MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexeqi Structured version   Visualization version   GIF version

Theorem rexeqi 3348
Description: Equality inference for restricted existential quantifier. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
raleq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
rexeqi (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexeqi
StepHypRef Expression
1 raleq1i.1 . 2 𝐴 = 𝐵
2 rexeq 3344 . 2 (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))
31, 2ax-mp 5 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wrex 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2117  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-cleq 2731  df-ral 3070  df-rex 3071
This theorem is referenced by:  rexrab2  3638  rexprgf  4630  rextpg  4636  rexopabb  5442  rexxp  5754  elidinxpid  5955  elrid  5956  oarec  8402  brttrcl2  9481  ttrcltr  9483  rnttrcl  9489  wwlktovfo  14682  dvdsprmpweqnn  16595  4sqlem12  16666  pmatcollpw3fi1  21946  cmpfi  22568  txbas  22727  xkobval  22746  ustn0  23381  imasdsf1olem  23535  xpsdsval  23543  plyun0  25367  coeeu  25395  1cubr  26001  dfnbgr3  27714  wlkvtxedg  28020  wwlksn0  28237  eucrctshift  28616  adjbdln  30454  elunirnmbfm  32229  satfbrsuc  33337  fmla1  33358  satffunlem2lem2  33377  made0  34066  addsid1  34136  filnetlem4  34579  rexrabdioph  40623  fnwe2lem2  40883  fourierdlem70  43724  fourierdlem80  43734
  Copyright terms: Public domain W3C validator