Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupre3mpt Structured version   Visualization version   GIF version

Theorem limsupre3mpt 41557
Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupre3mpt.p 𝑥𝜑
limsupre3mpt.a (𝜑𝐴 ⊆ ℝ)
limsupre3mpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
limsupre3mpt (𝜑 → ((lim sup‘(𝑥𝐴𝐵)) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦))))
Distinct variable groups:   𝐴,𝑘,𝑥,𝑦   𝐵,𝑘,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑘)   𝐵(𝑥)

Proof of Theorem limsupre3mpt
Dummy variables 𝑗 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfmpt1 5058 . . 3 𝑥(𝑥𝐴𝐵)
2 limsupre3mpt.a . . 3 (𝜑𝐴 ⊆ ℝ)
3 limsupre3mpt.p . . . 4 𝑥𝜑
4 limsupre3mpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
53, 4fmptd2f 41046 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ*)
61, 2, 5limsupre3 41556 . 2 (𝜑 → ((lim sup‘(𝑥𝐴𝐵)) ∈ ℝ ↔ (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 ≤ ((𝑥𝐴𝐵)‘𝑥)) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑤))))
7 eqid 2795 . . . . . . . . . 10 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
87a1i 11 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
98, 4fvmpt2d 6647 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
109breq2d 4974 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑤 ≤ ((𝑥𝐴𝐵)‘𝑥) ↔ 𝑤𝐵))
1110anbi2d 628 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑗𝑥𝑤 ≤ ((𝑥𝐴𝐵)‘𝑥)) ↔ (𝑗𝑥𝑤𝐵)))
123, 11rexbida 3279 . . . . 5 (𝜑 → (∃𝑥𝐴 (𝑗𝑥𝑤 ≤ ((𝑥𝐴𝐵)‘𝑥)) ↔ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵)))
1312ralbidv 3164 . . . 4 (𝜑 → (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 ≤ ((𝑥𝐴𝐵)‘𝑥)) ↔ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵)))
1413rexbidv 3260 . . 3 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 ≤ ((𝑥𝐴𝐵)‘𝑥)) ↔ ∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵)))
159breq1d 4972 . . . . . . 7 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ≤ 𝑤𝐵𝑤))
1615imbi2d 342 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑤) ↔ (𝑗𝑥𝐵𝑤)))
173, 16ralbida 3194 . . . . 5 (𝜑 → (∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑤) ↔ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤)))
1817rexbidv 3260 . . . 4 (𝜑 → (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑤) ↔ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤)))
1918rexbidv 3260 . . 3 (𝜑 → (∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑤) ↔ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤)))
2014, 19anbi12d 630 . 2 (𝜑 → ((∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 ≤ ((𝑥𝐴𝐵)‘𝑥)) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑤)) ↔ (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤))))
21 breq1 4965 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤𝐵𝑦𝐵))
2221anbi2d 628 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑗𝑥𝑤𝐵) ↔ (𝑗𝑥𝑦𝐵)))
2322rexbidv 3260 . . . . . . 7 (𝑤 = 𝑦 → (∃𝑥𝐴 (𝑗𝑥𝑤𝐵) ↔ ∃𝑥𝐴 (𝑗𝑥𝑦𝐵)))
2423ralbidv 3164 . . . . . 6 (𝑤 = 𝑦 → (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵) ↔ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑦𝐵)))
25 breq1 4965 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑗𝑥𝑘𝑥))
2625anbi1d 629 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑗𝑥𝑦𝐵) ↔ (𝑘𝑥𝑦𝐵)))
2726rexbidv 3260 . . . . . . . 8 (𝑗 = 𝑘 → (∃𝑥𝐴 (𝑗𝑥𝑦𝐵) ↔ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵)))
2827cbvralv 3403 . . . . . . 7 (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑦𝐵) ↔ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵))
2928a1i 11 . . . . . 6 (𝑤 = 𝑦 → (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑦𝐵) ↔ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵)))
3024, 29bitrd 280 . . . . 5 (𝑤 = 𝑦 → (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵) ↔ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵)))
3130cbvrexv 3404 . . . 4 (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵) ↔ ∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵))
32 breq2 4966 . . . . . . . . 9 (𝑤 = 𝑦 → (𝐵𝑤𝐵𝑦))
3332imbi2d 342 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑗𝑥𝐵𝑤) ↔ (𝑗𝑥𝐵𝑦)))
3433ralbidv 3164 . . . . . . 7 (𝑤 = 𝑦 → (∀𝑥𝐴 (𝑗𝑥𝐵𝑤) ↔ ∀𝑥𝐴 (𝑗𝑥𝐵𝑦)))
3534rexbidv 3260 . . . . . 6 (𝑤 = 𝑦 → (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤) ↔ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑦)))
3625imbi1d 343 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑗𝑥𝐵𝑦) ↔ (𝑘𝑥𝐵𝑦)))
3736ralbidv 3164 . . . . . . . 8 (𝑗 = 𝑘 → (∀𝑥𝐴 (𝑗𝑥𝐵𝑦) ↔ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦)))
3837cbvrexv 3404 . . . . . . 7 (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦))
3938a1i 11 . . . . . 6 (𝑤 = 𝑦 → (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦)))
4035, 39bitrd 280 . . . . 5 (𝑤 = 𝑦 → (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤) ↔ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦)))
4140cbvrexv 3404 . . . 4 (∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤) ↔ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦))
4231, 41anbi12i 626 . . 3 ((∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤)) ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦)))
4342a1i 11 . 2 (𝜑 → ((∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤)) ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦))))
446, 20, 433bitrd 306 1 (𝜑 → ((lim sup‘(𝑥𝐴𝐵)) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wnf 1765  wcel 2081  wral 3105  wrex 3106  wss 3859   class class class wbr 4962  cmpt 5041  cfv 6225  cr 10382  *cxr 10520  cle 10522  lim supclsp 14661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-po 5362  df-so 5363  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-sup 8752  df-inf 8753  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-ico 12594  df-limsup 14662
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator