![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexxfrd | Structured version Visualization version GIF version |
Description: Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by FL, 10-Apr-2007.) (Revised by Mario Carneiro, 15-Aug-2014.) |
Ref | Expression |
---|---|
ralxfrd.1 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
ralxfrd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) |
ralxfrd.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexxfrd | ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralxfrd.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) | |
2 | ralxfrd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
3 | ralxfrd.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
4 | 3 | notbid 318 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (¬ 𝜓 ↔ ¬ 𝜒)) |
5 | 1, 2, 4 | ralxfrd 5396 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ¬ 𝜓 ↔ ∀𝑦 ∈ 𝐶 ¬ 𝜒)) |
6 | 5 | notbid 318 | . 2 ⊢ (𝜑 → (¬ ∀𝑥 ∈ 𝐵 ¬ 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐶 ¬ 𝜒)) |
7 | dfrex2 3065 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐵 ¬ 𝜓) | |
8 | dfrex2 3065 | . 2 ⊢ (∃𝑦 ∈ 𝐶 𝜒 ↔ ¬ ∀𝑦 ∈ 𝐶 ¬ 𝜒) | |
9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ∃wrex 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 |
This theorem is referenced by: cmpfi 23222 elfm 23761 rlimcnp 26801 rmoxfrd 32157 iunrdx 32219 swrdrn3 32543 dvh4dimat 40765 mapdcv 40987 elrfirn 41888 fargshiftfo 46561 |
Copyright terms: Public domain | W3C validator |