| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for restricted existential quantifier. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| raleq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rexeqi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | rexeq 3297 | . 2 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-rex 3055 |
| This theorem is referenced by: rexrab2 3674 rexprgf 4662 rextpg 4666 rexopabb 5491 rexxp 5809 elidinxpid 6019 elrid 6020 oarec 8529 brttrcl2 9674 ttrcltr 9676 rnttrcl 9682 wwlktovfo 14931 dvdsprmpweqnn 16863 4sqlem12 16934 pzriprnglem10 21407 pmatcollpw3fi1 22682 cmpfi 23302 txbas 23461 xkobval 23480 ustn0 24115 imasdsf1olem 24268 xpsdsval 24276 plyun0 26109 coeeu 26137 1cubr 26759 made0 27792 addsrid 27878 muls01 28022 mulsrid 28023 precsexlemcbv 28115 dfnbgr3 29272 wlkvtxedg 29579 wwlksn0 29800 eucrctshift 30179 adjbdln 32019 elunirnmbfm 34249 onvf1odlem2 35098 satfbrsuc 35360 fmla1 35381 satffunlem2lem2 35400 filnetlem4 36376 rexrabdioph 42789 fnwe2lem2 43047 fourierdlem70 46181 fourierdlem80 46191 dfclnbgr3 47831 stgr1 47964 |
| Copyright terms: Public domain | W3C validator |