Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupreuzmpt Structured version   Visualization version   GIF version

Theorem limsupreuzmpt 42018
Description: Given a function on the reals, defined on a set of upper integers, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupreuzmpt.j 𝑗𝜑
limsupreuzmpt.m (𝜑𝑀 ∈ ℤ)
limsupreuzmpt.z 𝑍 = (ℤ𝑀)
limsupreuzmpt.b ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
limsupreuzmpt (𝜑 → ((lim sup‘(𝑗𝑍𝐵)) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)))
Distinct variable groups:   𝐵,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐵(𝑗)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem limsupreuzmpt
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfmpt1 5163 . . 3 𝑗(𝑗𝑍𝐵)
2 limsupreuzmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
3 limsupreuzmpt.z . . 3 𝑍 = (ℤ𝑀)
4 limsupreuzmpt.j . . . 4 𝑗𝜑
5 limsupreuzmpt.b . . . 4 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
64, 5fmptd2f 41503 . . 3 (𝜑 → (𝑗𝑍𝐵):𝑍⟶ℝ)
71, 2, 3, 6limsupreuz 42016 . 2 (𝜑 → ((lim sup‘(𝑗𝑍𝐵)) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ∧ ∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦)))
8 nfv 1911 . . . . . . . 8 𝑗 𝑖𝑍
94, 8nfan 1896 . . . . . . 7 𝑗(𝜑𝑖𝑍)
10 simpll 765 . . . . . . . . 9 (((𝜑𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝜑)
113uztrn2 12261 . . . . . . . . . 10 ((𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
1211adantll 712 . . . . . . . . 9 (((𝜑𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
13 eqid 2821 . . . . . . . . . . 11 (𝑗𝑍𝐵) = (𝑗𝑍𝐵)
1413a1i 11 . . . . . . . . . 10 (𝜑 → (𝑗𝑍𝐵) = (𝑗𝑍𝐵))
1514, 5fvmpt2d 6780 . . . . . . . . 9 ((𝜑𝑗𝑍) → ((𝑗𝑍𝐵)‘𝑗) = 𝐵)
1610, 12, 15syl2anc 586 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) → ((𝑗𝑍𝐵)‘𝑗) = 𝐵)
1716breq2d 5077 . . . . . . 7 (((𝜑𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) → (𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ 𝑦𝐵))
189, 17rexbida 3318 . . . . . 6 ((𝜑𝑖𝑍) → (∃𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ ∃𝑗 ∈ (ℤ𝑖)𝑦𝐵))
1918ralbidva 3196 . . . . 5 (𝜑 → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵))
2019rexbidv 3297 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ ∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵))
21 breq1 5068 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
2221rexbidv 3297 . . . . . . . 8 (𝑦 = 𝑥 → (∃𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∃𝑗 ∈ (ℤ𝑖)𝑥𝐵))
2322ralbidv 3197 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥𝐵))
24 fveq2 6669 . . . . . . . . . 10 (𝑖 = 𝑘 → (ℤ𝑖) = (ℤ𝑘))
2524rexeqdv 3416 . . . . . . . . 9 (𝑖 = 𝑘 → (∃𝑗 ∈ (ℤ𝑖)𝑥𝐵 ↔ ∃𝑗 ∈ (ℤ𝑘)𝑥𝐵))
2625cbvralvw 3449 . . . . . . . 8 (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥𝐵 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵)
2726a1i 11 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥𝐵 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵))
2823, 27bitrd 281 . . . . . 6 (𝑦 = 𝑥 → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵))
2928cbvrexvw 3450 . . . . 5 (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵)
3029a1i 11 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵))
3120, 30bitrd 281 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵))
3215breq1d 5075 . . . . . 6 ((𝜑𝑗𝑍) → (((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦𝐵𝑦))
334, 32ralbida 3230 . . . . 5 (𝜑 → (∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∀𝑗𝑍 𝐵𝑦))
3433rexbidv 3297 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦))
35 breq2 5069 . . . . . . 7 (𝑦 = 𝑥 → (𝐵𝑦𝐵𝑥))
3635ralbidv 3197 . . . . . 6 (𝑦 = 𝑥 → (∀𝑗𝑍 𝐵𝑦 ↔ ∀𝑗𝑍 𝐵𝑥))
3736cbvrexvw 3450 . . . . 5 (∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
3837a1i 11 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
3934, 38bitrd 281 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
4031, 39anbi12d 632 . 2 (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ∧ ∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)))
417, 40bitrd 281 1 (𝜑 → ((lim sup‘(𝑗𝑍𝐵)) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wnf 1780  wcel 2110  wral 3138  wrex 3139   class class class wbr 5065  cmpt 5145  cfv 6354  cr 10535  cle 10675  cz 11980  cuz 12242  lim supclsp 14826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-ico 12743  df-fz 12892  df-fzo 13033  df-fl 13161  df-ceil 13162  df-limsup 14827
This theorem is referenced by:  liminfreuzlem  42081
  Copyright terms: Public domain W3C validator