Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupre3mpt Structured version   Visualization version   GIF version

Theorem limsupre3mpt 43165
Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupre3mpt.p 𝑥𝜑
limsupre3mpt.a (𝜑𝐴 ⊆ ℝ)
limsupre3mpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
limsupre3mpt (𝜑 → ((lim sup‘(𝑥𝐴𝐵)) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦))))
Distinct variable groups:   𝐴,𝑘,𝑥,𝑦   𝐵,𝑘,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑘)   𝐵(𝑥)

Proof of Theorem limsupre3mpt
Dummy variables 𝑗 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfmpt1 5178 . . 3 𝑥(𝑥𝐴𝐵)
2 limsupre3mpt.a . . 3 (𝜑𝐴 ⊆ ℝ)
3 limsupre3mpt.p . . . 4 𝑥𝜑
4 limsupre3mpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
53, 4fmptd2f 42667 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ*)
61, 2, 5limsupre3 43164 . 2 (𝜑 → ((lim sup‘(𝑥𝐴𝐵)) ∈ ℝ ↔ (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 ≤ ((𝑥𝐴𝐵)‘𝑥)) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑤))))
7 eqid 2738 . . . . . . . . . 10 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
87a1i 11 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
98, 4fvmpt2d 6870 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
109breq2d 5082 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑤 ≤ ((𝑥𝐴𝐵)‘𝑥) ↔ 𝑤𝐵))
1110anbi2d 628 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑗𝑥𝑤 ≤ ((𝑥𝐴𝐵)‘𝑥)) ↔ (𝑗𝑥𝑤𝐵)))
123, 11rexbida 3246 . . . . 5 (𝜑 → (∃𝑥𝐴 (𝑗𝑥𝑤 ≤ ((𝑥𝐴𝐵)‘𝑥)) ↔ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵)))
1312ralbidv 3120 . . . 4 (𝜑 → (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 ≤ ((𝑥𝐴𝐵)‘𝑥)) ↔ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵)))
1413rexbidv 3225 . . 3 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 ≤ ((𝑥𝐴𝐵)‘𝑥)) ↔ ∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵)))
159breq1d 5080 . . . . . . 7 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) ≤ 𝑤𝐵𝑤))
1615imbi2d 340 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑤) ↔ (𝑗𝑥𝐵𝑤)))
173, 16ralbida 3156 . . . . 5 (𝜑 → (∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑤) ↔ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤)))
1817rexbidv 3225 . . . 4 (𝜑 → (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑤) ↔ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤)))
1918rexbidv 3225 . . 3 (𝜑 → (∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑤) ↔ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤)))
2014, 19anbi12d 630 . 2 (𝜑 → ((∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤 ≤ ((𝑥𝐴𝐵)‘𝑥)) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥 → ((𝑥𝐴𝐵)‘𝑥) ≤ 𝑤)) ↔ (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤))))
21 breq1 5073 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤𝐵𝑦𝐵))
2221anbi2d 628 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑗𝑥𝑤𝐵) ↔ (𝑗𝑥𝑦𝐵)))
2322rexbidv 3225 . . . . . . 7 (𝑤 = 𝑦 → (∃𝑥𝐴 (𝑗𝑥𝑤𝐵) ↔ ∃𝑥𝐴 (𝑗𝑥𝑦𝐵)))
2423ralbidv 3120 . . . . . 6 (𝑤 = 𝑦 → (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵) ↔ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑦𝐵)))
25 breq1 5073 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑗𝑥𝑘𝑥))
2625anbi1d 629 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑗𝑥𝑦𝐵) ↔ (𝑘𝑥𝑦𝐵)))
2726rexbidv 3225 . . . . . . . 8 (𝑗 = 𝑘 → (∃𝑥𝐴 (𝑗𝑥𝑦𝐵) ↔ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵)))
2827cbvralvw 3372 . . . . . . 7 (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑦𝐵) ↔ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵))
2928a1i 11 . . . . . 6 (𝑤 = 𝑦 → (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑦𝐵) ↔ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵)))
3024, 29bitrd 278 . . . . 5 (𝑤 = 𝑦 → (∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵) ↔ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵)))
3130cbvrexvw 3373 . . . 4 (∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵) ↔ ∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵))
32 breq2 5074 . . . . . . . . 9 (𝑤 = 𝑦 → (𝐵𝑤𝐵𝑦))
3332imbi2d 340 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑗𝑥𝐵𝑤) ↔ (𝑗𝑥𝐵𝑦)))
3433ralbidv 3120 . . . . . . 7 (𝑤 = 𝑦 → (∀𝑥𝐴 (𝑗𝑥𝐵𝑤) ↔ ∀𝑥𝐴 (𝑗𝑥𝐵𝑦)))
3534rexbidv 3225 . . . . . 6 (𝑤 = 𝑦 → (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤) ↔ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑦)))
3625imbi1d 341 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑗𝑥𝐵𝑦) ↔ (𝑘𝑥𝐵𝑦)))
3736ralbidv 3120 . . . . . . . 8 (𝑗 = 𝑘 → (∀𝑥𝐴 (𝑗𝑥𝐵𝑦) ↔ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦)))
3837cbvrexvw 3373 . . . . . . 7 (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦))
3938a1i 11 . . . . . 6 (𝑤 = 𝑦 → (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑦) ↔ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦)))
4035, 39bitrd 278 . . . . 5 (𝑤 = 𝑦 → (∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤) ↔ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦)))
4140cbvrexvw 3373 . . . 4 (∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤) ↔ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦))
4231, 41anbi12i 626 . . 3 ((∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤)) ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦)))
4342a1i 11 . 2 (𝜑 → ((∃𝑤 ∈ ℝ ∀𝑗 ∈ ℝ ∃𝑥𝐴 (𝑗𝑥𝑤𝐵) ∧ ∃𝑤 ∈ ℝ ∃𝑗 ∈ ℝ ∀𝑥𝐴 (𝑗𝑥𝐵𝑤)) ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦))))
446, 20, 433bitrd 304 1 (𝜑 → ((lim sup‘(𝑥𝐴𝐵)) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥𝐴 (𝑘𝑥𝑦𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥𝐴 (𝑘𝑥𝐵𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wnf 1787  wcel 2108  wral 3063  wrex 3064  wss 3883   class class class wbr 5070  cmpt 5153  cfv 6418  cr 10801  *cxr 10939  cle 10941  lim supclsp 15107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-ico 13014  df-limsup 15108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator