| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nfmpt1 5249 | . . 3
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | 
| 2 |  | limsupre3mpt.a | . . 3
⊢ (𝜑 → 𝐴 ⊆ ℝ) | 
| 3 |  | limsupre3mpt.p | . . . 4
⊢
Ⅎ𝑥𝜑 | 
| 4 |  | limsupre3mpt.b | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈
ℝ*) | 
| 5 | 3, 4 | fmptd2f 45245 | . . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ*) | 
| 6 | 1, 2, 5 | limsupre3 45753 | . 2
⊢ (𝜑 → ((lim sup‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ ↔ (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑤)))) | 
| 7 |  | eqid 2736 | . . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | 
| 8 | 7 | a1i 11 | . . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | 
| 9 | 8, 4 | fvmpt2d 7028 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) | 
| 10 | 9 | breq2d 5154 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑤 ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ↔ 𝑤 ≤ 𝐵)) | 
| 11 | 10 | anbi2d 630 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑗 ≤ 𝑥 ∧ 𝑤 ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ↔ (𝑗 ≤ 𝑥 ∧ 𝑤 ≤ 𝐵))) | 
| 12 | 3, 11 | rexbida 3271 | . . . . 5
⊢ (𝜑 → (∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ↔ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 ≤ 𝐵))) | 
| 13 | 12 | ralbidv 3177 | . . . 4
⊢ (𝜑 → (∀𝑗 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ↔ ∀𝑗 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 ≤ 𝐵))) | 
| 14 | 13 | rexbidv 3178 | . . 3
⊢ (𝜑 → (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ↔ ∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 ≤ 𝐵))) | 
| 15 | 9 | breq1d 5152 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑤 ↔ 𝐵 ≤ 𝑤)) | 
| 16 | 15 | imbi2d 340 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑗 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑤) ↔ (𝑗 ≤ 𝑥 → 𝐵 ≤ 𝑤))) | 
| 17 | 3, 16 | ralbida 3269 | . . . . 5
⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑤) ↔ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 ≤ 𝑤))) | 
| 18 | 17 | rexbidv 3178 | . . . 4
⊢ (𝜑 → (∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑤) ↔ ∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 ≤ 𝑤))) | 
| 19 | 18 | rexbidv 3178 | . . 3
⊢ (𝜑 → (∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑤) ↔ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 ≤ 𝑤))) | 
| 20 | 14, 19 | anbi12d 632 | . 2
⊢ (𝜑 → ((∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ≤ 𝑤)) ↔ (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 ≤ 𝐵) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 ≤ 𝑤)))) | 
| 21 |  | breq1 5145 | . . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝑤 ≤ 𝐵 ↔ 𝑦 ≤ 𝐵)) | 
| 22 | 21 | anbi2d 630 | . . . . . . . 8
⊢ (𝑤 = 𝑦 → ((𝑗 ≤ 𝑥 ∧ 𝑤 ≤ 𝐵) ↔ (𝑗 ≤ 𝑥 ∧ 𝑦 ≤ 𝐵))) | 
| 23 | 22 | rexbidv 3178 | . . . . . . 7
⊢ (𝑤 = 𝑦 → (∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 ≤ 𝐵) ↔ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑦 ≤ 𝐵))) | 
| 24 | 23 | ralbidv 3177 | . . . . . 6
⊢ (𝑤 = 𝑦 → (∀𝑗 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 ≤ 𝐵) ↔ ∀𝑗 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑦 ≤ 𝐵))) | 
| 25 |  | breq1 5145 | . . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (𝑗 ≤ 𝑥 ↔ 𝑘 ≤ 𝑥)) | 
| 26 | 25 | anbi1d 631 | . . . . . . . . 9
⊢ (𝑗 = 𝑘 → ((𝑗 ≤ 𝑥 ∧ 𝑦 ≤ 𝐵) ↔ (𝑘 ≤ 𝑥 ∧ 𝑦 ≤ 𝐵))) | 
| 27 | 26 | rexbidv 3178 | . . . . . . . 8
⊢ (𝑗 = 𝑘 → (∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑦 ≤ 𝐵) ↔ ∃𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 ∧ 𝑦 ≤ 𝐵))) | 
| 28 | 27 | cbvralvw 3236 | . . . . . . 7
⊢
(∀𝑗 ∈
ℝ ∃𝑥 ∈
𝐴 (𝑗 ≤ 𝑥 ∧ 𝑦 ≤ 𝐵) ↔ ∀𝑘 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 ∧ 𝑦 ≤ 𝐵)) | 
| 29 | 28 | a1i 11 | . . . . . 6
⊢ (𝑤 = 𝑦 → (∀𝑗 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑦 ≤ 𝐵) ↔ ∀𝑘 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 ∧ 𝑦 ≤ 𝐵))) | 
| 30 | 24, 29 | bitrd 279 | . . . . 5
⊢ (𝑤 = 𝑦 → (∀𝑗 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 ≤ 𝐵) ↔ ∀𝑘 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 ∧ 𝑦 ≤ 𝐵))) | 
| 31 | 30 | cbvrexvw 3237 | . . . 4
⊢
(∃𝑤 ∈
ℝ ∀𝑗 ∈
ℝ ∃𝑥 ∈
𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 ≤ 𝐵) ↔ ∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 ∧ 𝑦 ≤ 𝐵)) | 
| 32 |  | breq2 5146 | . . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝐵 ≤ 𝑤 ↔ 𝐵 ≤ 𝑦)) | 
| 33 | 32 | imbi2d 340 | . . . . . . . 8
⊢ (𝑤 = 𝑦 → ((𝑗 ≤ 𝑥 → 𝐵 ≤ 𝑤) ↔ (𝑗 ≤ 𝑥 → 𝐵 ≤ 𝑦))) | 
| 34 | 33 | ralbidv 3177 | . . . . . . 7
⊢ (𝑤 = 𝑦 → (∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 ≤ 𝑤) ↔ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 ≤ 𝑦))) | 
| 35 | 34 | rexbidv 3178 | . . . . . 6
⊢ (𝑤 = 𝑦 → (∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 ≤ 𝑤) ↔ ∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 ≤ 𝑦))) | 
| 36 | 25 | imbi1d 341 | . . . . . . . . 9
⊢ (𝑗 = 𝑘 → ((𝑗 ≤ 𝑥 → 𝐵 ≤ 𝑦) ↔ (𝑘 ≤ 𝑥 → 𝐵 ≤ 𝑦))) | 
| 37 | 36 | ralbidv 3177 | . . . . . . . 8
⊢ (𝑗 = 𝑘 → (∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 ≤ 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 → 𝐵 ≤ 𝑦))) | 
| 38 | 37 | cbvrexvw 3237 | . . . . . . 7
⊢
(∃𝑗 ∈
ℝ ∀𝑥 ∈
𝐴 (𝑗 ≤ 𝑥 → 𝐵 ≤ 𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 → 𝐵 ≤ 𝑦)) | 
| 39 | 38 | a1i 11 | . . . . . 6
⊢ (𝑤 = 𝑦 → (∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 ≤ 𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 → 𝐵 ≤ 𝑦))) | 
| 40 | 35, 39 | bitrd 279 | . . . . 5
⊢ (𝑤 = 𝑦 → (∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 ≤ 𝑤) ↔ ∃𝑘 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 → 𝐵 ≤ 𝑦))) | 
| 41 | 40 | cbvrexvw 3237 | . . . 4
⊢
(∃𝑤 ∈
ℝ ∃𝑗 ∈
ℝ ∀𝑥 ∈
𝐴 (𝑗 ≤ 𝑥 → 𝐵 ≤ 𝑤) ↔ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 → 𝐵 ≤ 𝑦)) | 
| 42 | 31, 41 | anbi12i 628 | . . 3
⊢
((∃𝑤 ∈
ℝ ∀𝑗 ∈
ℝ ∃𝑥 ∈
𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 ≤ 𝐵) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 ≤ 𝑤)) ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 ∧ 𝑦 ≤ 𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 → 𝐵 ≤ 𝑦))) | 
| 43 | 42 | a1i 11 | . 2
⊢ (𝜑 → ((∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 ∧ 𝑤 ≤ 𝐵) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑗 ≤ 𝑥 → 𝐵 ≤ 𝑤)) ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 ∧ 𝑦 ≤ 𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 → 𝐵 ≤ 𝑦)))) | 
| 44 | 6, 20, 43 | 3bitrd 305 | 1
⊢ (𝜑 → ((lim sup‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 ∧ 𝑦 ≤ 𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 → 𝐵 ≤ 𝑦)))) |