![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexeqi | Structured version Visualization version GIF version |
Description: Equality inference for restricted existential quantifier. (Contributed by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
raleq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
rexeqi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | rexeq 3330 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-rex 3077 |
This theorem is referenced by: rexrab2 3722 rexprgf 4718 rextpg 4724 rexopabb 5547 rexxp 5867 elidinxpid 6074 elrid 6075 oarec 8618 brttrcl2 9783 ttrcltr 9785 rnttrcl 9791 wwlktovfo 15007 dvdsprmpweqnn 16932 4sqlem12 17003 pzriprnglem10 21524 pmatcollpw3fi1 22815 cmpfi 23437 txbas 23596 xkobval 23615 ustn0 24250 imasdsf1olem 24404 xpsdsval 24412 plyun0 26256 coeeu 26284 1cubr 26903 made0 27930 addsrid 28015 muls01 28156 mulsrid 28157 precsexlemcbv 28248 dfnbgr3 29373 wlkvtxedg 29680 wwlksn0 29896 eucrctshift 30275 adjbdln 32115 elunirnmbfm 34216 satfbrsuc 35334 fmla1 35355 satffunlem2lem2 35374 filnetlem4 36347 rexrabdioph 42750 fnwe2lem2 43008 fourierdlem70 46097 fourierdlem80 46107 dfclnbgr3 47699 |
Copyright terms: Public domain | W3C validator |