Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexeqi | Structured version Visualization version GIF version |
Description: Equality inference for restricted existential quantifier. (Contributed by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
raleq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
rexeqi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | rexeq 3325 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1539 ∃wrex 3072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-ex 1783 df-cleq 2751 df-clel 2831 df-rex 3077 |
This theorem is referenced by: rexrab2 3617 rexprgf 4589 rextpg 4593 rexopabb 5386 rexxp 5683 elidinxpid 5885 elrid 5886 oarec 8199 wwlktovfo 14370 dvdsprmpweqnn 16277 4sqlem12 16348 pmatcollpw3fi1 21489 cmpfi 22109 txbas 22268 xkobval 22287 ustn0 22922 imasdsf1olem 23076 xpsdsval 23084 plyun0 24894 coeeu 24922 1cubr 25528 dfnbgr3 27228 wlkvtxedg 27533 wwlksn0 27749 eucrctshift 28128 adjbdln 29966 elunirnmbfm 31740 satfbrsuc 32845 fmla1 32866 satffunlem2lem2 32885 made0 33615 addsid1 33676 filnetlem4 34120 rexrabdioph 40109 fnwe2lem2 40369 fourierdlem70 43185 fourierdlem80 43195 |
Copyright terms: Public domain | W3C validator |