Step | Hyp | Ref
| Expression |
1 | | nfmpt1 5182 |
. . 3
⊢
Ⅎ𝑗(𝑗 ∈ 𝑍 ↦ 𝐵) |
2 | | limsupreuzmpt.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
3 | | limsupreuzmpt.z |
. . 3
⊢ 𝑍 =
(ℤ≥‘𝑀) |
4 | | limsupreuzmpt.j |
. . . 4
⊢
Ⅎ𝑗𝜑 |
5 | | limsupreuzmpt.b |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) |
6 | 4, 5 | fmptd2f 42778 |
. . 3
⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ) |
7 | 1, 2, 3, 6 | limsupreuz 43278 |
. 2
⊢ (𝜑 → ((lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑦 ≤ ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ∧ ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ≤ 𝑦))) |
8 | | nfv 1917 |
. . . . . . . 8
⊢
Ⅎ𝑗 𝑖 ∈ 𝑍 |
9 | 4, 8 | nfan 1902 |
. . . . . . 7
⊢
Ⅎ𝑗(𝜑 ∧ 𝑖 ∈ 𝑍) |
10 | | simpll 764 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → 𝜑) |
11 | 3 | uztrn2 12601 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → 𝑗 ∈ 𝑍) |
12 | 11 | adantll 711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → 𝑗 ∈ 𝑍) |
13 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ 𝑍 ↦ 𝐵) = (𝑗 ∈ 𝑍 ↦ 𝐵) |
14 | 13 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ 𝐵) = (𝑗 ∈ 𝑍 ↦ 𝐵)) |
15 | 14, 5 | fvmpt2d 6888 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) = 𝐵) |
16 | 10, 12, 15 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) = 𝐵) |
17 | 16 | breq2d 5086 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → (𝑦 ≤ ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ↔ 𝑦 ≤ 𝐵)) |
18 | 9, 17 | rexbida 3251 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (∃𝑗 ∈ (ℤ≥‘𝑖)𝑦 ≤ ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ↔ ∃𝑗 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵)) |
19 | 18 | ralbidva 3111 |
. . . . 5
⊢ (𝜑 → (∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑦 ≤ ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ↔ ∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵)) |
20 | 19 | rexbidv 3226 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑦 ≤ ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ↔ ∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵)) |
21 | | breq1 5077 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑦 ≤ 𝐵 ↔ 𝑥 ≤ 𝐵)) |
22 | 21 | rexbidv 3226 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (∃𝑗 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵 ↔ ∃𝑗 ∈ (ℤ≥‘𝑖)𝑥 ≤ 𝐵)) |
23 | 22 | ralbidv 3112 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵 ↔ ∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑥 ≤ 𝐵)) |
24 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑘 → (ℤ≥‘𝑖) =
(ℤ≥‘𝑘)) |
25 | 24 | rexeqdv 3349 |
. . . . . . . . 9
⊢ (𝑖 = 𝑘 → (∃𝑗 ∈ (ℤ≥‘𝑖)𝑥 ≤ 𝐵 ↔ ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ 𝐵)) |
26 | 25 | cbvralvw 3383 |
. . . . . . . 8
⊢
(∀𝑖 ∈
𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑥 ≤ 𝐵 ↔ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ 𝐵) |
27 | 26 | a1i 11 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑥 ≤ 𝐵 ↔ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ 𝐵)) |
28 | 23, 27 | bitrd 278 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵 ↔ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ 𝐵)) |
29 | 28 | cbvrexvw 3384 |
. . . . 5
⊢
(∃𝑦 ∈
ℝ ∀𝑖 ∈
𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ 𝐵) |
30 | 29 | a1i 11 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ 𝐵)) |
31 | 20, 30 | bitrd 278 |
. . 3
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑦 ≤ ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ 𝐵)) |
32 | 15 | breq1d 5084 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ≤ 𝑦 ↔ 𝐵 ≤ 𝑦)) |
33 | 4, 32 | ralbida 3159 |
. . . . 5
⊢ (𝜑 → (∀𝑗 ∈ 𝑍 ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ≤ 𝑦 ↔ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑦)) |
34 | 33 | rexbidv 3226 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑦)) |
35 | | breq2 5078 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (𝐵 ≤ 𝑦 ↔ 𝐵 ≤ 𝑥)) |
36 | 35 | ralbidv 3112 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑦 ↔ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥)) |
37 | 36 | cbvrexvw 3384 |
. . . . 5
⊢
(∃𝑦 ∈
ℝ ∀𝑗 ∈
𝑍 𝐵 ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥) |
38 | 37 | a1i 11 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥)) |
39 | 34, 38 | bitrd 278 |
. . 3
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥)) |
40 | 31, 39 | anbi12d 631 |
. 2
⊢ (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑦 ≤ ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ∧ ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 ((𝑗 ∈ 𝑍 ↦ 𝐵)‘𝑗) ≤ 𝑦) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ 𝐵 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥))) |
41 | 7, 40 | bitrd 278 |
1
⊢ (𝜑 → ((lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ 𝐵 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥))) |