| Step | Hyp | Ref
| Expression |
| 1 | | tfsconcat.op |
. . . 4
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) |
| 2 | 1 | tfsconcatun 43328 |
. . 3
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) = (𝐴 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))})) |
| 3 | 2 | rneqd 5923 |
. 2
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 + 𝐵) = ran (𝐴 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))})) |
| 4 | | rnun 6139 |
. . 3
⊢ ran
(𝐴 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) = (ran 𝐴 ∪ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) |
| 5 | 4 | a1i 11 |
. 2
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) = (ran 𝐴 ∪ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))})) |
| 6 | | df-rex 3062 |
. . . . . 6
⊢
(∃𝑥 ∈
((𝐶 +o 𝐷) ∖ 𝐶)∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ ∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))) |
| 7 | | pm3.22 459 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐷 ∈ On ∧ 𝐶 ∈ On)) |
| 8 | 7 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐷 ∈ On ∧ 𝐶 ∈ On)) |
| 9 | | oaordi 8563 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ On ∧ 𝐶 ∈ On) → (𝑑 ∈ 𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷))) |
| 10 | 8, 9 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑 ∈ 𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷))) |
| 11 | 10 | imp 406 |
. . . . . . . 8
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷) → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)) |
| 12 | | simplrl 776 |
. . . . . . . . 9
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷) → 𝐶 ∈ On) |
| 13 | | simprr 772 |
. . . . . . . . . 10
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐷 ∈ On) |
| 14 | | onelon 6382 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ On ∧ 𝑑 ∈ 𝐷) → 𝑑 ∈ On) |
| 15 | 13, 14 | sylan 580 |
. . . . . . . . 9
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷) → 𝑑 ∈ On) |
| 16 | | oaword1 8569 |
. . . . . . . . 9
⊢ ((𝐶 ∈ On ∧ 𝑑 ∈ On) → 𝐶 ⊆ (𝐶 +o 𝑑)) |
| 17 | 12, 15, 16 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷) → 𝐶 ⊆ (𝐶 +o 𝑑)) |
| 18 | | oacl 8552 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +o 𝐷) ∈ On) |
| 19 | 18 | ad2antlr 727 |
. . . . . . . . . 10
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷) → (𝐶 +o 𝐷) ∈ On) |
| 20 | | eloni 6367 |
. . . . . . . . . 10
⊢ ((𝐶 +o 𝐷) ∈ On → Ord (𝐶 +o 𝐷)) |
| 21 | 19, 20 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷) → Ord (𝐶 +o 𝐷)) |
| 22 | | eloni 6367 |
. . . . . . . . . 10
⊢ (𝐶 ∈ On → Ord 𝐶) |
| 23 | 12, 22 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷) → Ord 𝐶) |
| 24 | | ordeldif 43249 |
. . . . . . . . 9
⊢ ((Ord
(𝐶 +o 𝐷) ∧ Ord 𝐶) → ((𝐶 +o 𝑑) ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ ((𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷) ∧ 𝐶 ⊆ (𝐶 +o 𝑑)))) |
| 25 | 21, 23, 24 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷) → ((𝐶 +o 𝑑) ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ ((𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷) ∧ 𝐶 ⊆ (𝐶 +o 𝑑)))) |
| 26 | 11, 17, 25 | mpbir2and 713 |
. . . . . . 7
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷) → (𝐶 +o 𝑑) ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) |
| 27 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 ∈ On ∧ 𝐷 ∈ On)) |
| 28 | 27 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝐶 ∈ On ∧ 𝐷 ∈ On)) |
| 29 | 18, 20 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord (𝐶 +o 𝐷)) |
| 30 | 22 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord 𝐶) |
| 31 | 29, 30 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (Ord (𝐶 +o 𝐷) ∧ Ord 𝐶)) |
| 32 | 31 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (Ord (𝐶 +o 𝐷) ∧ Ord 𝐶)) |
| 33 | | ordeldif 43249 |
. . . . . . . . . . . 12
⊢ ((Ord
(𝐶 +o 𝐷) ∧ Ord 𝐶) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶 ⊆ 𝑥))) |
| 34 | 32, 33 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶 ⊆ 𝑥))) |
| 35 | 34 | biimpa 476 |
. . . . . . . . . 10
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶 ⊆ 𝑥)) |
| 36 | 35 | ancomd 461 |
. . . . . . . . 9
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝐶 ⊆ 𝑥 ∧ 𝑥 ∈ (𝐶 +o 𝐷))) |
| 37 | | oawordex2 43317 |
. . . . . . . . 9
⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶 ⊆ 𝑥 ∧ 𝑥 ∈ (𝐶 +o 𝐷))) → ∃𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑥) |
| 38 | 28, 36, 37 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → ∃𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑥) |
| 39 | | eqcom 2743 |
. . . . . . . . 9
⊢ ((𝐶 +o 𝑑) = 𝑥 ↔ 𝑥 = (𝐶 +o 𝑑)) |
| 40 | 39 | rexbii 3084 |
. . . . . . . 8
⊢
(∃𝑑 ∈
𝐷 (𝐶 +o 𝑑) = 𝑥 ↔ ∃𝑑 ∈ 𝐷 𝑥 = (𝐶 +o 𝑑)) |
| 41 | 38, 40 | sylib 218 |
. . . . . . 7
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → ∃𝑑 ∈ 𝐷 𝑥 = (𝐶 +o 𝑑)) |
| 42 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → 𝑥 = (𝐶 +o 𝑧)) |
| 43 | | simpll3 1215 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → 𝑥 = (𝐶 +o 𝑑)) |
| 44 | 42, 43 | eqtr3d 2773 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝐶 +o 𝑧) = (𝐶 +o 𝑑)) |
| 45 | | simp1rl 1239 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) → 𝐶 ∈ On) |
| 46 | 45 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) → 𝐶 ∈ On) |
| 47 | | simp1rr 1240 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) → 𝐷 ∈ On) |
| 48 | | onelon 6382 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐷 ∈ On ∧ 𝑧 ∈ 𝐷) → 𝑧 ∈ On) |
| 49 | 47, 48 | sylan 580 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) → 𝑧 ∈ On) |
| 50 | | simp2 1137 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) → 𝑑 ∈ 𝐷) |
| 51 | 47, 50, 14 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) → 𝑑 ∈ On) |
| 52 | 51 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) → 𝑑 ∈ On) |
| 53 | 46, 49, 52 | 3jca 1128 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) → (𝐶 ∈ On ∧ 𝑧 ∈ On ∧ 𝑑 ∈ On)) |
| 54 | 53 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝐶 ∈ On ∧ 𝑧 ∈ On ∧ 𝑑 ∈ On)) |
| 55 | | oacan 8565 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 ∈ On ∧ 𝑧 ∈ On ∧ 𝑑 ∈ On) → ((𝐶 +o 𝑧) = (𝐶 +o 𝑑) ↔ 𝑧 = 𝑑)) |
| 56 | 54, 55 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → ((𝐶 +o 𝑧) = (𝐶 +o 𝑑) ↔ 𝑧 = 𝑑)) |
| 57 | 44, 56 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → 𝑧 = 𝑑) |
| 58 | | velsn 4622 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ {𝑑} ↔ 𝑧 = 𝑑) |
| 59 | 57, 58 | sylibr 234 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → 𝑧 ∈ {𝑑}) |
| 60 | 59 | ex 412 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) → (𝑥 = (𝐶 +o 𝑧) → 𝑧 ∈ {𝑑})) |
| 61 | 60 | adantrd 491 |
. . . . . . . . . . . 12
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) → ((𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) → 𝑧 ∈ {𝑑})) |
| 62 | 61 | expimpd 453 |
. . . . . . . . . . 11
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) → ((𝑧 ∈ 𝐷 ∧ (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) → 𝑧 ∈ {𝑑})) |
| 63 | | simprr 772 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝐷 ∧ (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) → 𝑦 = (𝐵‘𝑧)) |
| 64 | 62, 63 | jca2 513 |
. . . . . . . . . 10
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) → ((𝑧 ∈ 𝐷 ∧ (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) → (𝑧 ∈ {𝑑} ∧ 𝑦 = (𝐵‘𝑧)))) |
| 65 | 64 | reximdv2 3151 |
. . . . . . . . 9
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) → (∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) → ∃𝑧 ∈ {𝑑}𝑦 = (𝐵‘𝑧))) |
| 66 | | vex 3468 |
. . . . . . . . . 10
⊢ 𝑑 ∈ V |
| 67 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑑 → (𝐵‘𝑧) = (𝐵‘𝑑)) |
| 68 | 67 | eqeq2d 2747 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑑 → (𝑦 = (𝐵‘𝑧) ↔ 𝑦 = (𝐵‘𝑑))) |
| 69 | 66, 68 | rexsn 4663 |
. . . . . . . . 9
⊢
(∃𝑧 ∈
{𝑑}𝑦 = (𝐵‘𝑧) ↔ 𝑦 = (𝐵‘𝑑)) |
| 70 | 65, 69 | imbitrdi 251 |
. . . . . . . 8
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) → (∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) → 𝑦 = (𝐵‘𝑑))) |
| 71 | 50 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑦 = (𝐵‘𝑑)) → 𝑑 ∈ 𝐷) |
| 72 | | simpl3 1194 |
. . . . . . . . . 10
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑦 = (𝐵‘𝑑)) → 𝑥 = (𝐶 +o 𝑑)) |
| 73 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑦 = (𝐵‘𝑑)) → 𝑦 = (𝐵‘𝑑)) |
| 74 | | oveq2 7418 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑑 → (𝐶 +o 𝑧) = (𝐶 +o 𝑑)) |
| 75 | 74 | eqeq2d 2747 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑑 → (𝑥 = (𝐶 +o 𝑧) ↔ 𝑥 = (𝐶 +o 𝑑))) |
| 76 | 75, 68 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑑 → ((𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ (𝑥 = (𝐶 +o 𝑑) ∧ 𝑦 = (𝐵‘𝑑)))) |
| 77 | 76 | rspcev 3606 |
. . . . . . . . . 10
⊢ ((𝑑 ∈ 𝐷 ∧ (𝑥 = (𝐶 +o 𝑑) ∧ 𝑦 = (𝐵‘𝑑))) → ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) |
| 78 | 71, 72, 73, 77 | syl12anc 836 |
. . . . . . . . 9
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑦 = (𝐵‘𝑑)) → ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) |
| 79 | 78 | ex 412 |
. . . . . . . 8
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) → (𝑦 = (𝐵‘𝑑) → ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))) |
| 80 | 70, 79 | impbid 212 |
. . . . . . 7
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) → (∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ 𝑦 = (𝐵‘𝑑))) |
| 81 | 26, 41, 80 | rexxfrd2 5388 |
. . . . . 6
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (∃𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ ∃𝑑 ∈ 𝐷 𝑦 = (𝐵‘𝑑))) |
| 82 | 6, 81 | bitr3id 285 |
. . . . 5
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) ↔ ∃𝑑 ∈ 𝐷 𝑦 = (𝐵‘𝑑))) |
| 83 | 82 | abbidv 2802 |
. . . 4
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → {𝑦 ∣ ∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} = {𝑦 ∣ ∃𝑑 ∈ 𝐷 𝑦 = (𝐵‘𝑑)}) |
| 84 | | rnopab 5939 |
. . . . 5
⊢ ran
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} = {𝑦 ∣ ∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} |
| 85 | 84 | a1i 11 |
. . . 4
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} = {𝑦 ∣ ∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) |
| 86 | | fnrnfv 6943 |
. . . . 5
⊢ (𝐵 Fn 𝐷 → ran 𝐵 = {𝑦 ∣ ∃𝑑 ∈ 𝐷 𝑦 = (𝐵‘𝑑)}) |
| 87 | 86 | ad2antlr 727 |
. . . 4
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran 𝐵 = {𝑦 ∣ ∃𝑑 ∈ 𝐷 𝑦 = (𝐵‘𝑑)}) |
| 88 | 83, 85, 87 | 3eqtr4d 2781 |
. . 3
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} = ran 𝐵) |
| 89 | 88 | uneq2d 4148 |
. 2
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran 𝐴 ∪ ran {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) = (ran 𝐴 ∪ ran 𝐵)) |
| 90 | 3, 5, 89 | 3eqtrd 2775 |
1
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵)) |