| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for restricted existential quantifier. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| raleq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rexeqi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | rexeq 3288 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-rex 3057 |
| This theorem is referenced by: rexrab2 3659 rexprgf 4648 rextpg 4652 rexopabb 5468 rexxp 5782 elidinxpid 5994 elrid 5995 oarec 8477 brttrcl2 9604 ttrcltr 9606 rnttrcl 9612 wwlktovfo 14865 dvdsprmpweqnn 16797 4sqlem12 16868 pzriprnglem10 21428 pmatcollpw3fi1 22704 cmpfi 23324 txbas 23483 xkobval 23502 ustn0 24137 imasdsf1olem 24289 xpsdsval 24297 plyun0 26130 coeeu 26158 1cubr 26780 made0 27819 addsrid 27908 muls01 28052 mulsrid 28053 precsexlemcbv 28145 dfnbgr3 29317 wlkvtxedg 29623 wwlksn0 29842 eucrctshift 30221 adjbdln 32061 elunirnmbfm 34263 onvf1odlem2 35146 satfbrsuc 35408 fmla1 35429 satffunlem2lem2 35448 filnetlem4 36421 rexrabdioph 42833 fnwe2lem2 43090 fourierdlem70 46220 fourierdlem80 46230 dfclnbgr3 47863 stgr1 47998 |
| Copyright terms: Public domain | W3C validator |