MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexxfrd Structured version   Visualization version   GIF version

Theorem rexxfrd 5332
Description: Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by FL, 10-Apr-2007.) (Revised by Mario Carneiro, 15-Aug-2014.)
Hypotheses
Ref Expression
ralxfrd.1 ((𝜑𝑦𝐶) → 𝐴𝐵)
ralxfrd.2 ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)
ralxfrd.3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rexxfrd (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑦𝐶 𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶   𝜒,𝑥   𝜑,𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑦)   𝐶(𝑦)

Proof of Theorem rexxfrd
StepHypRef Expression
1 ralxfrd.1 . . . 4 ((𝜑𝑦𝐶) → 𝐴𝐵)
2 ralxfrd.2 . . . 4 ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)
3 ralxfrd.3 . . . . 5 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
43notbid 318 . . . 4 ((𝜑𝑥 = 𝐴) → (¬ 𝜓 ↔ ¬ 𝜒))
51, 2, 4ralxfrd 5331 . . 3 (𝜑 → (∀𝑥𝐵 ¬ 𝜓 ↔ ∀𝑦𝐶 ¬ 𝜒))
65notbid 318 . 2 (𝜑 → (¬ ∀𝑥𝐵 ¬ 𝜓 ↔ ¬ ∀𝑦𝐶 ¬ 𝜒))
7 dfrex2 3170 . 2 (∃𝑥𝐵 𝜓 ↔ ¬ ∀𝑥𝐵 ¬ 𝜓)
8 dfrex2 3170 . 2 (∃𝑦𝐶 𝜒 ↔ ¬ ∀𝑦𝐶 ¬ 𝜒)
96, 7, 83bitr4g 314 1 (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑦𝐶 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070
This theorem is referenced by:  cmpfi  22559  elfm  23098  rlimcnp  26115  rmoxfrd  30841  iunrdx  30903  swrdrn3  31227  dvh4dimat  39452  mapdcv  39674  elrfirn  40517  fargshiftfo  44894
  Copyright terms: Public domain W3C validator