Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sstotbnd3 Structured version   Visualization version   GIF version

Theorem sstotbnd3 37815
Description: Use a net that is not necessarily finite, but for which only finitely many balls meet the subset. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypothesis
Ref Expression
sstotbnd.2 𝑁 = (𝑀 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
sstotbnd3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
Distinct variable groups:   𝑣,𝑑,𝑥,𝑀   𝑋,𝑑,𝑣,𝑥   𝑁,𝑑,𝑣,𝑥   𝑌,𝑑,𝑣,𝑥

Proof of Theorem sstotbnd3
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstotbnd.2 . . . 4 𝑁 = (𝑀 ↾ (𝑌 × 𝑌))
21sstotbnd2 37813 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑)))
3 elin 3913 . . . . . . . . 9 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑣 ∈ 𝒫 𝑋𝑣 ∈ Fin))
4 rabfi 9155 . . . . . . . . . 10 (𝑣 ∈ Fin → {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)
54anim2i 617 . . . . . . . . 9 ((𝑣 ∈ 𝒫 𝑋𝑣 ∈ Fin) → (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin))
63, 5sylbi 217 . . . . . . . 8 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin))
76anim2i 617 . . . . . . 7 ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
87ancoms 458 . . . . . 6 ((𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑)) → (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
9 an12 645 . . . . . 6 ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) ↔ (𝑣 ∈ 𝒫 𝑋 ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
108, 9sylib 218 . . . . 5 ((𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑)) → (𝑣 ∈ 𝒫 𝑋 ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
1110reximi2 3065 . . . 4 (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) → ∃𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin))
1211ralimi 3069 . . 3 (∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) → ∀𝑑 ∈ ℝ+𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin))
132, 12biimtrdi 253 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) → ∀𝑑 ∈ ℝ+𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
14 ssrab2 4027 . . . . . . . 8 {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ⊆ 𝑣
15 elpwi 4554 . . . . . . . . 9 (𝑣 ∈ 𝒫 𝑋𝑣𝑋)
1615ad2antlr 727 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → 𝑣𝑋)
1714, 16sstrid 3941 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ⊆ 𝑋)
18 simprr 772 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)
19 elfpw 9238 . . . . . . 7 ({𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ (𝒫 𝑋 ∩ Fin) ↔ ({𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ⊆ 𝑋 ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin))
2017, 18, 19sylanbrc 583 . . . . . 6 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ (𝒫 𝑋 ∩ Fin))
21 ssel2 3924 . . . . . . . . . . . 12 ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑧𝑌) → 𝑧 𝑥𝑣 (𝑥(ball‘𝑀)𝑑))
22 eliun 4943 . . . . . . . . . . . 12 (𝑧 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑥𝑣 𝑧 ∈ (𝑥(ball‘𝑀)𝑑))
2321, 22sylib 218 . . . . . . . . . . 11 ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑧𝑌) → ∃𝑥𝑣 𝑧 ∈ (𝑥(ball‘𝑀)𝑑))
24 inelcm 4412 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝑥(ball‘𝑀)𝑑) ∧ 𝑧𝑌) → ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅)
2524expcom 413 . . . . . . . . . . . . . 14 (𝑧𝑌 → (𝑧 ∈ (𝑥(ball‘𝑀)𝑑) → ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅))
2625ancrd 551 . . . . . . . . . . . . 13 (𝑧𝑌 → (𝑧 ∈ (𝑥(ball‘𝑀)𝑑) → (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑))))
2726reximdv 3147 . . . . . . . . . . . 12 (𝑧𝑌 → (∃𝑥𝑣 𝑧 ∈ (𝑥(ball‘𝑀)𝑑) → ∃𝑥𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑))))
2827impcom 407 . . . . . . . . . . 11 ((∃𝑥𝑣 𝑧 ∈ (𝑥(ball‘𝑀)𝑑) ∧ 𝑧𝑌) → ∃𝑥𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑)))
2923, 28sylancom 588 . . . . . . . . . 10 ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑧𝑌) → ∃𝑥𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑)))
30 eliun 4943 . . . . . . . . . . 11 (𝑧 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑) ↔ ∃𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅}𝑧 ∈ (𝑦(ball‘𝑀)𝑑))
31 oveq1 7353 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑦(ball‘𝑀)𝑑) = (𝑥(ball‘𝑀)𝑑))
3231eleq2d 2817 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑧 ∈ (𝑦(ball‘𝑀)𝑑) ↔ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑)))
3332rexrab2 3654 . . . . . . . . . . 11 (∃𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅}𝑧 ∈ (𝑦(ball‘𝑀)𝑑) ↔ ∃𝑥𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑)))
3430, 33bitri 275 . . . . . . . . . 10 (𝑧 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑) ↔ ∃𝑥𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑)))
3529, 34sylibr 234 . . . . . . . . 9 ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑧𝑌) → 𝑧 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑))
3635ex 412 . . . . . . . 8 (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) → (𝑧𝑌𝑧 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑)))
3736ssrdv 3935 . . . . . . 7 (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) → 𝑌 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑))
3837ad2antrl 728 . . . . . 6 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → 𝑌 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑))
39 iuneq1 4956 . . . . . . . 8 (𝑤 = {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} → 𝑦𝑤 (𝑦(ball‘𝑀)𝑑) = 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑))
4039sseq2d 3962 . . . . . . 7 (𝑤 = {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} → (𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑) ↔ 𝑌 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑)))
4140rspcev 3572 . . . . . 6 (({𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑)) → ∃𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑))
4220, 38, 41syl2anc 584 . . . . 5 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → ∃𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑))
4342rexlimdva2 3135 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin) → ∃𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑)))
4443ralimdv 3146 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∀𝑑 ∈ ℝ+𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin) → ∀𝑑 ∈ ℝ+𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑)))
451sstotbnd2 37813 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑)))
4644, 45sylibrd 259 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∀𝑑 ∈ ℝ+𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin) → 𝑁 ∈ (TotBnd‘𝑌)))
4713, 46impbid 212 1 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  cin 3896  wss 3897  c0 4280  𝒫 cpw 4547   ciun 4939   × cxp 5612  cres 5616  cfv 6481  (class class class)co 7346  Fincfn 8869  +crp 12890  Metcmet 21277  ballcbl 21278  TotBndctotbnd 37805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-totbnd 37807
This theorem is referenced by:  cntotbnd  37835
  Copyright terms: Public domain W3C validator