
55 | 53, 54 | nfrabw 3303 |
. . . . . 6
⊢
Ⅎ𝑥{𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} |
56 | 32 | eleq1d 2836 |
. . . . . . 7
⊢ (𝑤 = -𝐵 → (-𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ --𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵))) |
57 | 3 | renegcld 11105 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ∈ ℝ) |
58 | | simpr 488 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
59 | 2 | elrnmpt1 5799 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
60 | 58, 3, 59 | syl2anc 587 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
61 | 35, 60 | eqeltrd 2852 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → --𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
62 | 56, 57, 61 | elrabd 3604 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝐵 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}) |
63 | 1, 55, 12, 62 | rnmptssdf 42260 |
. . . . 5
⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ -𝐵) ⊆ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}) |
64 | 49, 63 | eqssd 3909 |
. . . 4
⊢ (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} = ran (𝑥 ∈ 𝐴 ↦ -𝐵)) |
65 | 64 | infeq1d 8974 |
. . 3
⊢ (𝜑 → inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}, ℝ, < ) = inf(ran (𝑥 ∈ 𝐴 ↦ -𝐵), ℝ, < )) |
66 | 65 | negeqd 10918 |
. 2
⊢ (𝜑 → -inf({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}, ℝ, < ) = -inf(ran (𝑥 ∈ 𝐴 ↦ -𝐵), ℝ, < )) |
67 | 11, 66 | eqtrd 2793 |
1
⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < ) = -inf(ran (𝑥 ∈ 𝐴 ↦ -𝐵), ℝ, < )) |