Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsconcatrn Structured version   Visualization version   GIF version

Theorem tfsconcatrn 43304
Description: The range of the concatenation of two transfinite series. (Contributed by RP, 24-Feb-2025.)
Hypothesis
Ref Expression
tfsconcat.op + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
Assertion
Ref Expression
tfsconcatrn (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑥,𝑦,𝑧   𝐶,𝑎,𝑏,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦,𝑧,𝑎,𝑏)

Proof of Theorem tfsconcatrn
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 tfsconcat.op . . . 4 + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
21tfsconcatun 43299 . . 3 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) = (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}))
32rneqd 5963 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 + 𝐵) = ran (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}))
4 rnun 6177 . . 3 ran (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}) = (ran 𝐴 ∪ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))})
54a1i 11 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}) = (ran 𝐴 ∪ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}))
6 df-rex 3077 . . . . . 6 (∃𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ ∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))))
7 pm3.22 459 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐷 ∈ On ∧ 𝐶 ∈ On))
87adantl 481 . . . . . . . . . 10 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐷 ∈ On ∧ 𝐶 ∈ On))
9 oaordi 8602 . . . . . . . . . 10 ((𝐷 ∈ On ∧ 𝐶 ∈ On) → (𝑑𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)))
108, 9syl 17 . . . . . . . . 9 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)))
1110imp 406 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷))
12 simplrl 776 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → 𝐶 ∈ On)
13 simprr 772 . . . . . . . . . 10 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐷 ∈ On)
14 onelon 6420 . . . . . . . . . 10 ((𝐷 ∈ On ∧ 𝑑𝐷) → 𝑑 ∈ On)
1513, 14sylan 579 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → 𝑑 ∈ On)
16 oaword1 8608 . . . . . . . . 9 ((𝐶 ∈ On ∧ 𝑑 ∈ On) → 𝐶 ⊆ (𝐶 +o 𝑑))
1712, 15, 16syl2anc 583 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → 𝐶 ⊆ (𝐶 +o 𝑑))
18 oacl 8591 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +o 𝐷) ∈ On)
1918ad2antlr 726 . . . . . . . . . 10 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → (𝐶 +o 𝐷) ∈ On)
20 eloni 6405 . . . . . . . . . 10 ((𝐶 +o 𝐷) ∈ On → Ord (𝐶 +o 𝐷))
2119, 20syl 17 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → Ord (𝐶 +o 𝐷))
22 eloni 6405 . . . . . . . . . 10 (𝐶 ∈ On → Ord 𝐶)
2312, 22syl 17 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → Ord 𝐶)
24 ordeldif 43220 . . . . . . . . 9 ((Ord (𝐶 +o 𝐷) ∧ Ord 𝐶) → ((𝐶 +o 𝑑) ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ ((𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷) ∧ 𝐶 ⊆ (𝐶 +o 𝑑))))
2521, 23, 24syl2anc 583 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → ((𝐶 +o 𝑑) ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ ((𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷) ∧ 𝐶 ⊆ (𝐶 +o 𝑑))))
2611, 17, 25mpbir2and 712 . . . . . . 7 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → (𝐶 +o 𝑑) ∈ ((𝐶 +o 𝐷) ∖ 𝐶))
27 simpr 484 . . . . . . . . . 10 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 ∈ On ∧ 𝐷 ∈ On))
2827adantr 480 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝐶 ∈ On ∧ 𝐷 ∈ On))
2918, 20syl 17 . . . . . . . . . . . . . 14 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord (𝐶 +o 𝐷))
3022adantr 480 . . . . . . . . . . . . . 14 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord 𝐶)
3129, 30jca 511 . . . . . . . . . . . . 13 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (Ord (𝐶 +o 𝐷) ∧ Ord 𝐶))
3231adantl 481 . . . . . . . . . . . 12 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (Ord (𝐶 +o 𝐷) ∧ Ord 𝐶))
33 ordeldif 43220 . . . . . . . . . . . 12 ((Ord (𝐶 +o 𝐷) ∧ Ord 𝐶) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥)))
3432, 33syl 17 . . . . . . . . . . 11 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥)))
3534biimpa 476 . . . . . . . . . 10 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥))
3635ancomd 461 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝐶𝑥𝑥 ∈ (𝐶 +o 𝐷)))
37 oawordex2 43288 . . . . . . . . 9 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶𝑥𝑥 ∈ (𝐶 +o 𝐷))) → ∃𝑑𝐷 (𝐶 +o 𝑑) = 𝑥)
3828, 36, 37syl2anc 583 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → ∃𝑑𝐷 (𝐶 +o 𝑑) = 𝑥)
39 eqcom 2747 . . . . . . . . 9 ((𝐶 +o 𝑑) = 𝑥𝑥 = (𝐶 +o 𝑑))
4039rexbii 3100 . . . . . . . 8 (∃𝑑𝐷 (𝐶 +o 𝑑) = 𝑥 ↔ ∃𝑑𝐷 𝑥 = (𝐶 +o 𝑑))
4138, 40sylib 218 . . . . . . 7 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → ∃𝑑𝐷 𝑥 = (𝐶 +o 𝑑))
42 simpr 484 . . . . . . . . . . . . . . . . 17 ((((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → 𝑥 = (𝐶 +o 𝑧))
43 simpll3 1214 . . . . . . . . . . . . . . . . 17 ((((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → 𝑥 = (𝐶 +o 𝑑))
4442, 43eqtr3d 2782 . . . . . . . . . . . . . . . 16 ((((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝐶 +o 𝑧) = (𝐶 +o 𝑑))
45 simp1rl 1238 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → 𝐶 ∈ On)
4645adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) → 𝐶 ∈ On)
47 simp1rr 1239 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → 𝐷 ∈ On)
48 onelon 6420 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ On ∧ 𝑧𝐷) → 𝑧 ∈ On)
4947, 48sylan 579 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) → 𝑧 ∈ On)
50 simp2 1137 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → 𝑑𝐷)
5147, 50, 14syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → 𝑑 ∈ On)
5251adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) → 𝑑 ∈ On)
5346, 49, 523jca 1128 . . . . . . . . . . . . . . . . . 18 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) → (𝐶 ∈ On ∧ 𝑧 ∈ On ∧ 𝑑 ∈ On))
5453adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝐶 ∈ On ∧ 𝑧 ∈ On ∧ 𝑑 ∈ On))
55 oacan 8604 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ On ∧ 𝑧 ∈ On ∧ 𝑑 ∈ On) → ((𝐶 +o 𝑧) = (𝐶 +o 𝑑) ↔ 𝑧 = 𝑑))
5654, 55syl 17 . . . . . . . . . . . . . . . 16 ((((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → ((𝐶 +o 𝑧) = (𝐶 +o 𝑑) ↔ 𝑧 = 𝑑))
5744, 56mpbid 232 . . . . . . . . . . . . . . 15 ((((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → 𝑧 = 𝑑)
58 velsn 4664 . . . . . . . . . . . . . . 15 (𝑧 ∈ {𝑑} ↔ 𝑧 = 𝑑)
5957, 58sylibr 234 . . . . . . . . . . . . . 14 ((((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → 𝑧 ∈ {𝑑})
6059ex 412 . . . . . . . . . . . . 13 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) → (𝑥 = (𝐶 +o 𝑧) → 𝑧 ∈ {𝑑}))
6160adantrd 491 . . . . . . . . . . . 12 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) → ((𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) → 𝑧 ∈ {𝑑}))
6261expimpd 453 . . . . . . . . . . 11 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → ((𝑧𝐷 ∧ (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) → 𝑧 ∈ {𝑑}))
63 simprr 772 . . . . . . . . . . 11 ((𝑧𝐷 ∧ (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) → 𝑦 = (𝐵𝑧))
6462, 63jca2 513 . . . . . . . . . 10 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → ((𝑧𝐷 ∧ (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) → (𝑧 ∈ {𝑑} ∧ 𝑦 = (𝐵𝑧))))
6564reximdv2 3170 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) → ∃𝑧 ∈ {𝑑}𝑦 = (𝐵𝑧)))
66 vex 3492 . . . . . . . . . 10 𝑑 ∈ V
67 fveq2 6920 . . . . . . . . . . 11 (𝑧 = 𝑑 → (𝐵𝑧) = (𝐵𝑑))
6867eqeq2d 2751 . . . . . . . . . 10 (𝑧 = 𝑑 → (𝑦 = (𝐵𝑧) ↔ 𝑦 = (𝐵𝑑)))
6966, 68rexsn 4706 . . . . . . . . 9 (∃𝑧 ∈ {𝑑}𝑦 = (𝐵𝑧) ↔ 𝑦 = (𝐵𝑑))
7065, 69imbitrdi 251 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) → 𝑦 = (𝐵𝑑)))
7150adantr 480 . . . . . . . . . 10 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑦 = (𝐵𝑑)) → 𝑑𝐷)
72 simpl3 1193 . . . . . . . . . 10 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑦 = (𝐵𝑑)) → 𝑥 = (𝐶 +o 𝑑))
73 simpr 484 . . . . . . . . . 10 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑦 = (𝐵𝑑)) → 𝑦 = (𝐵𝑑))
74 oveq2 7456 . . . . . . . . . . . . 13 (𝑧 = 𝑑 → (𝐶 +o 𝑧) = (𝐶 +o 𝑑))
7574eqeq2d 2751 . . . . . . . . . . . 12 (𝑧 = 𝑑 → (𝑥 = (𝐶 +o 𝑧) ↔ 𝑥 = (𝐶 +o 𝑑)))
7675, 68anbi12d 631 . . . . . . . . . . 11 (𝑧 = 𝑑 → ((𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ (𝑥 = (𝐶 +o 𝑑) ∧ 𝑦 = (𝐵𝑑))))
7776rspcev 3635 . . . . . . . . . 10 ((𝑑𝐷 ∧ (𝑥 = (𝐶 +o 𝑑) ∧ 𝑦 = (𝐵𝑑))) → ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))
7871, 72, 73, 77syl12anc 836 . . . . . . . . 9 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑦 = (𝐵𝑑)) → ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))
7978ex 412 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → (𝑦 = (𝐵𝑑) → ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))))
8070, 79impbid 212 . . . . . . 7 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ 𝑦 = (𝐵𝑑)))
8126, 41, 80rexxfrd2 5431 . . . . . 6 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (∃𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ ∃𝑑𝐷 𝑦 = (𝐵𝑑)))
826, 81bitr3id 285 . . . . 5 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) ↔ ∃𝑑𝐷 𝑦 = (𝐵𝑑)))
8382abbidv 2811 . . . 4 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → {𝑦 ∣ ∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} = {𝑦 ∣ ∃𝑑𝐷 𝑦 = (𝐵𝑑)})
84 rnopab 5979 . . . . 5 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} = {𝑦 ∣ ∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}
8584a1i 11 . . . 4 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} = {𝑦 ∣ ∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))})
86 fnrnfv 6981 . . . . 5 (𝐵 Fn 𝐷 → ran 𝐵 = {𝑦 ∣ ∃𝑑𝐷 𝑦 = (𝐵𝑑)})
8786ad2antlr 726 . . . 4 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran 𝐵 = {𝑦 ∣ ∃𝑑𝐷 𝑦 = (𝐵𝑑)})
8883, 85, 873eqtr4d 2790 . . 3 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} = ran 𝐵)
8988uneq2d 4191 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran 𝐴 ∪ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}) = (ran 𝐴 ∪ ran 𝐵))
903, 5, 893eqtrd 2784 1 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wrex 3076  Vcvv 3488  cdif 3973  cun 3974  wss 3976  {csn 4648  {copab 5228  dom cdm 5700  ran crn 5701  Ord word 6394  Oncon0 6395   Fn wfn 6568  cfv 6573  (class class class)co 7448  cmpo 7450   +o coa 8519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-oadd 8526
This theorem is referenced by:  tfsconcatfo  43305  tfsconcat00  43309  tfsconcatrnss12  43311  tfsconcatrnss  43312
  Copyright terms: Public domain W3C validator