MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshimadifsn0 Structured version   Visualization version   GIF version

Theorem cshimadifsn0 14870
Description: The image of a cyclically shifted word under its domain without its upper bound is the image of a cyclically shifted word under its domain without the number of shifted symbols. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
cshimadifsn0 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))))

Proof of Theorem cshimadifsn0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cshimadifsn 14869 . 2 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift 𝐽) “ (1..^𝑁)))
2 elfzoel2 13699 . . . . . . . 8 (𝐽 ∈ (0..^𝑁) → 𝑁 ∈ ℤ)
3 elfzom1elp1fzo1 13807 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 + 1) ∈ (1..^𝑁))
43ex 412 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑦 ∈ (0..^(𝑁 − 1)) → (𝑦 + 1) ∈ (1..^𝑁)))
52, 4syl 17 . . . . . . 7 (𝐽 ∈ (0..^𝑁) → (𝑦 ∈ (0..^(𝑁 − 1)) → (𝑦 + 1) ∈ (1..^𝑁)))
653ad2ant3 1135 . . . . . 6 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝑦 ∈ (0..^(𝑁 − 1)) → (𝑦 + 1) ∈ (1..^𝑁)))
76imp 406 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 + 1) ∈ (1..^𝑁))
8 elfzo1elm1fzo0 13808 . . . . . . 7 (𝑥 ∈ (1..^𝑁) → (𝑥 − 1) ∈ (0..^(𝑁 − 1)))
98adantl 481 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ (1..^𝑁)) → (𝑥 − 1) ∈ (0..^(𝑁 − 1)))
10 oveq1 7439 . . . . . . . 8 (𝑦 = (𝑥 − 1) → (𝑦 + 1) = ((𝑥 − 1) + 1))
1110eqeq2d 2747 . . . . . . 7 (𝑦 = (𝑥 − 1) → (𝑥 = (𝑦 + 1) ↔ 𝑥 = ((𝑥 − 1) + 1)))
1211adantl 481 . . . . . 6 ((((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ (1..^𝑁)) ∧ 𝑦 = (𝑥 − 1)) → (𝑥 = (𝑦 + 1) ↔ 𝑥 = ((𝑥 − 1) + 1)))
13 elfzoelz 13700 . . . . . . . . . 10 (𝑥 ∈ (1..^𝑁) → 𝑥 ∈ ℤ)
1413zcnd 12725 . . . . . . . . 9 (𝑥 ∈ (1..^𝑁) → 𝑥 ∈ ℂ)
15 npcan1 11689 . . . . . . . . 9 (𝑥 ∈ ℂ → ((𝑥 − 1) + 1) = 𝑥)
1614, 15syl 17 . . . . . . . 8 (𝑥 ∈ (1..^𝑁) → ((𝑥 − 1) + 1) = 𝑥)
1716eqcomd 2742 . . . . . . 7 (𝑥 ∈ (1..^𝑁) → 𝑥 = ((𝑥 − 1) + 1))
1817adantl 481 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ (1..^𝑁)) → 𝑥 = ((𝑥 − 1) + 1))
199, 12, 18rspcedvd 3623 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ (1..^𝑁)) → ∃𝑦 ∈ (0..^(𝑁 − 1))𝑥 = (𝑦 + 1))
20 fveq2 6905 . . . . . . . 8 (𝑥 = (𝑦 + 1) → ((𝐹 cyclShift 𝐽)‘𝑥) = ((𝐹 cyclShift 𝐽)‘(𝑦 + 1)))
21203ad2ant3 1135 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1)) ∧ 𝑥 = (𝑦 + 1)) → ((𝐹 cyclShift 𝐽)‘𝑥) = ((𝐹 cyclShift 𝐽)‘(𝑦 + 1)))
22 elfzoelz 13700 . . . . . . . . . . . . 13 (𝑦 ∈ (0..^(𝑁 − 1)) → 𝑦 ∈ ℤ)
2322zcnd 12725 . . . . . . . . . . . 12 (𝑦 ∈ (0..^(𝑁 − 1)) → 𝑦 ∈ ℂ)
2423adantl 481 . . . . . . . . . . 11 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 𝑦 ∈ ℂ)
25 elfzoelz 13700 . . . . . . . . . . . . . 14 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
2625zcnd 12725 . . . . . . . . . . . . 13 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℂ)
27263ad2ant3 1135 . . . . . . . . . . . 12 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → 𝐽 ∈ ℂ)
2827adantr 480 . . . . . . . . . . 11 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 𝐽 ∈ ℂ)
29 1cnd 11257 . . . . . . . . . . 11 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 1 ∈ ℂ)
30 add32r 11482 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑦 + (𝐽 + 1)) = ((𝑦 + 1) + 𝐽))
3124, 28, 29, 30syl3anc 1372 . . . . . . . . . 10 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 + (𝐽 + 1)) = ((𝑦 + 1) + 𝐽))
3231fvoveq1d 7454 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝐹‘((𝑦 + (𝐽 + 1)) mod (♯‘𝐹))) = (𝐹‘(((𝑦 + 1) + 𝐽) mod (♯‘𝐹))))
33 simpl1 1191 . . . . . . . . . 10 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 𝐹 ∈ Word 𝑆)
3425peano2zd 12727 . . . . . . . . . . . 12 (𝐽 ∈ (0..^𝑁) → (𝐽 + 1) ∈ ℤ)
35343ad2ant3 1135 . . . . . . . . . . 11 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐽 + 1) ∈ ℤ)
3635adantr 480 . . . . . . . . . 10 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝐽 + 1) ∈ ℤ)
37 fzossrbm1 13729 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
382, 37syl 17 . . . . . . . . . . . . . 14 (𝐽 ∈ (0..^𝑁) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
3938sseld 3981 . . . . . . . . . . . . 13 (𝐽 ∈ (0..^𝑁) → (𝑦 ∈ (0..^(𝑁 − 1)) → 𝑦 ∈ (0..^𝑁)))
40393ad2ant3 1135 . . . . . . . . . . . 12 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝑦 ∈ (0..^(𝑁 − 1)) → 𝑦 ∈ (0..^𝑁)))
4140imp 406 . . . . . . . . . . 11 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 𝑦 ∈ (0..^𝑁))
42 oveq2 7440 . . . . . . . . . . . . . 14 (𝑁 = (♯‘𝐹) → (0..^𝑁) = (0..^(♯‘𝐹)))
4342eleq2d 2826 . . . . . . . . . . . . 13 (𝑁 = (♯‘𝐹) → (𝑦 ∈ (0..^𝑁) ↔ 𝑦 ∈ (0..^(♯‘𝐹))))
44433ad2ant2 1134 . . . . . . . . . . . 12 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝑦 ∈ (0..^𝑁) ↔ 𝑦 ∈ (0..^(♯‘𝐹))))
4544adantr 480 . . . . . . . . . . 11 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 ∈ (0..^𝑁) ↔ 𝑦 ∈ (0..^(♯‘𝐹))))
4641, 45mpbid 232 . . . . . . . . . 10 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 𝑦 ∈ (0..^(♯‘𝐹)))
47 cshwidxmod 14842 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑆 ∧ (𝐽 + 1) ∈ ℤ ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝐹 cyclShift (𝐽 + 1))‘𝑦) = (𝐹‘((𝑦 + (𝐽 + 1)) mod (♯‘𝐹))))
4833, 36, 46, 47syl3anc 1372 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → ((𝐹 cyclShift (𝐽 + 1))‘𝑦) = (𝐹‘((𝑦 + (𝐽 + 1)) mod (♯‘𝐹))))
49253ad2ant3 1135 . . . . . . . . . . 11 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → 𝐽 ∈ ℤ)
5049adantr 480 . . . . . . . . . 10 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 𝐽 ∈ ℤ)
51 fzo0ss1 13730 . . . . . . . . . . . 12 (1..^𝑁) ⊆ (0..^𝑁)
5223ad2ant3 1135 . . . . . . . . . . . . 13 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ)
5352, 3sylan 580 . . . . . . . . . . . 12 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 + 1) ∈ (1..^𝑁))
5451, 53sselid 3980 . . . . . . . . . . 11 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 + 1) ∈ (0..^𝑁))
5542eleq2d 2826 . . . . . . . . . . . . 13 (𝑁 = (♯‘𝐹) → ((𝑦 + 1) ∈ (0..^𝑁) ↔ (𝑦 + 1) ∈ (0..^(♯‘𝐹))))
56553ad2ant2 1134 . . . . . . . . . . . 12 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝑦 + 1) ∈ (0..^𝑁) ↔ (𝑦 + 1) ∈ (0..^(♯‘𝐹))))
5756adantr 480 . . . . . . . . . . 11 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → ((𝑦 + 1) ∈ (0..^𝑁) ↔ (𝑦 + 1) ∈ (0..^(♯‘𝐹))))
5854, 57mpbid 232 . . . . . . . . . 10 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 + 1) ∈ (0..^(♯‘𝐹)))
59 cshwidxmod 14842 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑆𝐽 ∈ ℤ ∧ (𝑦 + 1) ∈ (0..^(♯‘𝐹))) → ((𝐹 cyclShift 𝐽)‘(𝑦 + 1)) = (𝐹‘(((𝑦 + 1) + 𝐽) mod (♯‘𝐹))))
6033, 50, 58, 59syl3anc 1372 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → ((𝐹 cyclShift 𝐽)‘(𝑦 + 1)) = (𝐹‘(((𝑦 + 1) + 𝐽) mod (♯‘𝐹))))
6132, 48, 603eqtr4rd 2787 . . . . . . . 8 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → ((𝐹 cyclShift 𝐽)‘(𝑦 + 1)) = ((𝐹 cyclShift (𝐽 + 1))‘𝑦))
62613adant3 1132 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1)) ∧ 𝑥 = (𝑦 + 1)) → ((𝐹 cyclShift 𝐽)‘(𝑦 + 1)) = ((𝐹 cyclShift (𝐽 + 1))‘𝑦))
6321, 62eqtrd 2776 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1)) ∧ 𝑥 = (𝑦 + 1)) → ((𝐹 cyclShift 𝐽)‘𝑥) = ((𝐹 cyclShift (𝐽 + 1))‘𝑦))
6463eqeq1d 2738 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1)) ∧ 𝑥 = (𝑦 + 1)) → (((𝐹 cyclShift 𝐽)‘𝑥) = 𝑧 ↔ ((𝐹 cyclShift (𝐽 + 1))‘𝑦) = 𝑧))
657, 19, 64rexxfrd2 5412 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (∃𝑥 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑥) = 𝑧 ↔ ∃𝑦 ∈ (0..^(𝑁 − 1))((𝐹 cyclShift (𝐽 + 1))‘𝑦) = 𝑧))
6665abbidv 2807 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → {𝑧 ∣ ∃𝑥 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑥) = 𝑧} = {𝑧 ∣ ∃𝑦 ∈ (0..^(𝑁 − 1))((𝐹 cyclShift (𝐽 + 1))‘𝑦) = 𝑧})
6725anim2i 617 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆𝐽 ∈ ℤ))
68673adant2 1131 . . . . . 6 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆𝐽 ∈ ℤ))
69 cshwfn 14840 . . . . . 6 ((𝐹 ∈ Word 𝑆𝐽 ∈ ℤ) → (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹)))
7068, 69syl 17 . . . . 5 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹)))
71 fnfun 6667 . . . . . . 7 ((𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹)) → Fun (𝐹 cyclShift 𝐽))
7271adantl 481 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → Fun (𝐹 cyclShift 𝐽))
73423ad2ant2 1134 . . . . . . . . 9 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (0..^𝑁) = (0..^(♯‘𝐹)))
7451, 73sseqtrid 4025 . . . . . . . 8 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (1..^𝑁) ⊆ (0..^(♯‘𝐹)))
7574adantr 480 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → (1..^𝑁) ⊆ (0..^(♯‘𝐹)))
76 fndm 6670 . . . . . . . 8 ((𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹)) → dom (𝐹 cyclShift 𝐽) = (0..^(♯‘𝐹)))
7776adantl 481 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → dom (𝐹 cyclShift 𝐽) = (0..^(♯‘𝐹)))
7875, 77sseqtrrd 4020 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽))
7972, 78jca 511 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → (Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)))
8070, 79mpdan 687 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)))
81 dfimafn 6970 . . . 4 ((Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)) → ((𝐹 cyclShift 𝐽) “ (1..^𝑁)) = {𝑧 ∣ ∃𝑥 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑥) = 𝑧})
8280, 81syl 17 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐹 cyclShift 𝐽) “ (1..^𝑁)) = {𝑧 ∣ ∃𝑥 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑥) = 𝑧})
8334anim2i 617 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆 ∧ (𝐽 + 1) ∈ ℤ))
84833adant2 1131 . . . . . 6 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆 ∧ (𝐽 + 1) ∈ ℤ))
85 cshwfn 14840 . . . . . 6 ((𝐹 ∈ Word 𝑆 ∧ (𝐽 + 1) ∈ ℤ) → (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹)))
8684, 85syl 17 . . . . 5 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹)))
87 fnfun 6667 . . . . . . 7 ((𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹)) → Fun (𝐹 cyclShift (𝐽 + 1)))
8887adantl 481 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹))) → Fun (𝐹 cyclShift (𝐽 + 1)))
89383ad2ant3 1135 . . . . . . . . 9 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
90 oveq2 7440 . . . . . . . . . . 11 ((♯‘𝐹) = 𝑁 → (0..^(♯‘𝐹)) = (0..^𝑁))
9190eqcoms 2744 . . . . . . . . . 10 (𝑁 = (♯‘𝐹) → (0..^(♯‘𝐹)) = (0..^𝑁))
92913ad2ant2 1134 . . . . . . . . 9 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (0..^(♯‘𝐹)) = (0..^𝑁))
9389, 92sseqtrrd 4020 . . . . . . . 8 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (0..^(𝑁 − 1)) ⊆ (0..^(♯‘𝐹)))
9493adantr 480 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹))) → (0..^(𝑁 − 1)) ⊆ (0..^(♯‘𝐹)))
95 fndm 6670 . . . . . . . 8 ((𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹)) → dom (𝐹 cyclShift (𝐽 + 1)) = (0..^(♯‘𝐹)))
9695adantl 481 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹))) → dom (𝐹 cyclShift (𝐽 + 1)) = (0..^(♯‘𝐹)))
9794, 96sseqtrrd 4020 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹))) → (0..^(𝑁 − 1)) ⊆ dom (𝐹 cyclShift (𝐽 + 1)))
9888, 97jca 511 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹))) → (Fun (𝐹 cyclShift (𝐽 + 1)) ∧ (0..^(𝑁 − 1)) ⊆ dom (𝐹 cyclShift (𝐽 + 1))))
9986, 98mpdan 687 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (Fun (𝐹 cyclShift (𝐽 + 1)) ∧ (0..^(𝑁 − 1)) ⊆ dom (𝐹 cyclShift (𝐽 + 1))))
100 dfimafn 6970 . . . 4 ((Fun (𝐹 cyclShift (𝐽 + 1)) ∧ (0..^(𝑁 − 1)) ⊆ dom (𝐹 cyclShift (𝐽 + 1))) → ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))) = {𝑧 ∣ ∃𝑦 ∈ (0..^(𝑁 − 1))((𝐹 cyclShift (𝐽 + 1))‘𝑦) = 𝑧})
10199, 100syl 17 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))) = {𝑧 ∣ ∃𝑦 ∈ (0..^(𝑁 − 1))((𝐹 cyclShift (𝐽 + 1))‘𝑦) = 𝑧})
10266, 82, 1013eqtr4d 2786 . 2 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐹 cyclShift 𝐽) “ (1..^𝑁)) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))))
1031, 102eqtrd 2776 1 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  {cab 2713  wrex 3069  cdif 3947  wss 3950  {csn 4625  dom cdm 5684  cima 5687  Fun wfun 6554   Fn wfn 6555  cfv 6560  (class class class)co 7432  cc 11154  0cc0 11156  1c1 11157   + caddc 11159  cmin 11493  cz 12615  ..^cfzo 13695   mod cmo 13910  chash 14370  Word cword 14553   cyclShift ccsh 14827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-ico 13394  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-hash 14371  df-word 14554  df-concat 14610  df-substr 14680  df-pfx 14710  df-csh 14828
This theorem is referenced by:  eucrct2eupth  30265
  Copyright terms: Public domain W3C validator