Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupreuzmpt Structured version   Visualization version   GIF version

Theorem limsupreuzmpt 45730
Description: Given a function on the reals, defined on a set of upper integers, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupreuzmpt.j 𝑗𝜑
limsupreuzmpt.m (𝜑𝑀 ∈ ℤ)
limsupreuzmpt.z 𝑍 = (ℤ𝑀)
limsupreuzmpt.b ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
limsupreuzmpt (𝜑 → ((lim sup‘(𝑗𝑍𝐵)) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)))
Distinct variable groups:   𝐵,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐵(𝑗)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem limsupreuzmpt
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfmpt1 5201 . . 3 𝑗(𝑗𝑍𝐵)
2 limsupreuzmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
3 limsupreuzmpt.z . . 3 𝑍 = (ℤ𝑀)
4 limsupreuzmpt.j . . . 4 𝑗𝜑
5 limsupreuzmpt.b . . . 4 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
64, 5fmptd2f 45222 . . 3 (𝜑 → (𝑗𝑍𝐵):𝑍⟶ℝ)
71, 2, 3, 6limsupreuz 45728 . 2 (𝜑 → ((lim sup‘(𝑗𝑍𝐵)) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ∧ ∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦)))
8 nfv 1914 . . . . . . . 8 𝑗 𝑖𝑍
94, 8nfan 1899 . . . . . . 7 𝑗(𝜑𝑖𝑍)
10 simpll 766 . . . . . . . . 9 (((𝜑𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝜑)
113uztrn2 12788 . . . . . . . . . 10 ((𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
1211adantll 714 . . . . . . . . 9 (((𝜑𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
13 eqid 2729 . . . . . . . . . . 11 (𝑗𝑍𝐵) = (𝑗𝑍𝐵)
1413a1i 11 . . . . . . . . . 10 (𝜑 → (𝑗𝑍𝐵) = (𝑗𝑍𝐵))
1514, 5fvmpt2d 6963 . . . . . . . . 9 ((𝜑𝑗𝑍) → ((𝑗𝑍𝐵)‘𝑗) = 𝐵)
1610, 12, 15syl2anc 584 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) → ((𝑗𝑍𝐵)‘𝑗) = 𝐵)
1716breq2d 5114 . . . . . . 7 (((𝜑𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) → (𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ 𝑦𝐵))
189, 17rexbida 3247 . . . . . 6 ((𝜑𝑖𝑍) → (∃𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ ∃𝑗 ∈ (ℤ𝑖)𝑦𝐵))
1918ralbidva 3154 . . . . 5 (𝜑 → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵))
2019rexbidv 3157 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ ∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵))
21 breq1 5105 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
2221rexbidv 3157 . . . . . . . 8 (𝑦 = 𝑥 → (∃𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∃𝑗 ∈ (ℤ𝑖)𝑥𝐵))
2322ralbidv 3156 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥𝐵))
24 fveq2 6840 . . . . . . . . . 10 (𝑖 = 𝑘 → (ℤ𝑖) = (ℤ𝑘))
2524rexeqdv 3297 . . . . . . . . 9 (𝑖 = 𝑘 → (∃𝑗 ∈ (ℤ𝑖)𝑥𝐵 ↔ ∃𝑗 ∈ (ℤ𝑘)𝑥𝐵))
2625cbvralvw 3213 . . . . . . . 8 (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥𝐵 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵)
2726a1i 11 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥𝐵 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵))
2823, 27bitrd 279 . . . . . 6 (𝑦 = 𝑥 → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵))
2928cbvrexvw 3214 . . . . 5 (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵)
3029a1i 11 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵))
3120, 30bitrd 279 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵))
3215breq1d 5112 . . . . . 6 ((𝜑𝑗𝑍) → (((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦𝐵𝑦))
334, 32ralbida 3246 . . . . 5 (𝜑 → (∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∀𝑗𝑍 𝐵𝑦))
3433rexbidv 3157 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦))
35 breq2 5106 . . . . . . 7 (𝑦 = 𝑥 → (𝐵𝑦𝐵𝑥))
3635ralbidv 3156 . . . . . 6 (𝑦 = 𝑥 → (∀𝑗𝑍 𝐵𝑦 ↔ ∀𝑗𝑍 𝐵𝑥))
3736cbvrexvw 3214 . . . . 5 (∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
3837a1i 11 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
3934, 38bitrd 279 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
4031, 39anbi12d 632 . 2 (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ∧ ∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)))
417, 40bitrd 279 1 (𝜑 → ((lim sup‘(𝑗𝑍𝐵)) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  wral 3044  wrex 3053   class class class wbr 5102  cmpt 5183  cfv 6499  cr 11043  cle 11185  cz 12505  cuz 12769  lim supclsp 15412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-ico 13288  df-fz 13445  df-fzo 13592  df-fl 13730  df-ceil 13731  df-limsup 15413
This theorem is referenced by:  liminfreuzlem  45793
  Copyright terms: Public domain W3C validator