Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sstotbnd3 Structured version   Visualization version   GIF version

Theorem sstotbnd3 36632
Description: Use a net that is not necessarily finite, but for which only finitely many balls meet the subset. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypothesis
Ref Expression
sstotbnd.2 𝑁 = (𝑀 β†Ύ (π‘Œ Γ— π‘Œ))
Assertion
Ref Expression
sstotbnd3 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘Œ βŠ† 𝑋) β†’ (𝑁 ∈ (TotBndβ€˜π‘Œ) ↔ βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘£ ∈ 𝒫 𝑋(π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ∧ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ Fin)))
Distinct variable groups:   𝑣,𝑑,π‘₯,𝑀   𝑋,𝑑,𝑣,π‘₯   𝑁,𝑑,𝑣,π‘₯   π‘Œ,𝑑,𝑣,π‘₯

Proof of Theorem sstotbnd3
Dummy variables 𝑀 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstotbnd.2 . . . 4 𝑁 = (𝑀 β†Ύ (π‘Œ Γ— π‘Œ))
21sstotbnd2 36630 . . 3 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘Œ βŠ† 𝑋) β†’ (𝑁 ∈ (TotBndβ€˜π‘Œ) ↔ βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑)))
3 elin 3963 . . . . . . . . 9 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑣 ∈ 𝒫 𝑋 ∧ 𝑣 ∈ Fin))
4 rabfi 9265 . . . . . . . . . 10 (𝑣 ∈ Fin β†’ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ Fin)
54anim2i 617 . . . . . . . . 9 ((𝑣 ∈ 𝒫 𝑋 ∧ 𝑣 ∈ Fin) β†’ (𝑣 ∈ 𝒫 𝑋 ∧ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ Fin))
63, 5sylbi 216 . . . . . . . 8 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) β†’ (𝑣 ∈ 𝒫 𝑋 ∧ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ Fin))
76anim2i 617 . . . . . . 7 ((π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) β†’ (π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ∧ (𝑣 ∈ 𝒫 𝑋 ∧ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ Fin)))
87ancoms 459 . . . . . 6 ((𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑)) β†’ (π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ∧ (𝑣 ∈ 𝒫 𝑋 ∧ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ Fin)))
9 an12 643 . . . . . 6 ((π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ∧ (𝑣 ∈ 𝒫 𝑋 ∧ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ Fin)) ↔ (𝑣 ∈ 𝒫 𝑋 ∧ (π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ∧ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ Fin)))
108, 9sylib 217 . . . . 5 ((𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑)) β†’ (𝑣 ∈ 𝒫 𝑋 ∧ (π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ∧ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ Fin)))
1110reximi2 3079 . . . 4 (βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) β†’ βˆƒπ‘£ ∈ 𝒫 𝑋(π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ∧ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ Fin))
1211ralimi 3083 . . 3 (βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘£ ∈ (𝒫 𝑋 ∩ Fin)π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) β†’ βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘£ ∈ 𝒫 𝑋(π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ∧ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ Fin))
132, 12syl6bi 252 . 2 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘Œ βŠ† 𝑋) β†’ (𝑁 ∈ (TotBndβ€˜π‘Œ) β†’ βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘£ ∈ 𝒫 𝑋(π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ∧ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ Fin)))
14 ssrab2 4076 . . . . . . . 8 {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} βŠ† 𝑣
15 elpwi 4608 . . . . . . . . 9 (𝑣 ∈ 𝒫 𝑋 β†’ 𝑣 βŠ† 𝑋)
1615ad2antlr 725 . . . . . . . 8 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘Œ βŠ† 𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ∧ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ Fin)) β†’ 𝑣 βŠ† 𝑋)
1714, 16sstrid 3992 . . . . . . 7 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘Œ βŠ† 𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ∧ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ Fin)) β†’ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} βŠ† 𝑋)
18 simprr 771 . . . . . . 7 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘Œ βŠ† 𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ∧ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ Fin)) β†’ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ Fin)
19 elfpw 9350 . . . . . . 7 ({π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ (𝒫 𝑋 ∩ Fin) ↔ ({π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} βŠ† 𝑋 ∧ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ Fin))
2017, 18, 19sylanbrc 583 . . . . . 6 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘Œ βŠ† 𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ∧ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ Fin)) β†’ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ (𝒫 𝑋 ∩ Fin))
21 ssel2 3976 . . . . . . . . . . . 12 ((π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ∧ 𝑧 ∈ π‘Œ) β†’ 𝑧 ∈ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑))
22 eliun 5000 . . . . . . . . . . . 12 (𝑧 ∈ βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ↔ βˆƒπ‘₯ ∈ 𝑣 𝑧 ∈ (π‘₯(ballβ€˜π‘€)𝑑))
2321, 22sylib 217 . . . . . . . . . . 11 ((π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ∧ 𝑧 ∈ π‘Œ) β†’ βˆƒπ‘₯ ∈ 𝑣 𝑧 ∈ (π‘₯(ballβ€˜π‘€)𝑑))
24 inelcm 4463 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (π‘₯(ballβ€˜π‘€)𝑑) ∧ 𝑧 ∈ π‘Œ) β†’ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…)
2524expcom 414 . . . . . . . . . . . . . 14 (𝑧 ∈ π‘Œ β†’ (𝑧 ∈ (π‘₯(ballβ€˜π‘€)𝑑) β†’ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…))
2625ancrd 552 . . . . . . . . . . . . 13 (𝑧 ∈ π‘Œ β†’ (𝑧 ∈ (π‘₯(ballβ€˜π‘€)𝑑) β†’ (((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ… ∧ 𝑧 ∈ (π‘₯(ballβ€˜π‘€)𝑑))))
2726reximdv 3170 . . . . . . . . . . . 12 (𝑧 ∈ π‘Œ β†’ (βˆƒπ‘₯ ∈ 𝑣 𝑧 ∈ (π‘₯(ballβ€˜π‘€)𝑑) β†’ βˆƒπ‘₯ ∈ 𝑣 (((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ… ∧ 𝑧 ∈ (π‘₯(ballβ€˜π‘€)𝑑))))
2827impcom 408 . . . . . . . . . . 11 ((βˆƒπ‘₯ ∈ 𝑣 𝑧 ∈ (π‘₯(ballβ€˜π‘€)𝑑) ∧ 𝑧 ∈ π‘Œ) β†’ βˆƒπ‘₯ ∈ 𝑣 (((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ… ∧ 𝑧 ∈ (π‘₯(ballβ€˜π‘€)𝑑)))
2923, 28sylancom 588 . . . . . . . . . 10 ((π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ∧ 𝑧 ∈ π‘Œ) β†’ βˆƒπ‘₯ ∈ 𝑣 (((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ… ∧ 𝑧 ∈ (π‘₯(ballβ€˜π‘€)𝑑)))
30 eliun 5000 . . . . . . . . . . 11 (𝑧 ∈ βˆͺ 𝑦 ∈ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} (𝑦(ballβ€˜π‘€)𝑑) ↔ βˆƒπ‘¦ ∈ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…}𝑧 ∈ (𝑦(ballβ€˜π‘€)𝑑))
31 oveq1 7412 . . . . . . . . . . . . 13 (𝑦 = π‘₯ β†’ (𝑦(ballβ€˜π‘€)𝑑) = (π‘₯(ballβ€˜π‘€)𝑑))
3231eleq2d 2819 . . . . . . . . . . . 12 (𝑦 = π‘₯ β†’ (𝑧 ∈ (𝑦(ballβ€˜π‘€)𝑑) ↔ 𝑧 ∈ (π‘₯(ballβ€˜π‘€)𝑑)))
3332rexrab2 3695 . . . . . . . . . . 11 (βˆƒπ‘¦ ∈ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…}𝑧 ∈ (𝑦(ballβ€˜π‘€)𝑑) ↔ βˆƒπ‘₯ ∈ 𝑣 (((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ… ∧ 𝑧 ∈ (π‘₯(ballβ€˜π‘€)𝑑)))
3430, 33bitri 274 . . . . . . . . . 10 (𝑧 ∈ βˆͺ 𝑦 ∈ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} (𝑦(ballβ€˜π‘€)𝑑) ↔ βˆƒπ‘₯ ∈ 𝑣 (((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ… ∧ 𝑧 ∈ (π‘₯(ballβ€˜π‘€)𝑑)))
3529, 34sylibr 233 . . . . . . . . 9 ((π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ∧ 𝑧 ∈ π‘Œ) β†’ 𝑧 ∈ βˆͺ 𝑦 ∈ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} (𝑦(ballβ€˜π‘€)𝑑))
3635ex 413 . . . . . . . 8 (π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) β†’ (𝑧 ∈ π‘Œ β†’ 𝑧 ∈ βˆͺ 𝑦 ∈ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} (𝑦(ballβ€˜π‘€)𝑑)))
3736ssrdv 3987 . . . . . . 7 (π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) β†’ π‘Œ βŠ† βˆͺ 𝑦 ∈ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} (𝑦(ballβ€˜π‘€)𝑑))
3837ad2antrl 726 . . . . . 6 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘Œ βŠ† 𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ∧ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ Fin)) β†’ π‘Œ βŠ† βˆͺ 𝑦 ∈ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} (𝑦(ballβ€˜π‘€)𝑑))
39 iuneq1 5012 . . . . . . . 8 (𝑀 = {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} β†’ βˆͺ 𝑦 ∈ 𝑀 (𝑦(ballβ€˜π‘€)𝑑) = βˆͺ 𝑦 ∈ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} (𝑦(ballβ€˜π‘€)𝑑))
4039sseq2d 4013 . . . . . . 7 (𝑀 = {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} β†’ (π‘Œ βŠ† βˆͺ 𝑦 ∈ 𝑀 (𝑦(ballβ€˜π‘€)𝑑) ↔ π‘Œ βŠ† βˆͺ 𝑦 ∈ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} (𝑦(ballβ€˜π‘€)𝑑)))
4140rspcev 3612 . . . . . 6 (({π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ (𝒫 𝑋 ∩ Fin) ∧ π‘Œ βŠ† βˆͺ 𝑦 ∈ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} (𝑦(ballβ€˜π‘€)𝑑)) β†’ βˆƒπ‘€ ∈ (𝒫 𝑋 ∩ Fin)π‘Œ βŠ† βˆͺ 𝑦 ∈ 𝑀 (𝑦(ballβ€˜π‘€)𝑑))
4220, 38, 41syl2anc 584 . . . . 5 ((((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘Œ βŠ† 𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ∧ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ Fin)) β†’ βˆƒπ‘€ ∈ (𝒫 𝑋 ∩ Fin)π‘Œ βŠ† βˆͺ 𝑦 ∈ 𝑀 (𝑦(ballβ€˜π‘€)𝑑))
4342rexlimdva2 3157 . . . 4 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘Œ βŠ† 𝑋) β†’ (βˆƒπ‘£ ∈ 𝒫 𝑋(π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ∧ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ Fin) β†’ βˆƒπ‘€ ∈ (𝒫 𝑋 ∩ Fin)π‘Œ βŠ† βˆͺ 𝑦 ∈ 𝑀 (𝑦(ballβ€˜π‘€)𝑑)))
4443ralimdv 3169 . . 3 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘Œ βŠ† 𝑋) β†’ (βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘£ ∈ 𝒫 𝑋(π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ∧ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ Fin) β†’ βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘€ ∈ (𝒫 𝑋 ∩ Fin)π‘Œ βŠ† βˆͺ 𝑦 ∈ 𝑀 (𝑦(ballβ€˜π‘€)𝑑)))
451sstotbnd2 36630 . . 3 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘Œ βŠ† 𝑋) β†’ (𝑁 ∈ (TotBndβ€˜π‘Œ) ↔ βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘€ ∈ (𝒫 𝑋 ∩ Fin)π‘Œ βŠ† βˆͺ 𝑦 ∈ 𝑀 (𝑦(ballβ€˜π‘€)𝑑)))
4644, 45sylibrd 258 . 2 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘Œ βŠ† 𝑋) β†’ (βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘£ ∈ 𝒫 𝑋(π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ∧ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ Fin) β†’ 𝑁 ∈ (TotBndβ€˜π‘Œ)))
4713, 46impbid 211 1 ((𝑀 ∈ (Metβ€˜π‘‹) ∧ π‘Œ βŠ† 𝑋) β†’ (𝑁 ∈ (TotBndβ€˜π‘Œ) ↔ βˆ€π‘‘ ∈ ℝ+ βˆƒπ‘£ ∈ 𝒫 𝑋(π‘Œ βŠ† βˆͺ π‘₯ ∈ 𝑣 (π‘₯(ballβ€˜π‘€)𝑑) ∧ {π‘₯ ∈ 𝑣 ∣ ((π‘₯(ballβ€˜π‘€)𝑑) ∩ π‘Œ) β‰  βˆ…} ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432   ∩ cin 3946   βŠ† wss 3947  βˆ…c0 4321  π’« cpw 4601  βˆͺ ciun 4996   Γ— cxp 5673   β†Ύ cres 5677  β€˜cfv 6540  (class class class)co 7405  Fincfn 8935  β„+crp 12970  Metcmet 20922  ballcbl 20923  TotBndctotbnd 36622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-2 12271  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-totbnd 36624
This theorem is referenced by:  cntotbnd  36652
  Copyright terms: Public domain W3C validator