MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshimadifsn0 Structured version   Visualization version   GIF version

Theorem cshimadifsn0 14186
Description: The image of a cyclically shifted word under its domain without its upper bound is the image of a cyclically shifted word under its domain without the number of shifted symbols. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
cshimadifsn0 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))))

Proof of Theorem cshimadifsn0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cshimadifsn 14185 . 2 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift 𝐽) “ (1..^𝑁)))
2 elfzoel2 13031 . . . . . . . 8 (𝐽 ∈ (0..^𝑁) → 𝑁 ∈ ℤ)
3 elfzom1elp1fzo1 13131 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 + 1) ∈ (1..^𝑁))
43ex 415 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑦 ∈ (0..^(𝑁 − 1)) → (𝑦 + 1) ∈ (1..^𝑁)))
52, 4syl 17 . . . . . . 7 (𝐽 ∈ (0..^𝑁) → (𝑦 ∈ (0..^(𝑁 − 1)) → (𝑦 + 1) ∈ (1..^𝑁)))
653ad2ant3 1131 . . . . . 6 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝑦 ∈ (0..^(𝑁 − 1)) → (𝑦 + 1) ∈ (1..^𝑁)))
76imp 409 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 + 1) ∈ (1..^𝑁))
8 elfzo1elm1fzo0 13132 . . . . . . 7 (𝑥 ∈ (1..^𝑁) → (𝑥 − 1) ∈ (0..^(𝑁 − 1)))
98adantl 484 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ (1..^𝑁)) → (𝑥 − 1) ∈ (0..^(𝑁 − 1)))
10 oveq1 7157 . . . . . . . 8 (𝑦 = (𝑥 − 1) → (𝑦 + 1) = ((𝑥 − 1) + 1))
1110eqeq2d 2832 . . . . . . 7 (𝑦 = (𝑥 − 1) → (𝑥 = (𝑦 + 1) ↔ 𝑥 = ((𝑥 − 1) + 1)))
1211adantl 484 . . . . . 6 ((((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ (1..^𝑁)) ∧ 𝑦 = (𝑥 − 1)) → (𝑥 = (𝑦 + 1) ↔ 𝑥 = ((𝑥 − 1) + 1)))
13 elfzoelz 13032 . . . . . . . . . 10 (𝑥 ∈ (1..^𝑁) → 𝑥 ∈ ℤ)
1413zcnd 12082 . . . . . . . . 9 (𝑥 ∈ (1..^𝑁) → 𝑥 ∈ ℂ)
15 npcan1 11059 . . . . . . . . 9 (𝑥 ∈ ℂ → ((𝑥 − 1) + 1) = 𝑥)
1614, 15syl 17 . . . . . . . 8 (𝑥 ∈ (1..^𝑁) → ((𝑥 − 1) + 1) = 𝑥)
1716eqcomd 2827 . . . . . . 7 (𝑥 ∈ (1..^𝑁) → 𝑥 = ((𝑥 − 1) + 1))
1817adantl 484 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ (1..^𝑁)) → 𝑥 = ((𝑥 − 1) + 1))
199, 12, 18rspcedvd 3626 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ (1..^𝑁)) → ∃𝑦 ∈ (0..^(𝑁 − 1))𝑥 = (𝑦 + 1))
20 fveq2 6665 . . . . . . . 8 (𝑥 = (𝑦 + 1) → ((𝐹 cyclShift 𝐽)‘𝑥) = ((𝐹 cyclShift 𝐽)‘(𝑦 + 1)))
21203ad2ant3 1131 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1)) ∧ 𝑥 = (𝑦 + 1)) → ((𝐹 cyclShift 𝐽)‘𝑥) = ((𝐹 cyclShift 𝐽)‘(𝑦 + 1)))
22 elfzoelz 13032 . . . . . . . . . . . . 13 (𝑦 ∈ (0..^(𝑁 − 1)) → 𝑦 ∈ ℤ)
2322zcnd 12082 . . . . . . . . . . . 12 (𝑦 ∈ (0..^(𝑁 − 1)) → 𝑦 ∈ ℂ)
2423adantl 484 . . . . . . . . . . 11 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 𝑦 ∈ ℂ)
25 elfzoelz 13032 . . . . . . . . . . . . . 14 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
2625zcnd 12082 . . . . . . . . . . . . 13 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℂ)
27263ad2ant3 1131 . . . . . . . . . . . 12 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → 𝐽 ∈ ℂ)
2827adantr 483 . . . . . . . . . . 11 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 𝐽 ∈ ℂ)
29 1cnd 10630 . . . . . . . . . . 11 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 1 ∈ ℂ)
30 add32r 10853 . . . . . . . . . . 11 ((𝑦 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑦 + (𝐽 + 1)) = ((𝑦 + 1) + 𝐽))
3124, 28, 29, 30syl3anc 1367 . . . . . . . . . 10 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 + (𝐽 + 1)) = ((𝑦 + 1) + 𝐽))
3231fvoveq1d 7172 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝐹‘((𝑦 + (𝐽 + 1)) mod (♯‘𝐹))) = (𝐹‘(((𝑦 + 1) + 𝐽) mod (♯‘𝐹))))
33 simpl1 1187 . . . . . . . . . 10 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 𝐹 ∈ Word 𝑆)
3425peano2zd 12084 . . . . . . . . . . . 12 (𝐽 ∈ (0..^𝑁) → (𝐽 + 1) ∈ ℤ)
35343ad2ant3 1131 . . . . . . . . . . 11 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐽 + 1) ∈ ℤ)
3635adantr 483 . . . . . . . . . 10 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝐽 + 1) ∈ ℤ)
37 fzossrbm1 13060 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
382, 37syl 17 . . . . . . . . . . . . . 14 (𝐽 ∈ (0..^𝑁) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
3938sseld 3966 . . . . . . . . . . . . 13 (𝐽 ∈ (0..^𝑁) → (𝑦 ∈ (0..^(𝑁 − 1)) → 𝑦 ∈ (0..^𝑁)))
40393ad2ant3 1131 . . . . . . . . . . . 12 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝑦 ∈ (0..^(𝑁 − 1)) → 𝑦 ∈ (0..^𝑁)))
4140imp 409 . . . . . . . . . . 11 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 𝑦 ∈ (0..^𝑁))
42 oveq2 7158 . . . . . . . . . . . . . 14 (𝑁 = (♯‘𝐹) → (0..^𝑁) = (0..^(♯‘𝐹)))
4342eleq2d 2898 . . . . . . . . . . . . 13 (𝑁 = (♯‘𝐹) → (𝑦 ∈ (0..^𝑁) ↔ 𝑦 ∈ (0..^(♯‘𝐹))))
44433ad2ant2 1130 . . . . . . . . . . . 12 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝑦 ∈ (0..^𝑁) ↔ 𝑦 ∈ (0..^(♯‘𝐹))))
4544adantr 483 . . . . . . . . . . 11 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 ∈ (0..^𝑁) ↔ 𝑦 ∈ (0..^(♯‘𝐹))))
4641, 45mpbid 234 . . . . . . . . . 10 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 𝑦 ∈ (0..^(♯‘𝐹)))
47 cshwidxmod 14159 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑆 ∧ (𝐽 + 1) ∈ ℤ ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝐹 cyclShift (𝐽 + 1))‘𝑦) = (𝐹‘((𝑦 + (𝐽 + 1)) mod (♯‘𝐹))))
4833, 36, 46, 47syl3anc 1367 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → ((𝐹 cyclShift (𝐽 + 1))‘𝑦) = (𝐹‘((𝑦 + (𝐽 + 1)) mod (♯‘𝐹))))
49253ad2ant3 1131 . . . . . . . . . . 11 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → 𝐽 ∈ ℤ)
5049adantr 483 . . . . . . . . . 10 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 𝐽 ∈ ℤ)
51 fzo0ss1 13061 . . . . . . . . . . . 12 (1..^𝑁) ⊆ (0..^𝑁)
5223ad2ant3 1131 . . . . . . . . . . . . 13 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ)
5352, 3sylan 582 . . . . . . . . . . . 12 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 + 1) ∈ (1..^𝑁))
5451, 53sseldi 3965 . . . . . . . . . . 11 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 + 1) ∈ (0..^𝑁))
5542eleq2d 2898 . . . . . . . . . . . . 13 (𝑁 = (♯‘𝐹) → ((𝑦 + 1) ∈ (0..^𝑁) ↔ (𝑦 + 1) ∈ (0..^(♯‘𝐹))))
56553ad2ant2 1130 . . . . . . . . . . . 12 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝑦 + 1) ∈ (0..^𝑁) ↔ (𝑦 + 1) ∈ (0..^(♯‘𝐹))))
5756adantr 483 . . . . . . . . . . 11 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → ((𝑦 + 1) ∈ (0..^𝑁) ↔ (𝑦 + 1) ∈ (0..^(♯‘𝐹))))
5854, 57mpbid 234 . . . . . . . . . 10 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 + 1) ∈ (0..^(♯‘𝐹)))
59 cshwidxmod 14159 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑆𝐽 ∈ ℤ ∧ (𝑦 + 1) ∈ (0..^(♯‘𝐹))) → ((𝐹 cyclShift 𝐽)‘(𝑦 + 1)) = (𝐹‘(((𝑦 + 1) + 𝐽) mod (♯‘𝐹))))
6033, 50, 58, 59syl3anc 1367 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → ((𝐹 cyclShift 𝐽)‘(𝑦 + 1)) = (𝐹‘(((𝑦 + 1) + 𝐽) mod (♯‘𝐹))))
6132, 48, 603eqtr4rd 2867 . . . . . . . 8 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → ((𝐹 cyclShift 𝐽)‘(𝑦 + 1)) = ((𝐹 cyclShift (𝐽 + 1))‘𝑦))
62613adant3 1128 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1)) ∧ 𝑥 = (𝑦 + 1)) → ((𝐹 cyclShift 𝐽)‘(𝑦 + 1)) = ((𝐹 cyclShift (𝐽 + 1))‘𝑦))
6321, 62eqtrd 2856 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1)) ∧ 𝑥 = (𝑦 + 1)) → ((𝐹 cyclShift 𝐽)‘𝑥) = ((𝐹 cyclShift (𝐽 + 1))‘𝑦))
6463eqeq1d 2823 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1)) ∧ 𝑥 = (𝑦 + 1)) → (((𝐹 cyclShift 𝐽)‘𝑥) = 𝑧 ↔ ((𝐹 cyclShift (𝐽 + 1))‘𝑦) = 𝑧))
657, 19, 64rexxfrd2 5306 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (∃𝑥 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑥) = 𝑧 ↔ ∃𝑦 ∈ (0..^(𝑁 − 1))((𝐹 cyclShift (𝐽 + 1))‘𝑦) = 𝑧))
6665abbidv 2885 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → {𝑧 ∣ ∃𝑥 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑥) = 𝑧} = {𝑧 ∣ ∃𝑦 ∈ (0..^(𝑁 − 1))((𝐹 cyclShift (𝐽 + 1))‘𝑦) = 𝑧})
6725anim2i 618 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆𝐽 ∈ ℤ))
68673adant2 1127 . . . . . 6 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆𝐽 ∈ ℤ))
69 cshwfn 14157 . . . . . 6 ((𝐹 ∈ Word 𝑆𝐽 ∈ ℤ) → (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹)))
7068, 69syl 17 . . . . 5 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹)))
71 fnfun 6448 . . . . . . 7 ((𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹)) → Fun (𝐹 cyclShift 𝐽))
7271adantl 484 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → Fun (𝐹 cyclShift 𝐽))
73423ad2ant2 1130 . . . . . . . . 9 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (0..^𝑁) = (0..^(♯‘𝐹)))
7451, 73sseqtrid 4019 . . . . . . . 8 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (1..^𝑁) ⊆ (0..^(♯‘𝐹)))
7574adantr 483 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → (1..^𝑁) ⊆ (0..^(♯‘𝐹)))
76 fndm 6450 . . . . . . . 8 ((𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹)) → dom (𝐹 cyclShift 𝐽) = (0..^(♯‘𝐹)))
7776adantl 484 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → dom (𝐹 cyclShift 𝐽) = (0..^(♯‘𝐹)))
7875, 77sseqtrrd 4008 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽))
7972, 78jca 514 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → (Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)))
8070, 79mpdan 685 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)))
81 dfimafn 6723 . . . 4 ((Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)) → ((𝐹 cyclShift 𝐽) “ (1..^𝑁)) = {𝑧 ∣ ∃𝑥 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑥) = 𝑧})
8280, 81syl 17 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐹 cyclShift 𝐽) “ (1..^𝑁)) = {𝑧 ∣ ∃𝑥 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑥) = 𝑧})
8334anim2i 618 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆 ∧ (𝐽 + 1) ∈ ℤ))
84833adant2 1127 . . . . . 6 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆 ∧ (𝐽 + 1) ∈ ℤ))
85 cshwfn 14157 . . . . . 6 ((𝐹 ∈ Word 𝑆 ∧ (𝐽 + 1) ∈ ℤ) → (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹)))
8684, 85syl 17 . . . . 5 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹)))
87 fnfun 6448 . . . . . . 7 ((𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹)) → Fun (𝐹 cyclShift (𝐽 + 1)))
8887adantl 484 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹))) → Fun (𝐹 cyclShift (𝐽 + 1)))
89383ad2ant3 1131 . . . . . . . . 9 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
90 oveq2 7158 . . . . . . . . . . 11 ((♯‘𝐹) = 𝑁 → (0..^(♯‘𝐹)) = (0..^𝑁))
9190eqcoms 2829 . . . . . . . . . 10 (𝑁 = (♯‘𝐹) → (0..^(♯‘𝐹)) = (0..^𝑁))
92913ad2ant2 1130 . . . . . . . . 9 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (0..^(♯‘𝐹)) = (0..^𝑁))
9389, 92sseqtrrd 4008 . . . . . . . 8 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (0..^(𝑁 − 1)) ⊆ (0..^(♯‘𝐹)))
9493adantr 483 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹))) → (0..^(𝑁 − 1)) ⊆ (0..^(♯‘𝐹)))
95 fndm 6450 . . . . . . . 8 ((𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹)) → dom (𝐹 cyclShift (𝐽 + 1)) = (0..^(♯‘𝐹)))
9695adantl 484 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹))) → dom (𝐹 cyclShift (𝐽 + 1)) = (0..^(♯‘𝐹)))
9794, 96sseqtrrd 4008 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹))) → (0..^(𝑁 − 1)) ⊆ dom (𝐹 cyclShift (𝐽 + 1)))
9888, 97jca 514 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹))) → (Fun (𝐹 cyclShift (𝐽 + 1)) ∧ (0..^(𝑁 − 1)) ⊆ dom (𝐹 cyclShift (𝐽 + 1))))
9986, 98mpdan 685 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (Fun (𝐹 cyclShift (𝐽 + 1)) ∧ (0..^(𝑁 − 1)) ⊆ dom (𝐹 cyclShift (𝐽 + 1))))
100 dfimafn 6723 . . . 4 ((Fun (𝐹 cyclShift (𝐽 + 1)) ∧ (0..^(𝑁 − 1)) ⊆ dom (𝐹 cyclShift (𝐽 + 1))) → ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))) = {𝑧 ∣ ∃𝑦 ∈ (0..^(𝑁 − 1))((𝐹 cyclShift (𝐽 + 1))‘𝑦) = 𝑧})
10199, 100syl 17 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))) = {𝑧 ∣ ∃𝑦 ∈ (0..^(𝑁 − 1))((𝐹 cyclShift (𝐽 + 1))‘𝑦) = 𝑧})
10266, 82, 1013eqtr4d 2866 . 2 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐹 cyclShift 𝐽) “ (1..^𝑁)) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))))
1031, 102eqtrd 2856 1 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  {cab 2799  wrex 3139  cdif 3933  wss 3936  {csn 4561  dom cdm 5550  cima 5553  Fun wfun 6344   Fn wfn 6345  cfv 6350  (class class class)co 7150  cc 10529  0cc0 10531  1c1 10532   + caddc 10534  cmin 10864  cz 11975  ..^cfzo 13027   mod cmo 13231  chash 13684  Word cword 13855   cyclShift ccsh 14144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-ico 12738  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-hash 13685  df-word 13856  df-concat 13917  df-substr 13997  df-pfx 14027  df-csh 14145
This theorem is referenced by:  eucrct2eupth  28018
  Copyright terms: Public domain W3C validator