| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexxfrd2 | Structured version Visualization version GIF version | ||
| Description: Transfer existence from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Variant of rexxfrd 5409. (Contributed by Alexander van der Vekens, 25-Apr-2018.) |
| Ref | Expression |
|---|---|
| ralxfrd2.1 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
| ralxfrd2.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) |
| ralxfrd2.3 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexxfrd2 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxfrd2.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) | |
| 2 | ralxfrd2.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
| 3 | ralxfrd2.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | notbid 318 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴) → (¬ 𝜓 ↔ ¬ 𝜒)) |
| 5 | 1, 2, 4 | ralxfrd2 5412 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ¬ 𝜓 ↔ ∀𝑦 ∈ 𝐶 ¬ 𝜒)) |
| 6 | 5 | notbid 318 | . 2 ⊢ (𝜑 → (¬ ∀𝑥 ∈ 𝐵 ¬ 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐶 ¬ 𝜒)) |
| 7 | dfrex2 3073 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐵 ¬ 𝜓) | |
| 8 | dfrex2 3073 | . 2 ⊢ (∃𝑦 ∈ 𝐶 𝜒 ↔ ¬ ∀𝑦 ∈ 𝐶 ¬ 𝜒) | |
| 9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 |
| This theorem is referenced by: cshimadifsn 14868 cshimadifsn0 14869 ghmqusker 19305 cshwrnid 32946 tfsconcatrn 43355 ntrclsneine0lem 44077 |
| Copyright terms: Public domain | W3C validator |