Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  glbconxN Structured version   Visualization version   GIF version

Theorem glbconxN 36508
Description: De Morgan's law for GLB and LUB. Index-set version of glbconN 36507, where we read 𝑆 as 𝑆(𝑖). (Contributed by NM, 17-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
glbcon.b 𝐵 = (Base‘𝐾)
glbcon.u 𝑈 = (lub‘𝐾)
glbcon.g 𝐺 = (glb‘𝐾)
glbcon.o = (oc‘𝐾)
Assertion
Ref Expression
glbconxN ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝐺‘{𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆}) = ( ‘(𝑈‘{𝑥 ∣ ∃𝑖𝐼 𝑥 = ( 𝑆)})))
Distinct variable groups:   𝑥,𝐵   𝑥,   𝑥,𝑆   𝐵,𝑖   𝑥,𝐼   𝑖,𝐾   ,𝑖,𝑥
Allowed substitution hints:   𝑆(𝑖)   𝑈(𝑥,𝑖)   𝐺(𝑥,𝑖)   𝐼(𝑖)   𝐾(𝑥)

Proof of Theorem glbconxN
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3498 . . . . . 6 𝑦 ∈ V
2 eqeq1 2825 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = 𝑆𝑦 = 𝑆))
32rexbidv 3297 . . . . . 6 (𝑥 = 𝑦 → (∃𝑖𝐼 𝑥 = 𝑆 ↔ ∃𝑖𝐼 𝑦 = 𝑆))
41, 3elab 3667 . . . . 5 (𝑦 ∈ {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆} ↔ ∃𝑖𝐼 𝑦 = 𝑆)
5 nfra1 3219 . . . . . 6 𝑖𝑖𝐼 𝑆𝐵
6 nfv 1911 . . . . . 6 𝑖 𝑦𝐵
7 rsp 3205 . . . . . . 7 (∀𝑖𝐼 𝑆𝐵 → (𝑖𝐼𝑆𝐵))
8 eleq1a 2908 . . . . . . 7 (𝑆𝐵 → (𝑦 = 𝑆𝑦𝐵))
97, 8syl6 35 . . . . . 6 (∀𝑖𝐼 𝑆𝐵 → (𝑖𝐼 → (𝑦 = 𝑆𝑦𝐵)))
105, 6, 9rexlimd 3317 . . . . 5 (∀𝑖𝐼 𝑆𝐵 → (∃𝑖𝐼 𝑦 = 𝑆𝑦𝐵))
114, 10syl5bi 244 . . . 4 (∀𝑖𝐼 𝑆𝐵 → (𝑦 ∈ {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆} → 𝑦𝐵))
1211ssrdv 3973 . . 3 (∀𝑖𝐼 𝑆𝐵 → {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆} ⊆ 𝐵)
13 glbcon.b . . . 4 𝐵 = (Base‘𝐾)
14 glbcon.u . . . 4 𝑈 = (lub‘𝐾)
15 glbcon.g . . . 4 𝐺 = (glb‘𝐾)
16 glbcon.o . . . 4 = (oc‘𝐾)
1713, 14, 15, 16glbconN 36507 . . 3 ((𝐾 ∈ HL ∧ {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆} ⊆ 𝐵) → (𝐺‘{𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆}) = ( ‘(𝑈‘{𝑦𝐵 ∣ ( 𝑦) ∈ {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆}})))
1812, 17sylan2 594 . 2 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝐺‘{𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆}) = ( ‘(𝑈‘{𝑦𝐵 ∣ ( 𝑦) ∈ {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆}})))
19 fvex 6678 . . . . . . . 8 ( 𝑦) ∈ V
20 eqeq1 2825 . . . . . . . . 9 (𝑥 = ( 𝑦) → (𝑥 = 𝑆 ↔ ( 𝑦) = 𝑆))
2120rexbidv 3297 . . . . . . . 8 (𝑥 = ( 𝑦) → (∃𝑖𝐼 𝑥 = 𝑆 ↔ ∃𝑖𝐼 ( 𝑦) = 𝑆))
2219, 21elab 3667 . . . . . . 7 (( 𝑦) ∈ {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆} ↔ ∃𝑖𝐼 ( 𝑦) = 𝑆)
2322rabbii 3474 . . . . . 6 {𝑦𝐵 ∣ ( 𝑦) ∈ {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆}} = {𝑦𝐵 ∣ ∃𝑖𝐼 ( 𝑦) = 𝑆}
24 df-rab 3147 . . . . . 6 {𝑦𝐵 ∣ ∃𝑖𝐼 ( 𝑦) = 𝑆} = {𝑦 ∣ (𝑦𝐵 ∧ ∃𝑖𝐼 ( 𝑦) = 𝑆)}
2523, 24eqtri 2844 . . . . 5 {𝑦𝐵 ∣ ( 𝑦) ∈ {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆}} = {𝑦 ∣ (𝑦𝐵 ∧ ∃𝑖𝐼 ( 𝑦) = 𝑆)}
26 nfv 1911 . . . . . . . . . 10 𝑖 𝐾 ∈ HL
2726, 5nfan 1896 . . . . . . . . 9 𝑖(𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵)
28 rspa 3206 . . . . . . . . . . 11 ((∀𝑖𝐼 𝑆𝐵𝑖𝐼) → 𝑆𝐵)
29 hlop 36492 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → 𝐾 ∈ OP)
3013, 16opoccl 36324 . . . . . . . . . . . . . . 15 ((𝐾 ∈ OP ∧ 𝑆𝐵) → ( 𝑆) ∈ 𝐵)
3129, 30sylan 582 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑆𝐵) → ( 𝑆) ∈ 𝐵)
32 eleq1a 2908 . . . . . . . . . . . . . 14 (( 𝑆) ∈ 𝐵 → (𝑦 = ( 𝑆) → 𝑦𝐵))
3331, 32syl 17 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑦 = ( 𝑆) → 𝑦𝐵))
3433pm4.71rd 565 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑦 = ( 𝑆) ↔ (𝑦𝐵𝑦 = ( 𝑆))))
35 eqcom 2828 . . . . . . . . . . . . . 14 (𝑆 = ( 𝑦) ↔ ( 𝑦) = 𝑆)
3613, 16opcon2b 36327 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ OP ∧ 𝑆𝐵𝑦𝐵) → (𝑆 = ( 𝑦) ↔ 𝑦 = ( 𝑆)))
3729, 36syl3an1 1159 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑆𝐵𝑦𝐵) → (𝑆 = ( 𝑦) ↔ 𝑦 = ( 𝑆)))
38373expa 1114 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑆𝐵) ∧ 𝑦𝐵) → (𝑆 = ( 𝑦) ↔ 𝑦 = ( 𝑆)))
3935, 38syl5rbbr 288 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑆𝐵) ∧ 𝑦𝐵) → (𝑦 = ( 𝑆) ↔ ( 𝑦) = 𝑆))
4039pm5.32da 581 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐵) → ((𝑦𝐵𝑦 = ( 𝑆)) ↔ (𝑦𝐵 ∧ ( 𝑦) = 𝑆)))
4134, 40bitrd 281 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑦 = ( 𝑆) ↔ (𝑦𝐵 ∧ ( 𝑦) = 𝑆)))
4228, 41sylan2 594 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (∀𝑖𝐼 𝑆𝐵𝑖𝐼)) → (𝑦 = ( 𝑆) ↔ (𝑦𝐵 ∧ ( 𝑦) = 𝑆)))
4342anassrs 470 . . . . . . . . 9 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑖𝐼) → (𝑦 = ( 𝑆) ↔ (𝑦𝐵 ∧ ( 𝑦) = 𝑆)))
4427, 43rexbida 3318 . . . . . . . 8 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (∃𝑖𝐼 𝑦 = ( 𝑆) ↔ ∃𝑖𝐼 (𝑦𝐵 ∧ ( 𝑦) = 𝑆)))
45 r19.42v 3350 . . . . . . . 8 (∃𝑖𝐼 (𝑦𝐵 ∧ ( 𝑦) = 𝑆) ↔ (𝑦𝐵 ∧ ∃𝑖𝐼 ( 𝑦) = 𝑆))
4644, 45syl6rbb 290 . . . . . . 7 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → ((𝑦𝐵 ∧ ∃𝑖𝐼 ( 𝑦) = 𝑆) ↔ ∃𝑖𝐼 𝑦 = ( 𝑆)))
4746abbidv 2885 . . . . . 6 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → {𝑦 ∣ (𝑦𝐵 ∧ ∃𝑖𝐼 ( 𝑦) = 𝑆)} = {𝑦 ∣ ∃𝑖𝐼 𝑦 = ( 𝑆)})
48 eqeq1 2825 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦 = ( 𝑆) ↔ 𝑥 = ( 𝑆)))
4948rexbidv 3297 . . . . . . 7 (𝑦 = 𝑥 → (∃𝑖𝐼 𝑦 = ( 𝑆) ↔ ∃𝑖𝐼 𝑥 = ( 𝑆)))
5049cbvabv 2889 . . . . . 6 {𝑦 ∣ ∃𝑖𝐼 𝑦 = ( 𝑆)} = {𝑥 ∣ ∃𝑖𝐼 𝑥 = ( 𝑆)}
5147, 50syl6eq 2872 . . . . 5 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → {𝑦 ∣ (𝑦𝐵 ∧ ∃𝑖𝐼 ( 𝑦) = 𝑆)} = {𝑥 ∣ ∃𝑖𝐼 𝑥 = ( 𝑆)})
5225, 51syl5eq 2868 . . . 4 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → {𝑦𝐵 ∣ ( 𝑦) ∈ {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆}} = {𝑥 ∣ ∃𝑖𝐼 𝑥 = ( 𝑆)})
5352fveq2d 6669 . . 3 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝑈‘{𝑦𝐵 ∣ ( 𝑦) ∈ {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆}}) = (𝑈‘{𝑥 ∣ ∃𝑖𝐼 𝑥 = ( 𝑆)}))
5453fveq2d 6669 . 2 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → ( ‘(𝑈‘{𝑦𝐵 ∣ ( 𝑦) ∈ {𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆}})) = ( ‘(𝑈‘{𝑥 ∣ ∃𝑖𝐼 𝑥 = ( 𝑆)})))
5518, 54eqtrd 2856 1 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝐺‘{𝑥 ∣ ∃𝑖𝐼 𝑥 = 𝑆}) = ( ‘(𝑈‘{𝑥 ∣ ∃𝑖𝐼 𝑥 = ( 𝑆)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  {cab 2799  wral 3138  wrex 3139  {crab 3142  wss 3936  cfv 6350  Basecbs 16477  occoc 16567  lubclub 17546  glbcglb 17547  OPcops 36302  HLchlt 36480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-riotaBAD 36083
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-undef 7933  df-lub 17578  df-glb 17579  df-clat 17712  df-oposet 36306  df-ol 36308  df-oml 36309  df-hlat 36481
This theorem is referenced by:  polval2N  37036
  Copyright terms: Public domain W3C validator