Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupreuzmpt Structured version   Visualization version   GIF version

Theorem limsupreuzmpt 45730
Description: Given a function on the reals, defined on a set of upper integers, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupreuzmpt.j 𝑗𝜑
limsupreuzmpt.m (𝜑𝑀 ∈ ℤ)
limsupreuzmpt.z 𝑍 = (ℤ𝑀)
limsupreuzmpt.b ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
limsupreuzmpt (𝜑 → ((lim sup‘(𝑗𝑍𝐵)) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)))
Distinct variable groups:   𝐵,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐵(𝑗)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem limsupreuzmpt
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfmpt1 5191 . . 3 𝑗(𝑗𝑍𝐵)
2 limsupreuzmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
3 limsupreuzmpt.z . . 3 𝑍 = (ℤ𝑀)
4 limsupreuzmpt.j . . . 4 𝑗𝜑
5 limsupreuzmpt.b . . . 4 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
64, 5fmptd2f 45223 . . 3 (𝜑 → (𝑗𝑍𝐵):𝑍⟶ℝ)
71, 2, 3, 6limsupreuz 45728 . 2 (𝜑 → ((lim sup‘(𝑗𝑍𝐵)) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ∧ ∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦)))
8 nfv 1914 . . . . . . . 8 𝑗 𝑖𝑍
94, 8nfan 1899 . . . . . . 7 𝑗(𝜑𝑖𝑍)
10 simpll 766 . . . . . . . . 9 (((𝜑𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝜑)
113uztrn2 12754 . . . . . . . . . 10 ((𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
1211adantll 714 . . . . . . . . 9 (((𝜑𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
13 eqid 2729 . . . . . . . . . . 11 (𝑗𝑍𝐵) = (𝑗𝑍𝐵)
1413a1i 11 . . . . . . . . . 10 (𝜑 → (𝑗𝑍𝐵) = (𝑗𝑍𝐵))
1514, 5fvmpt2d 6943 . . . . . . . . 9 ((𝜑𝑗𝑍) → ((𝑗𝑍𝐵)‘𝑗) = 𝐵)
1610, 12, 15syl2anc 584 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) → ((𝑗𝑍𝐵)‘𝑗) = 𝐵)
1716breq2d 5104 . . . . . . 7 (((𝜑𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) → (𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ 𝑦𝐵))
189, 17rexbida 3241 . . . . . 6 ((𝜑𝑖𝑍) → (∃𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ ∃𝑗 ∈ (ℤ𝑖)𝑦𝐵))
1918ralbidva 3150 . . . . 5 (𝜑 → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵))
2019rexbidv 3153 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ ∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵))
21 breq1 5095 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
2221rexbidv 3153 . . . . . . . 8 (𝑦 = 𝑥 → (∃𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∃𝑗 ∈ (ℤ𝑖)𝑥𝐵))
2322ralbidv 3152 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥𝐵))
24 fveq2 6822 . . . . . . . . . 10 (𝑖 = 𝑘 → (ℤ𝑖) = (ℤ𝑘))
2524rexeqdv 3290 . . . . . . . . 9 (𝑖 = 𝑘 → (∃𝑗 ∈ (ℤ𝑖)𝑥𝐵 ↔ ∃𝑗 ∈ (ℤ𝑘)𝑥𝐵))
2625cbvralvw 3207 . . . . . . . 8 (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥𝐵 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵)
2726a1i 11 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥𝐵 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵))
2823, 27bitrd 279 . . . . . 6 (𝑦 = 𝑥 → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵))
2928cbvrexvw 3208 . . . . 5 (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵)
3029a1i 11 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵))
3120, 30bitrd 279 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵))
3215breq1d 5102 . . . . . 6 ((𝜑𝑗𝑍) → (((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦𝐵𝑦))
334, 32ralbida 3240 . . . . 5 (𝜑 → (∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∀𝑗𝑍 𝐵𝑦))
3433rexbidv 3153 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦))
35 breq2 5096 . . . . . . 7 (𝑦 = 𝑥 → (𝐵𝑦𝐵𝑥))
3635ralbidv 3152 . . . . . 6 (𝑦 = 𝑥 → (∀𝑗𝑍 𝐵𝑦 ↔ ∀𝑗𝑍 𝐵𝑥))
3736cbvrexvw 3208 . . . . 5 (∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
3837a1i 11 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
3934, 38bitrd 279 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
4031, 39anbi12d 632 . 2 (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ∧ ∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)))
417, 40bitrd 279 1 (𝜑 → ((lim sup‘(𝑗𝑍𝐵)) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  wral 3044  wrex 3053   class class class wbr 5092  cmpt 5173  cfv 6482  cr 11008  cle 11150  cz 12471  cuz 12735  lim supclsp 15377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-ico 13254  df-fz 13411  df-fzo 13558  df-fl 13696  df-ceil 13697  df-limsup 15378
This theorem is referenced by:  liminfreuzlem  45793
  Copyright terms: Public domain W3C validator