| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for restricted existential quantifier. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| raleq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rexeqi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | rexeq 3301 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-rex 3061 |
| This theorem is referenced by: rexrab2 3683 rexprgf 4671 rextpg 4675 rexopabb 5503 rexxp 5822 elidinxpid 6032 elrid 6033 oarec 8574 brttrcl2 9728 ttrcltr 9730 rnttrcl 9736 wwlktovfo 14977 dvdsprmpweqnn 16905 4sqlem12 16976 pzriprnglem10 21451 pmatcollpw3fi1 22726 cmpfi 23346 txbas 23505 xkobval 23524 ustn0 24159 imasdsf1olem 24312 xpsdsval 24320 plyun0 26154 coeeu 26182 1cubr 26804 made0 27837 addsrid 27923 muls01 28067 mulsrid 28068 precsexlemcbv 28160 dfnbgr3 29317 wlkvtxedg 29624 wwlksn0 29845 eucrctshift 30224 adjbdln 32064 elunirnmbfm 34283 satfbrsuc 35388 fmla1 35409 satffunlem2lem2 35428 filnetlem4 36399 rexrabdioph 42817 fnwe2lem2 43075 fourierdlem70 46205 fourierdlem80 46215 dfclnbgr3 47840 stgr1 47973 |
| Copyright terms: Public domain | W3C validator |