| Step | Hyp | Ref
| Expression |
| 1 | | rabn0 4369 |
. 2
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| 2 | | frminex.1 |
. . . . 5
⊢ 𝐴 ∈ V |
| 3 | 2 | rabex 5314 |
. . . 4
⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V |
| 4 | | ssrab2 4060 |
. . . 4
⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
| 5 | | fri 5616 |
. . . . . 6
⊢ ((({𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V ∧ 𝑅 Fr 𝐴) ∧ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ {𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅)) → ∃𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ¬ 𝑦𝑅𝑧) |
| 6 | | frminex.2 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| 7 | 6 | ralrab 3682 |
. . . . . . . 8
⊢
(∀𝑦 ∈
{𝑥 ∈ 𝐴 ∣ 𝜑} ¬ 𝑦𝑅𝑧 ↔ ∀𝑦 ∈ 𝐴 (𝜓 → ¬ 𝑦𝑅𝑧)) |
| 8 | 7 | rexbii 3084 |
. . . . . . 7
⊢
(∃𝑧 ∈
{𝑥 ∈ 𝐴 ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ¬ 𝑦𝑅𝑧 ↔ ∃𝑧 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}∀𝑦 ∈ 𝐴 (𝜓 → ¬ 𝑦𝑅𝑧)) |
| 9 | | breq2 5128 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → (𝑦𝑅𝑧 ↔ 𝑦𝑅𝑥)) |
| 10 | 9 | notbid 318 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (¬ 𝑦𝑅𝑧 ↔ ¬ 𝑦𝑅𝑥)) |
| 11 | 10 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → ((𝜓 → ¬ 𝑦𝑅𝑧) ↔ (𝜓 → ¬ 𝑦𝑅𝑥))) |
| 12 | 11 | ralbidv 3164 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → (∀𝑦 ∈ 𝐴 (𝜓 → ¬ 𝑦𝑅𝑧) ↔ ∀𝑦 ∈ 𝐴 (𝜓 → ¬ 𝑦𝑅𝑥))) |
| 13 | 12 | rexrab2 3688 |
. . . . . . 7
⊢
(∃𝑧 ∈
{𝑥 ∈ 𝐴 ∣ 𝜑}∀𝑦 ∈ 𝐴 (𝜓 → ¬ 𝑦𝑅𝑧) ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → ¬ 𝑦𝑅𝑥))) |
| 14 | 8, 13 | bitri 275 |
. . . . . 6
⊢
(∃𝑧 ∈
{𝑥 ∈ 𝐴 ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ¬ 𝑦𝑅𝑧 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → ¬ 𝑦𝑅𝑥))) |
| 15 | 5, 14 | sylib 218 |
. . . . 5
⊢ ((({𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V ∧ 𝑅 Fr 𝐴) ∧ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ {𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅)) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → ¬ 𝑦𝑅𝑥))) |
| 16 | 15 | an4s 660 |
. . . 4
⊢ ((({𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V ∧ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴) ∧ (𝑅 Fr 𝐴 ∧ {𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅)) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → ¬ 𝑦𝑅𝑥))) |
| 17 | 3, 4, 16 | mpanl12 702 |
. . 3
⊢ ((𝑅 Fr 𝐴 ∧ {𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → ¬ 𝑦𝑅𝑥))) |
| 18 | 17 | ex 412 |
. 2
⊢ (𝑅 Fr 𝐴 → ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ → ∃𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → ¬ 𝑦𝑅𝑥)))) |
| 19 | 1, 18 | biimtrrid 243 |
1
⊢ (𝑅 Fr 𝐴 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → ¬ 𝑦𝑅𝑥)))) |