Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexeqi | Structured version Visualization version GIF version |
Description: Equality inference for restricted existential quantifier. (Contributed by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
raleq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
rexeqi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | rexeq 3344 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∃wrex 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2731 df-ral 3070 df-rex 3071 |
This theorem is referenced by: rexrab2 3638 rexprgf 4630 rextpg 4636 rexopabb 5442 rexxp 5754 elidinxpid 5955 elrid 5956 oarec 8402 brttrcl2 9481 ttrcltr 9483 rnttrcl 9489 wwlktovfo 14682 dvdsprmpweqnn 16595 4sqlem12 16666 pmatcollpw3fi1 21946 cmpfi 22568 txbas 22727 xkobval 22746 ustn0 23381 imasdsf1olem 23535 xpsdsval 23543 plyun0 25367 coeeu 25395 1cubr 26001 dfnbgr3 27714 wlkvtxedg 28020 wwlksn0 28237 eucrctshift 28616 adjbdln 30454 elunirnmbfm 32229 satfbrsuc 33337 fmla1 33358 satffunlem2lem2 33377 made0 34066 addsid1 34136 filnetlem4 34579 rexrabdioph 40623 fnwe2lem2 40883 fourierdlem70 43724 fourierdlem80 43734 |
Copyright terms: Public domain | W3C validator |