Step | Hyp | Ref
| Expression |
1 | | sstotbnd.2 |
. . . 4
⊢ 𝑁 = (𝑀 ↾ (𝑌 × 𝑌)) |
2 | 1 | sstotbnd2 35932 |
. . 3
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑))) |
3 | | elin 3903 |
. . . . . . . . 9
⊢ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑣 ∈ 𝒫 𝑋 ∧ 𝑣 ∈ Fin)) |
4 | | rabfi 9044 |
. . . . . . . . . 10
⊢ (𝑣 ∈ Fin → {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin) |
5 | 4 | anim2i 617 |
. . . . . . . . 9
⊢ ((𝑣 ∈ 𝒫 𝑋 ∧ 𝑣 ∈ Fin) → (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈
Fin)) |
6 | 3, 5 | sylbi 216 |
. . . . . . . 8
⊢ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈
Fin)) |
7 | 6 | anim2i 617 |
. . . . . . 7
⊢ ((𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → (𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈
Fin))) |
8 | 7 | ancoms 459 |
. . . . . 6
⊢ ((𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑)) → (𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈
Fin))) |
9 | | an12 642 |
. . . . . 6
⊢ ((𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) ↔ (𝑣 ∈ 𝒫 𝑋 ∧ (𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈
Fin))) |
10 | 8, 9 | sylib 217 |
. . . . 5
⊢ ((𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑)) → (𝑣 ∈ 𝒫 𝑋 ∧ (𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈
Fin))) |
11 | 10 | reximi2 3175 |
. . . 4
⊢
(∃𝑣 ∈
(𝒫 𝑋 ∩
Fin)𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) → ∃𝑣 ∈ 𝒫 𝑋(𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈
Fin)) |
12 | 11 | ralimi 3087 |
. . 3
⊢
(∀𝑑 ∈
ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) → ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ 𝒫 𝑋(𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈
Fin)) |
13 | 2, 12 | syl6bi 252 |
. 2
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑁 ∈ (TotBnd‘𝑌) → ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ 𝒫 𝑋(𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈
Fin))) |
14 | | ssrab2 4013 |
. . . . . . . 8
⊢ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ⊆ 𝑣 |
15 | | elpwi 4542 |
. . . . . . . . 9
⊢ (𝑣 ∈ 𝒫 𝑋 → 𝑣 ⊆ 𝑋) |
16 | 15 | ad2antlr 724 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → 𝑣 ⊆ 𝑋) |
17 | 14, 16 | sstrid 3932 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ⊆ 𝑋) |
18 | | simprr 770 |
. . . . . . 7
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin) |
19 | | elfpw 9121 |
. . . . . . 7
⊢ ({𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ (𝒫 𝑋 ∩ Fin) ↔ ({𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ⊆ 𝑋 ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈
Fin)) |
20 | 17, 18, 19 | sylanbrc 583 |
. . . . . 6
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ (𝒫 𝑋 ∩ Fin)) |
21 | | ssel2 3916 |
. . . . . . . . . . . 12
⊢ ((𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑧 ∈ 𝑌) → 𝑧 ∈ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑)) |
22 | | eliun 4928 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑥 ∈ 𝑣 𝑧 ∈ (𝑥(ball‘𝑀)𝑑)) |
23 | 21, 22 | sylib 217 |
. . . . . . . . . . 11
⊢ ((𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑧 ∈ 𝑌) → ∃𝑥 ∈ 𝑣 𝑧 ∈ (𝑥(ball‘𝑀)𝑑)) |
24 | | inelcm 4398 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ (𝑥(ball‘𝑀)𝑑) ∧ 𝑧 ∈ 𝑌) → ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅) |
25 | 24 | expcom 414 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝑌 → (𝑧 ∈ (𝑥(ball‘𝑀)𝑑) → ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅)) |
26 | 25 | ancrd 552 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝑌 → (𝑧 ∈ (𝑥(ball‘𝑀)𝑑) → (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑)))) |
27 | 26 | reximdv 3202 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝑌 → (∃𝑥 ∈ 𝑣 𝑧 ∈ (𝑥(ball‘𝑀)𝑑) → ∃𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑)))) |
28 | 27 | impcom 408 |
. . . . . . . . . . 11
⊢
((∃𝑥 ∈
𝑣 𝑧 ∈ (𝑥(ball‘𝑀)𝑑) ∧ 𝑧 ∈ 𝑌) → ∃𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑))) |
29 | 23, 28 | sylancom 588 |
. . . . . . . . . 10
⊢ ((𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑧 ∈ 𝑌) → ∃𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑))) |
30 | | eliun 4928 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ∪ 𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑) ↔ ∃𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅}𝑧 ∈ (𝑦(ball‘𝑀)𝑑)) |
31 | | oveq1 7282 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → (𝑦(ball‘𝑀)𝑑) = (𝑥(ball‘𝑀)𝑑)) |
32 | 31 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (𝑧 ∈ (𝑦(ball‘𝑀)𝑑) ↔ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑))) |
33 | 32 | rexrab2 3637 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
{𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅}𝑧 ∈ (𝑦(ball‘𝑀)𝑑) ↔ ∃𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑))) |
34 | 30, 33 | bitri 274 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ∪ 𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑) ↔ ∃𝑥 ∈ 𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑))) |
35 | 29, 34 | sylibr 233 |
. . . . . . . . 9
⊢ ((𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑧 ∈ 𝑌) → 𝑧 ∈ ∪
𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑)) |
36 | 35 | ex 413 |
. . . . . . . 8
⊢ (𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) → (𝑧 ∈ 𝑌 → 𝑧 ∈ ∪
𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑))) |
37 | 36 | ssrdv 3927 |
. . . . . . 7
⊢ (𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) → 𝑌 ⊆ ∪
𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑)) |
38 | 37 | ad2antrl 725 |
. . . . . 6
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → 𝑌 ⊆ ∪ 𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑)) |
39 | | iuneq1 4940 |
. . . . . . . 8
⊢ (𝑤 = {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} → ∪ 𝑦 ∈ 𝑤 (𝑦(ball‘𝑀)𝑑) = ∪ 𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑)) |
40 | 39 | sseq2d 3953 |
. . . . . . 7
⊢ (𝑤 = {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} → (𝑌 ⊆ ∪
𝑦 ∈ 𝑤 (𝑦(ball‘𝑀)𝑑) ↔ 𝑌 ⊆ ∪
𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑))) |
41 | 40 | rspcev 3561 |
. . . . . 6
⊢ (({𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 ⊆ ∪ 𝑦 ∈ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑)) → ∃𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑦 ∈ 𝑤 (𝑦(ball‘𝑀)𝑑)) |
42 | 20, 38, 41 | syl2anc 584 |
. . . . 5
⊢ ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) →
∃𝑤 ∈ (𝒫
𝑋 ∩ Fin)𝑌 ⊆ ∪ 𝑦 ∈ 𝑤 (𝑦(ball‘𝑀)𝑑)) |
43 | 42 | rexlimdva2 3216 |
. . . 4
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∃𝑣 ∈ 𝒫 𝑋(𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin) →
∃𝑤 ∈ (𝒫
𝑋 ∩ Fin)𝑌 ⊆ ∪ 𝑦 ∈ 𝑤 (𝑦(ball‘𝑀)𝑑))) |
44 | 43 | ralimdv 3109 |
. . 3
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∀𝑑 ∈ ℝ+ ∃𝑣 ∈ 𝒫 𝑋(𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin) →
∀𝑑 ∈
ℝ+ ∃𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑦 ∈ 𝑤 (𝑦(ball‘𝑀)𝑑))) |
45 | 1 | sstotbnd2 35932 |
. . 3
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+ ∃𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪
𝑦 ∈ 𝑤 (𝑦(ball‘𝑀)𝑑))) |
46 | 44, 45 | sylibrd 258 |
. 2
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (∀𝑑 ∈ ℝ+ ∃𝑣 ∈ 𝒫 𝑋(𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin) → 𝑁 ∈ (TotBnd‘𝑌))) |
47 | 13, 46 | impbid 211 |
1
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ 𝒫 𝑋(𝑌 ⊆ ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈
Fin))) |