| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for restricted existential quantifier. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| raleq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rexeqi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | rexeq 3289 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-rex 3058 |
| This theorem is referenced by: rexrab2 3655 rexprgf 4649 rextpg 4653 rexopabb 5473 rexxp 5788 elidinxpid 6000 elrid 6001 oarec 8485 brttrcl2 9613 ttrcltr 9615 rnttrcl 9621 wwlktovfo 14869 dvdsprmpweqnn 16801 4sqlem12 16872 pzriprnglem10 21431 pmatcollpw3fi1 22706 cmpfi 23326 txbas 23485 xkobval 23504 ustn0 24139 imasdsf1olem 24291 xpsdsval 24299 plyun0 26132 coeeu 26160 1cubr 26782 made0 27821 addsrid 27910 muls01 28054 mulsrid 28055 precsexlemcbv 28147 dfnbgr3 29320 wlkvtxedg 29626 wwlksn0 29845 eucrctshift 30227 adjbdln 32067 elunirnmbfm 34288 onvf1odlem2 35171 satfbrsuc 35433 fmla1 35454 satffunlem2lem2 35473 filnetlem4 36448 rexrabdioph 42914 fnwe2lem2 43171 fourierdlem70 46301 fourierdlem80 46311 dfclnbgr3 47953 stgr1 48088 |
| Copyright terms: Public domain | W3C validator |