| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for restricted existential quantifier. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| raleq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rexeqi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | rexeq 3295 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-rex 3054 |
| This theorem is referenced by: rexrab2 3671 rexprgf 4659 rextpg 4663 rexopabb 5488 rexxp 5806 elidinxpid 6016 elrid 6017 oarec 8526 brttrcl2 9667 ttrcltr 9669 rnttrcl 9675 wwlktovfo 14924 dvdsprmpweqnn 16856 4sqlem12 16927 pzriprnglem10 21400 pmatcollpw3fi1 22675 cmpfi 23295 txbas 23454 xkobval 23473 ustn0 24108 imasdsf1olem 24261 xpsdsval 24269 plyun0 26102 coeeu 26130 1cubr 26752 made0 27785 addsrid 27871 muls01 28015 mulsrid 28016 precsexlemcbv 28108 dfnbgr3 29265 wlkvtxedg 29572 wwlksn0 29793 eucrctshift 30172 adjbdln 32012 elunirnmbfm 34242 onvf1odlem2 35091 satfbrsuc 35353 fmla1 35374 satffunlem2lem2 35393 filnetlem4 36369 rexrabdioph 42782 fnwe2lem2 43040 fourierdlem70 46174 fourierdlem80 46184 dfclnbgr3 47827 stgr1 47960 |
| Copyright terms: Public domain | W3C validator |