Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsconcatrn Structured version   Visualization version   GIF version

Theorem tfsconcatrn 42581
Description: The range of the concatenation of two transfinite series. (Contributed by RP, 24-Feb-2025.)
Hypothesis
Ref Expression
tfsconcat.op + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
Assertion
Ref Expression
tfsconcatrn (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑥,𝑦,𝑧   𝐶,𝑎,𝑏,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦,𝑧,𝑎,𝑏)

Proof of Theorem tfsconcatrn
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 tfsconcat.op . . . 4 + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
21tfsconcatun 42576 . . 3 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) = (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}))
32rneqd 5927 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 + 𝐵) = ran (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}))
4 rnun 6135 . . 3 ran (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}) = (ran 𝐴 ∪ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))})
54a1i 11 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}) = (ran 𝐴 ∪ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}))
6 df-rex 3063 . . . . . 6 (∃𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ ∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))))
7 pm3.22 459 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐷 ∈ On ∧ 𝐶 ∈ On))
87adantl 481 . . . . . . . . . 10 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐷 ∈ On ∧ 𝐶 ∈ On))
9 oaordi 8541 . . . . . . . . . 10 ((𝐷 ∈ On ∧ 𝐶 ∈ On) → (𝑑𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)))
108, 9syl 17 . . . . . . . . 9 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)))
1110imp 406 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷))
12 simplrl 774 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → 𝐶 ∈ On)
13 simprr 770 . . . . . . . . . 10 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐷 ∈ On)
14 onelon 6379 . . . . . . . . . 10 ((𝐷 ∈ On ∧ 𝑑𝐷) → 𝑑 ∈ On)
1513, 14sylan 579 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → 𝑑 ∈ On)
16 oaword1 8547 . . . . . . . . 9 ((𝐶 ∈ On ∧ 𝑑 ∈ On) → 𝐶 ⊆ (𝐶 +o 𝑑))
1712, 15, 16syl2anc 583 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → 𝐶 ⊆ (𝐶 +o 𝑑))
18 oacl 8530 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +o 𝐷) ∈ On)
1918ad2antlr 724 . . . . . . . . . 10 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → (𝐶 +o 𝐷) ∈ On)
20 eloni 6364 . . . . . . . . . 10 ((𝐶 +o 𝐷) ∈ On → Ord (𝐶 +o 𝐷))
2119, 20syl 17 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → Ord (𝐶 +o 𝐷))
22 eloni 6364 . . . . . . . . . 10 (𝐶 ∈ On → Ord 𝐶)
2312, 22syl 17 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → Ord 𝐶)
24 ordeldif 42497 . . . . . . . . 9 ((Ord (𝐶 +o 𝐷) ∧ Ord 𝐶) → ((𝐶 +o 𝑑) ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ ((𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷) ∧ 𝐶 ⊆ (𝐶 +o 𝑑))))
2521, 23, 24syl2anc 583 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → ((𝐶 +o 𝑑) ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ ((𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷) ∧ 𝐶 ⊆ (𝐶 +o 𝑑))))
2611, 17, 25mpbir2and 710 . . . . . . 7 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → (𝐶 +o 𝑑) ∈ ((𝐶 +o 𝐷) ∖ 𝐶))
27 simpr 484 . . . . . . . . . 10 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 ∈ On ∧ 𝐷 ∈ On))
2827adantr 480 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝐶 ∈ On ∧ 𝐷 ∈ On))
2918, 20syl 17 . . . . . . . . . . . . . 14 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord (𝐶 +o 𝐷))
3022adantr 480 . . . . . . . . . . . . . 14 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord 𝐶)
3129, 30jca 511 . . . . . . . . . . . . 13 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (Ord (𝐶 +o 𝐷) ∧ Ord 𝐶))
3231adantl 481 . . . . . . . . . . . 12 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (Ord (𝐶 +o 𝐷) ∧ Ord 𝐶))
33 ordeldif 42497 . . . . . . . . . . . 12 ((Ord (𝐶 +o 𝐷) ∧ Ord 𝐶) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥)))
3432, 33syl 17 . . . . . . . . . . 11 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥)))
3534biimpa 476 . . . . . . . . . 10 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥))
3635ancomd 461 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝐶𝑥𝑥 ∈ (𝐶 +o 𝐷)))
37 oawordex2 42565 . . . . . . . . 9 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶𝑥𝑥 ∈ (𝐶 +o 𝐷))) → ∃𝑑𝐷 (𝐶 +o 𝑑) = 𝑥)
3828, 36, 37syl2anc 583 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → ∃𝑑𝐷 (𝐶 +o 𝑑) = 𝑥)
39 eqcom 2731 . . . . . . . . 9 ((𝐶 +o 𝑑) = 𝑥𝑥 = (𝐶 +o 𝑑))
4039rexbii 3086 . . . . . . . 8 (∃𝑑𝐷 (𝐶 +o 𝑑) = 𝑥 ↔ ∃𝑑𝐷 𝑥 = (𝐶 +o 𝑑))
4138, 40sylib 217 . . . . . . 7 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → ∃𝑑𝐷 𝑥 = (𝐶 +o 𝑑))
42 simpr 484 . . . . . . . . . . . . . . . . 17 ((((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → 𝑥 = (𝐶 +o 𝑧))
43 simpll3 1211 . . . . . . . . . . . . . . . . 17 ((((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → 𝑥 = (𝐶 +o 𝑑))
4442, 43eqtr3d 2766 . . . . . . . . . . . . . . . 16 ((((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝐶 +o 𝑧) = (𝐶 +o 𝑑))
45 simp1rl 1235 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → 𝐶 ∈ On)
4645adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) → 𝐶 ∈ On)
47 simp1rr 1236 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → 𝐷 ∈ On)
48 onelon 6379 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ On ∧ 𝑧𝐷) → 𝑧 ∈ On)
4947, 48sylan 579 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) → 𝑧 ∈ On)
50 simp2 1134 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → 𝑑𝐷)
5147, 50, 14syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → 𝑑 ∈ On)
5251adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) → 𝑑 ∈ On)
5346, 49, 523jca 1125 . . . . . . . . . . . . . . . . . 18 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) → (𝐶 ∈ On ∧ 𝑧 ∈ On ∧ 𝑑 ∈ On))
5453adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝐶 ∈ On ∧ 𝑧 ∈ On ∧ 𝑑 ∈ On))
55 oacan 8543 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ On ∧ 𝑧 ∈ On ∧ 𝑑 ∈ On) → ((𝐶 +o 𝑧) = (𝐶 +o 𝑑) ↔ 𝑧 = 𝑑))
5654, 55syl 17 . . . . . . . . . . . . . . . 16 ((((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → ((𝐶 +o 𝑧) = (𝐶 +o 𝑑) ↔ 𝑧 = 𝑑))
5744, 56mpbid 231 . . . . . . . . . . . . . . 15 ((((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → 𝑧 = 𝑑)
58 velsn 4636 . . . . . . . . . . . . . . 15 (𝑧 ∈ {𝑑} ↔ 𝑧 = 𝑑)
5957, 58sylibr 233 . . . . . . . . . . . . . 14 ((((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → 𝑧 ∈ {𝑑})
6059ex 412 . . . . . . . . . . . . 13 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) → (𝑥 = (𝐶 +o 𝑧) → 𝑧 ∈ {𝑑}))
6160adantrd 491 . . . . . . . . . . . 12 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) → ((𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) → 𝑧 ∈ {𝑑}))
6261expimpd 453 . . . . . . . . . . 11 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → ((𝑧𝐷 ∧ (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) → 𝑧 ∈ {𝑑}))
63 simprr 770 . . . . . . . . . . 11 ((𝑧𝐷 ∧ (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) → 𝑦 = (𝐵𝑧))
6462, 63jca2 513 . . . . . . . . . 10 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → ((𝑧𝐷 ∧ (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) → (𝑧 ∈ {𝑑} ∧ 𝑦 = (𝐵𝑧))))
6564reximdv2 3156 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) → ∃𝑧 ∈ {𝑑}𝑦 = (𝐵𝑧)))
66 vex 3470 . . . . . . . . . 10 𝑑 ∈ V
67 fveq2 6881 . . . . . . . . . . 11 (𝑧 = 𝑑 → (𝐵𝑧) = (𝐵𝑑))
6867eqeq2d 2735 . . . . . . . . . 10 (𝑧 = 𝑑 → (𝑦 = (𝐵𝑧) ↔ 𝑦 = (𝐵𝑑)))
6966, 68rexsn 4678 . . . . . . . . 9 (∃𝑧 ∈ {𝑑}𝑦 = (𝐵𝑧) ↔ 𝑦 = (𝐵𝑑))
7065, 69imbitrdi 250 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) → 𝑦 = (𝐵𝑑)))
7150adantr 480 . . . . . . . . . 10 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑦 = (𝐵𝑑)) → 𝑑𝐷)
72 simpl3 1190 . . . . . . . . . 10 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑦 = (𝐵𝑑)) → 𝑥 = (𝐶 +o 𝑑))
73 simpr 484 . . . . . . . . . 10 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑦 = (𝐵𝑑)) → 𝑦 = (𝐵𝑑))
74 oveq2 7409 . . . . . . . . . . . . 13 (𝑧 = 𝑑 → (𝐶 +o 𝑧) = (𝐶 +o 𝑑))
7574eqeq2d 2735 . . . . . . . . . . . 12 (𝑧 = 𝑑 → (𝑥 = (𝐶 +o 𝑧) ↔ 𝑥 = (𝐶 +o 𝑑)))
7675, 68anbi12d 630 . . . . . . . . . . 11 (𝑧 = 𝑑 → ((𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ (𝑥 = (𝐶 +o 𝑑) ∧ 𝑦 = (𝐵𝑑))))
7776rspcev 3604 . . . . . . . . . 10 ((𝑑𝐷 ∧ (𝑥 = (𝐶 +o 𝑑) ∧ 𝑦 = (𝐵𝑑))) → ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))
7871, 72, 73, 77syl12anc 834 . . . . . . . . 9 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑦 = (𝐵𝑑)) → ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))
7978ex 412 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → (𝑦 = (𝐵𝑑) → ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))))
8070, 79impbid 211 . . . . . . 7 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ 𝑦 = (𝐵𝑑)))
8126, 41, 80rexxfrd2 5401 . . . . . 6 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (∃𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ ∃𝑑𝐷 𝑦 = (𝐵𝑑)))
826, 81bitr3id 285 . . . . 5 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) ↔ ∃𝑑𝐷 𝑦 = (𝐵𝑑)))
8382abbidv 2793 . . . 4 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → {𝑦 ∣ ∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} = {𝑦 ∣ ∃𝑑𝐷 𝑦 = (𝐵𝑑)})
84 rnopab 5943 . . . . 5 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} = {𝑦 ∣ ∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}
8584a1i 11 . . . 4 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} = {𝑦 ∣ ∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))})
86 fnrnfv 6941 . . . . 5 (𝐵 Fn 𝐷 → ran 𝐵 = {𝑦 ∣ ∃𝑑𝐷 𝑦 = (𝐵𝑑)})
8786ad2antlr 724 . . . 4 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran 𝐵 = {𝑦 ∣ ∃𝑑𝐷 𝑦 = (𝐵𝑑)})
8883, 85, 873eqtr4d 2774 . . 3 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} = ran 𝐵)
8988uneq2d 4155 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran 𝐴 ∪ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}) = (ran 𝐴 ∪ ran 𝐵))
903, 5, 893eqtrd 2768 1 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wex 1773  wcel 2098  {cab 2701  wrex 3062  Vcvv 3466  cdif 3937  cun 3938  wss 3940  {csn 4620  {copab 5200  dom cdm 5666  ran crn 5667  Ord word 6353  Oncon0 6354   Fn wfn 6528  cfv 6533  (class class class)co 7401  cmpo 7403   +o coa 8458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-oadd 8465
This theorem is referenced by:  tfsconcatfo  42582  tfsconcat00  42586  tfsconcatrnss12  42588  tfsconcatrnss  42589
  Copyright terms: Public domain W3C validator