| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | vex 3483 | . . . . . 6
⊢ 𝑦 ∈ V | 
| 2 |  | eqeq1 2740 | . . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑆 ↔ 𝑦 = 𝑆)) | 
| 3 | 2 | rexbidv 3178 | . . . . . 6
⊢ (𝑥 = 𝑦 → (∃𝑖 ∈ 𝐼 𝑥 = 𝑆 ↔ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆)) | 
| 4 | 1, 3 | elab 3678 | . . . . 5
⊢ (𝑦 ∈ {𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = 𝑆} ↔ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆) | 
| 5 |  | nfra1 3283 | . . . . . 6
⊢
Ⅎ𝑖∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 | 
| 6 |  | nfv 1913 | . . . . . 6
⊢
Ⅎ𝑖 𝑦 ∈ 𝐵 | 
| 7 |  | rsp 3246 | . . . . . . 7
⊢
(∀𝑖 ∈
𝐼 𝑆 ∈ 𝐵 → (𝑖 ∈ 𝐼 → 𝑆 ∈ 𝐵)) | 
| 8 |  | eleq1a 2835 | . . . . . . 7
⊢ (𝑆 ∈ 𝐵 → (𝑦 = 𝑆 → 𝑦 ∈ 𝐵)) | 
| 9 | 7, 8 | syl6 35 | . . . . . 6
⊢
(∀𝑖 ∈
𝐼 𝑆 ∈ 𝐵 → (𝑖 ∈ 𝐼 → (𝑦 = 𝑆 → 𝑦 ∈ 𝐵))) | 
| 10 | 5, 6, 9 | rexlimd 3265 | . . . . 5
⊢
(∀𝑖 ∈
𝐼 𝑆 ∈ 𝐵 → (∃𝑖 ∈ 𝐼 𝑦 = 𝑆 → 𝑦 ∈ 𝐵)) | 
| 11 | 4, 10 | biimtrid 242 | . . . 4
⊢
(∀𝑖 ∈
𝐼 𝑆 ∈ 𝐵 → (𝑦 ∈ {𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = 𝑆} → 𝑦 ∈ 𝐵)) | 
| 12 | 11 | ssrdv 3988 | . . 3
⊢
(∀𝑖 ∈
𝐼 𝑆 ∈ 𝐵 → {𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = 𝑆} ⊆ 𝐵) | 
| 13 |  | glbcon.b | . . . 4
⊢ 𝐵 = (Base‘𝐾) | 
| 14 |  | glbcon.u | . . . 4
⊢ 𝑈 = (lub‘𝐾) | 
| 15 |  | glbcon.g | . . . 4
⊢ 𝐺 = (glb‘𝐾) | 
| 16 |  | glbcon.o | . . . 4
⊢  ⊥ =
(oc‘𝐾) | 
| 17 | 13, 14, 15, 16 | glbconN 39379 | . . 3
⊢ ((𝐾 ∈ HL ∧ {𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = 𝑆} ⊆ 𝐵) → (𝐺‘{𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = 𝑆}) = ( ⊥ ‘(𝑈‘{𝑦 ∈ 𝐵 ∣ ( ⊥ ‘𝑦) ∈ {𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = 𝑆}}))) | 
| 18 | 12, 17 | sylan2 593 | . 2
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) → (𝐺‘{𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = 𝑆}) = ( ⊥ ‘(𝑈‘{𝑦 ∈ 𝐵 ∣ ( ⊥ ‘𝑦) ∈ {𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = 𝑆}}))) | 
| 19 |  | fvex 6918 | . . . . . . . 8
⊢ ( ⊥
‘𝑦) ∈
V | 
| 20 |  | eqeq1 2740 | . . . . . . . . 9
⊢ (𝑥 = ( ⊥ ‘𝑦) → (𝑥 = 𝑆 ↔ ( ⊥ ‘𝑦) = 𝑆)) | 
| 21 | 20 | rexbidv 3178 | . . . . . . . 8
⊢ (𝑥 = ( ⊥ ‘𝑦) → (∃𝑖 ∈ 𝐼 𝑥 = 𝑆 ↔ ∃𝑖 ∈ 𝐼 ( ⊥ ‘𝑦) = 𝑆)) | 
| 22 | 19, 21 | elab 3678 | . . . . . . 7
⊢ (( ⊥
‘𝑦) ∈ {𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = 𝑆} ↔ ∃𝑖 ∈ 𝐼 ( ⊥ ‘𝑦) = 𝑆) | 
| 23 | 22 | rabbii 3441 | . . . . . 6
⊢ {𝑦 ∈ 𝐵 ∣ ( ⊥ ‘𝑦) ∈ {𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = 𝑆}} = {𝑦 ∈ 𝐵 ∣ ∃𝑖 ∈ 𝐼 ( ⊥ ‘𝑦) = 𝑆} | 
| 24 |  | df-rab 3436 | . . . . . 6
⊢ {𝑦 ∈ 𝐵 ∣ ∃𝑖 ∈ 𝐼 ( ⊥ ‘𝑦) = 𝑆} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ ∃𝑖 ∈ 𝐼 ( ⊥ ‘𝑦) = 𝑆)} | 
| 25 | 23, 24 | eqtri 2764 | . . . . 5
⊢ {𝑦 ∈ 𝐵 ∣ ( ⊥ ‘𝑦) ∈ {𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = 𝑆}} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ ∃𝑖 ∈ 𝐼 ( ⊥ ‘𝑦) = 𝑆)} | 
| 26 |  | nfv 1913 | . . . . . . . . . 10
⊢
Ⅎ𝑖 𝐾 ∈ HL | 
| 27 | 26, 5 | nfan 1898 | . . . . . . . . 9
⊢
Ⅎ𝑖(𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) | 
| 28 |  | rspa 3247 | . . . . . . . . . . 11
⊢
((∀𝑖 ∈
𝐼 𝑆 ∈ 𝐵 ∧ 𝑖 ∈ 𝐼) → 𝑆 ∈ 𝐵) | 
| 29 |  | hlop 39364 | . . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | 
| 30 | 13, 16 | opoccl 39196 | . . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ OP ∧ 𝑆 ∈ 𝐵) → ( ⊥ ‘𝑆) ∈ 𝐵) | 
| 31 | 29, 30 | sylan 580 | . . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐵) → ( ⊥ ‘𝑆) ∈ 𝐵) | 
| 32 |  | eleq1a 2835 | . . . . . . . . . . . . . 14
⊢ (( ⊥
‘𝑆) ∈ 𝐵 → (𝑦 = ( ⊥ ‘𝑆) → 𝑦 ∈ 𝐵)) | 
| 33 | 31, 32 | syl 17 | . . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐵) → (𝑦 = ( ⊥ ‘𝑆) → 𝑦 ∈ 𝐵)) | 
| 34 | 33 | pm4.71rd 562 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐵) → (𝑦 = ( ⊥ ‘𝑆) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 = ( ⊥ ‘𝑆)))) | 
| 35 | 13, 16 | opcon2b 39199 | . . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ OP ∧ 𝑆 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑆 = ( ⊥ ‘𝑦) ↔ 𝑦 = ( ⊥ ‘𝑆))) | 
| 36 | 29, 35 | syl3an1 1163 | . . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑆 = ( ⊥ ‘𝑦) ↔ 𝑦 = ( ⊥ ‘𝑆))) | 
| 37 | 36 | 3expa 1118 | . . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑆 = ( ⊥ ‘𝑦) ↔ 𝑦 = ( ⊥ ‘𝑆))) | 
| 38 |  | eqcom 2743 | . . . . . . . . . . . . . 14
⊢ (𝑆 = ( ⊥ ‘𝑦) ↔ ( ⊥ ‘𝑦) = 𝑆) | 
| 39 | 37, 38 | bitr3di 286 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑦 = ( ⊥ ‘𝑆) ↔ ( ⊥ ‘𝑦) = 𝑆)) | 
| 40 | 39 | pm5.32da 579 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ∧ 𝑦 = ( ⊥ ‘𝑆)) ↔ (𝑦 ∈ 𝐵 ∧ ( ⊥ ‘𝑦) = 𝑆))) | 
| 41 | 34, 40 | bitrd 279 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐵) → (𝑦 = ( ⊥ ‘𝑆) ↔ (𝑦 ∈ 𝐵 ∧ ( ⊥ ‘𝑦) = 𝑆))) | 
| 42 | 28, 41 | sylan2 593 | . . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝑖 ∈ 𝐼)) → (𝑦 = ( ⊥ ‘𝑆) ↔ (𝑦 ∈ 𝐵 ∧ ( ⊥ ‘𝑦) = 𝑆))) | 
| 43 | 42 | anassrs 467 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) ∧ 𝑖 ∈ 𝐼) → (𝑦 = ( ⊥ ‘𝑆) ↔ (𝑦 ∈ 𝐵 ∧ ( ⊥ ‘𝑦) = 𝑆))) | 
| 44 | 27, 43 | rexbida 3271 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) → (∃𝑖 ∈ 𝐼 𝑦 = ( ⊥ ‘𝑆) ↔ ∃𝑖 ∈ 𝐼 (𝑦 ∈ 𝐵 ∧ ( ⊥ ‘𝑦) = 𝑆))) | 
| 45 |  | r19.42v 3190 | . . . . . . . 8
⊢
(∃𝑖 ∈
𝐼 (𝑦 ∈ 𝐵 ∧ ( ⊥ ‘𝑦) = 𝑆) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑖 ∈ 𝐼 ( ⊥ ‘𝑦) = 𝑆)) | 
| 46 | 44, 45 | bitr2di 288 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) → ((𝑦 ∈ 𝐵 ∧ ∃𝑖 ∈ 𝐼 ( ⊥ ‘𝑦) = 𝑆) ↔ ∃𝑖 ∈ 𝐼 𝑦 = ( ⊥ ‘𝑆))) | 
| 47 | 46 | abbidv 2807 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) → {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ ∃𝑖 ∈ 𝐼 ( ⊥ ‘𝑦) = 𝑆)} = {𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = ( ⊥ ‘𝑆)}) | 
| 48 |  | eqeq1 2740 | . . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝑦 = ( ⊥ ‘𝑆) ↔ 𝑥 = ( ⊥ ‘𝑆))) | 
| 49 | 48 | rexbidv 3178 | . . . . . . 7
⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ 𝐼 𝑦 = ( ⊥ ‘𝑆) ↔ ∃𝑖 ∈ 𝐼 𝑥 = ( ⊥ ‘𝑆))) | 
| 50 | 49 | cbvabv 2811 | . . . . . 6
⊢ {𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = ( ⊥ ‘𝑆)} = {𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = ( ⊥ ‘𝑆)} | 
| 51 | 47, 50 | eqtrdi 2792 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) → {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ ∃𝑖 ∈ 𝐼 ( ⊥ ‘𝑦) = 𝑆)} = {𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = ( ⊥ ‘𝑆)}) | 
| 52 | 25, 51 | eqtrid 2788 | . . . 4
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) → {𝑦 ∈ 𝐵 ∣ ( ⊥ ‘𝑦) ∈ {𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = 𝑆}} = {𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = ( ⊥ ‘𝑆)}) | 
| 53 | 52 | fveq2d 6909 | . . 3
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) → (𝑈‘{𝑦 ∈ 𝐵 ∣ ( ⊥ ‘𝑦) ∈ {𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = 𝑆}}) = (𝑈‘{𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = ( ⊥ ‘𝑆)})) | 
| 54 | 53 | fveq2d 6909 | . 2
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) → ( ⊥ ‘(𝑈‘{𝑦 ∈ 𝐵 ∣ ( ⊥ ‘𝑦) ∈ {𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = 𝑆}})) = ( ⊥ ‘(𝑈‘{𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = ( ⊥ ‘𝑆)}))) | 
| 55 | 18, 54 | eqtrd 2776 | 1
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) → (𝐺‘{𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = 𝑆}) = ( ⊥ ‘(𝑈‘{𝑥 ∣ ∃𝑖 ∈ 𝐼 𝑥 = ( ⊥ ‘𝑆)}))) |