MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frminex Structured version   Visualization version   GIF version

Theorem frminex 5617
Description: If an element of a well-founded set satisfies a property 𝜑, then there is a minimal element that satisfies 𝜑. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Hypotheses
Ref Expression
frminex.1 𝐴 ∈ V
frminex.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
frminex (𝑅 Fr 𝐴 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑥))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem frminex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 rabn0 4349 . 2 ({𝑥𝐴𝜑} ≠ ∅ ↔ ∃𝑥𝐴 𝜑)
2 frminex.1 . . . . 5 𝐴 ∈ V
32rabex 5293 . . . 4 {𝑥𝐴𝜑} ∈ V
4 ssrab2 4041 . . . 4 {𝑥𝐴𝜑} ⊆ 𝐴
5 fri 5597 . . . . . 6 ((({𝑥𝐴𝜑} ∈ V ∧ 𝑅 Fr 𝐴) ∧ ({𝑥𝐴𝜑} ⊆ 𝐴 ∧ {𝑥𝐴𝜑} ≠ ∅)) → ∃𝑧 ∈ {𝑥𝐴𝜑}∀𝑦 ∈ {𝑥𝐴𝜑} ¬ 𝑦𝑅𝑧)
6 frminex.2 . . . . . . . . 9 (𝑥 = 𝑦 → (𝜑𝜓))
76ralrab 3655 . . . . . . . 8 (∀𝑦 ∈ {𝑥𝐴𝜑} ¬ 𝑦𝑅𝑧 ↔ ∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑧))
87rexbii 3094 . . . . . . 7 (∃𝑧 ∈ {𝑥𝐴𝜑}∀𝑦 ∈ {𝑥𝐴𝜑} ¬ 𝑦𝑅𝑧 ↔ ∃𝑧 ∈ {𝑥𝐴𝜑}∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑧))
9 breq2 5113 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑦𝑅𝑧𝑦𝑅𝑥))
109notbid 318 . . . . . . . . . 10 (𝑧 = 𝑥 → (¬ 𝑦𝑅𝑧 ↔ ¬ 𝑦𝑅𝑥))
1110imbi2d 341 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝜓 → ¬ 𝑦𝑅𝑧) ↔ (𝜓 → ¬ 𝑦𝑅𝑥)))
1211ralbidv 3171 . . . . . . . 8 (𝑧 = 𝑥 → (∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑧) ↔ ∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑥)))
1312rexrab2 3662 . . . . . . 7 (∃𝑧 ∈ {𝑥𝐴𝜑}∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑧) ↔ ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑥)))
148, 13bitri 275 . . . . . 6 (∃𝑧 ∈ {𝑥𝐴𝜑}∀𝑦 ∈ {𝑥𝐴𝜑} ¬ 𝑦𝑅𝑧 ↔ ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑥)))
155, 14sylib 217 . . . . 5 ((({𝑥𝐴𝜑} ∈ V ∧ 𝑅 Fr 𝐴) ∧ ({𝑥𝐴𝜑} ⊆ 𝐴 ∧ {𝑥𝐴𝜑} ≠ ∅)) → ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑥)))
1615an4s 659 . . . 4 ((({𝑥𝐴𝜑} ∈ V ∧ {𝑥𝐴𝜑} ⊆ 𝐴) ∧ (𝑅 Fr 𝐴 ∧ {𝑥𝐴𝜑} ≠ ∅)) → ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑥)))
173, 4, 16mpanl12 701 . . 3 ((𝑅 Fr 𝐴 ∧ {𝑥𝐴𝜑} ≠ ∅) → ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑥)))
1817ex 414 . 2 (𝑅 Fr 𝐴 → ({𝑥𝐴𝜑} ≠ ∅ → ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑥))))
191, 18biimtrrid 242 1 (𝑅 Fr 𝐴 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓 → ¬ 𝑦𝑅𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wcel 2107  wne 2940  wral 3061  wrex 3070  {crab 3406  Vcvv 3447  wss 3914  c0 4286   class class class wbr 5109   Fr wfr 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-br 5110  df-fr 5592
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator