| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for restricted existential quantifier. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| raleq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rexeqi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | rexeq 3286 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-rex 3054 |
| This theorem is referenced by: rexrab2 3662 rexprgf 4649 rextpg 4653 rexopabb 5475 rexxp 5789 elidinxpid 6000 elrid 6001 oarec 8487 brttrcl2 9629 ttrcltr 9631 rnttrcl 9637 wwlktovfo 14883 dvdsprmpweqnn 16815 4sqlem12 16886 pzriprnglem10 21415 pmatcollpw3fi1 22691 cmpfi 23311 txbas 23470 xkobval 23489 ustn0 24124 imasdsf1olem 24277 xpsdsval 24285 plyun0 26118 coeeu 26146 1cubr 26768 made0 27805 addsrid 27894 muls01 28038 mulsrid 28039 precsexlemcbv 28131 dfnbgr3 29301 wlkvtxedg 29607 wwlksn0 29826 eucrctshift 30205 adjbdln 32045 elunirnmbfm 34221 onvf1odlem2 35079 satfbrsuc 35341 fmla1 35362 satffunlem2lem2 35381 filnetlem4 36357 rexrabdioph 42770 fnwe2lem2 43027 fourierdlem70 46161 fourierdlem80 46171 dfclnbgr3 47814 stgr1 47949 |
| Copyright terms: Public domain | W3C validator |