Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sstotbnd3 Structured version   Visualization version   GIF version

Theorem sstotbnd3 33907
Description: Use a net that is not necessarily finite, but for which only finitely many balls meet the subset. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypothesis
Ref Expression
sstotbnd.2 𝑁 = (𝑀 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
sstotbnd3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
Distinct variable groups:   𝑣,𝑑,𝑥,𝑀   𝑋,𝑑,𝑣,𝑥   𝑁,𝑑,𝑣,𝑥   𝑌,𝑑,𝑣,𝑥

Proof of Theorem sstotbnd3
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstotbnd.2 . . . 4 𝑁 = (𝑀 ↾ (𝑌 × 𝑌))
21sstotbnd2 33905 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑)))
3 elin 3947 . . . . . . . . 9 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑣 ∈ 𝒫 𝑋𝑣 ∈ Fin))
4 rabfi 8341 . . . . . . . . . 10 (𝑣 ∈ Fin → {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)
54anim2i 603 . . . . . . . . 9 ((𝑣 ∈ 𝒫 𝑋𝑣 ∈ Fin) → (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin))
63, 5sylbi 207 . . . . . . . 8 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin))
76anim2i 603 . . . . . . 7 ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
87ancoms 455 . . . . . 6 ((𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑)) → (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
9 an12 624 . . . . . 6 ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) ↔ (𝑣 ∈ 𝒫 𝑋 ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
108, 9sylib 208 . . . . 5 ((𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑)) → (𝑣 ∈ 𝒫 𝑋 ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
1110reximi2 3158 . . . 4 (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) → ∃𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin))
1211ralimi 3101 . . 3 (∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) → ∀𝑑 ∈ ℝ+𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin))
132, 12syl6bi 243 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) → ∀𝑑 ∈ ℝ+𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
14 ssrab2 3836 . . . . . . . . 9 {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ⊆ 𝑣
15 elpwi 4307 . . . . . . . . . 10 (𝑣 ∈ 𝒫 𝑋𝑣𝑋)
1615ad2antlr 706 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → 𝑣𝑋)
1714, 16syl5ss 3763 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ⊆ 𝑋)
18 simprr 756 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)
19 elfpw 8424 . . . . . . . 8 ({𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ (𝒫 𝑋 ∩ Fin) ↔ ({𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ⊆ 𝑋 ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin))
2017, 18, 19sylanbrc 572 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ (𝒫 𝑋 ∩ Fin))
21 ssel2 3747 . . . . . . . . . . . . 13 ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑧𝑌) → 𝑧 𝑥𝑣 (𝑥(ball‘𝑀)𝑑))
22 eliun 4658 . . . . . . . . . . . . 13 (𝑧 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑥𝑣 𝑧 ∈ (𝑥(ball‘𝑀)𝑑))
2321, 22sylib 208 . . . . . . . . . . . 12 ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑧𝑌) → ∃𝑥𝑣 𝑧 ∈ (𝑥(ball‘𝑀)𝑑))
24 inelcm 4175 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝑥(ball‘𝑀)𝑑) ∧ 𝑧𝑌) → ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅)
2524expcom 398 . . . . . . . . . . . . . . 15 (𝑧𝑌 → (𝑧 ∈ (𝑥(ball‘𝑀)𝑑) → ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅))
2625ancrd 541 . . . . . . . . . . . . . 14 (𝑧𝑌 → (𝑧 ∈ (𝑥(ball‘𝑀)𝑑) → (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑))))
2726reximdv 3164 . . . . . . . . . . . . 13 (𝑧𝑌 → (∃𝑥𝑣 𝑧 ∈ (𝑥(ball‘𝑀)𝑑) → ∃𝑥𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑))))
2827impcom 394 . . . . . . . . . . . 12 ((∃𝑥𝑣 𝑧 ∈ (𝑥(ball‘𝑀)𝑑) ∧ 𝑧𝑌) → ∃𝑥𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑)))
2923, 28sylancom 576 . . . . . . . . . . 11 ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑧𝑌) → ∃𝑥𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑)))
30 eliun 4658 . . . . . . . . . . . 12 (𝑧 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑) ↔ ∃𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅}𝑧 ∈ (𝑦(ball‘𝑀)𝑑))
31 oveq1 6800 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑦(ball‘𝑀)𝑑) = (𝑥(ball‘𝑀)𝑑))
3231eleq2d 2836 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑧 ∈ (𝑦(ball‘𝑀)𝑑) ↔ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑)))
3332rexrab2 3526 . . . . . . . . . . . 12 (∃𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅}𝑧 ∈ (𝑦(ball‘𝑀)𝑑) ↔ ∃𝑥𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑)))
3430, 33bitri 264 . . . . . . . . . . 11 (𝑧 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑) ↔ ∃𝑥𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑)))
3529, 34sylibr 224 . . . . . . . . . 10 ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑧𝑌) → 𝑧 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑))
3635ex 397 . . . . . . . . 9 (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) → (𝑧𝑌𝑧 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑)))
3736ssrdv 3758 . . . . . . . 8 (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) → 𝑌 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑))
3837ad2antrl 707 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → 𝑌 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑))
39 iuneq1 4668 . . . . . . . . 9 (𝑤 = {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} → 𝑦𝑤 (𝑦(ball‘𝑀)𝑑) = 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑))
4039sseq2d 3782 . . . . . . . 8 (𝑤 = {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} → (𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑) ↔ 𝑌 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑)))
4140rspcev 3460 . . . . . . 7 (({𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑)) → ∃𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑))
4220, 38, 41syl2anc 573 . . . . . 6 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → ∃𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑))
4342ex 397 . . . . 5 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) → ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin) → ∃𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑)))
4443rexlimdva 3179 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin) → ∃𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑)))
4544ralimdv 3112 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∀𝑑 ∈ ℝ+𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin) → ∀𝑑 ∈ ℝ+𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑)))
461sstotbnd2 33905 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑)))
4745, 46sylibrd 249 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∀𝑑 ∈ ℝ+𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin) → 𝑁 ∈ (TotBnd‘𝑌)))
4813, 47impbid 202 1 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943  wral 3061  wrex 3062  {crab 3065  cin 3722  wss 3723  c0 4063  𝒫 cpw 4297   ciun 4654   × cxp 5247  cres 5251  cfv 6031  (class class class)co 6793  Fincfn 8109  +crp 12035  Metcme 19947  ballcbl 19948  TotBndctotbnd 33897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-2 11281  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-totbnd 33899
This theorem is referenced by:  cntotbnd  33927
  Copyright terms: Public domain W3C validator