Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexeqi | Structured version Visualization version GIF version |
Description: Equality inference for restricted existential quantifier. (Contributed by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
raleq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
rexeqi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | rexeq 3334 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-ral 3068 df-rex 3069 |
This theorem is referenced by: rexrab2 3632 rexprgf 4626 rextpg 4632 rexopabb 5434 rexxp 5740 elidinxpid 5941 elrid 5942 oarec 8355 wwlktovfo 14601 dvdsprmpweqnn 16514 4sqlem12 16585 pmatcollpw3fi1 21845 cmpfi 22467 txbas 22626 xkobval 22645 ustn0 23280 imasdsf1olem 23434 xpsdsval 23442 plyun0 25263 coeeu 25291 1cubr 25897 dfnbgr3 27608 wlkvtxedg 27913 wwlksn0 28129 eucrctshift 28508 adjbdln 30346 elunirnmbfm 32120 satfbrsuc 33228 fmla1 33249 satffunlem2lem2 33268 brttrcl2 33700 ttrcltr 33702 rnttrcl 33708 made0 33984 addsid1 34054 filnetlem4 34497 rexrabdioph 40532 fnwe2lem2 40792 fourierdlem70 43607 fourierdlem80 43617 |
Copyright terms: Public domain | W3C validator |