| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for restricted existential quantifier. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| raleq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rexeqi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | rexeq 3322 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wrex 3070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2729 df-rex 3071 |
| This theorem is referenced by: rexrab2 3706 rexprgf 4695 rextpg 4699 rexopabb 5533 rexxp 5853 elidinxpid 6063 elrid 6064 oarec 8600 brttrcl2 9754 ttrcltr 9756 rnttrcl 9762 wwlktovfo 14997 dvdsprmpweqnn 16923 4sqlem12 16994 pzriprnglem10 21501 pmatcollpw3fi1 22794 cmpfi 23416 txbas 23575 xkobval 23594 ustn0 24229 imasdsf1olem 24383 xpsdsval 24391 plyun0 26236 coeeu 26264 1cubr 26885 made0 27912 addsrid 27997 muls01 28138 mulsrid 28139 precsexlemcbv 28230 dfnbgr3 29355 wlkvtxedg 29662 wwlksn0 29883 eucrctshift 30262 adjbdln 32102 elunirnmbfm 34253 satfbrsuc 35371 fmla1 35392 satffunlem2lem2 35411 filnetlem4 36382 rexrabdioph 42805 fnwe2lem2 43063 fourierdlem70 46191 fourierdlem80 46201 dfclnbgr3 47813 stgr1 47928 |
| Copyright terms: Public domain | W3C validator |