Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsconcatrn Structured version   Visualization version   GIF version

Theorem tfsconcatrn 43332
Description: The range of the concatenation of two transfinite series. (Contributed by RP, 24-Feb-2025.)
Hypothesis
Ref Expression
tfsconcat.op + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
Assertion
Ref Expression
tfsconcatrn (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑥,𝑦,𝑧   𝐶,𝑎,𝑏,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦,𝑧,𝑎,𝑏)

Proof of Theorem tfsconcatrn
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 tfsconcat.op . . . 4 + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
21tfsconcatun 43327 . . 3 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) = (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}))
32rneqd 5952 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 + 𝐵) = ran (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}))
4 rnun 6168 . . 3 ran (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}) = (ran 𝐴 ∪ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))})
54a1i 11 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}) = (ran 𝐴 ∪ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}))
6 df-rex 3069 . . . . . 6 (∃𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ ∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))))
7 pm3.22 459 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐷 ∈ On ∧ 𝐶 ∈ On))
87adantl 481 . . . . . . . . . 10 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐷 ∈ On ∧ 𝐶 ∈ On))
9 oaordi 8583 . . . . . . . . . 10 ((𝐷 ∈ On ∧ 𝐶 ∈ On) → (𝑑𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)))
108, 9syl 17 . . . . . . . . 9 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)))
1110imp 406 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷))
12 simplrl 777 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → 𝐶 ∈ On)
13 simprr 773 . . . . . . . . . 10 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐷 ∈ On)
14 onelon 6411 . . . . . . . . . 10 ((𝐷 ∈ On ∧ 𝑑𝐷) → 𝑑 ∈ On)
1513, 14sylan 580 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → 𝑑 ∈ On)
16 oaword1 8589 . . . . . . . . 9 ((𝐶 ∈ On ∧ 𝑑 ∈ On) → 𝐶 ⊆ (𝐶 +o 𝑑))
1712, 15, 16syl2anc 584 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → 𝐶 ⊆ (𝐶 +o 𝑑))
18 oacl 8572 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +o 𝐷) ∈ On)
1918ad2antlr 727 . . . . . . . . . 10 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → (𝐶 +o 𝐷) ∈ On)
20 eloni 6396 . . . . . . . . . 10 ((𝐶 +o 𝐷) ∈ On → Ord (𝐶 +o 𝐷))
2119, 20syl 17 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → Ord (𝐶 +o 𝐷))
22 eloni 6396 . . . . . . . . . 10 (𝐶 ∈ On → Ord 𝐶)
2312, 22syl 17 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → Ord 𝐶)
24 ordeldif 43248 . . . . . . . . 9 ((Ord (𝐶 +o 𝐷) ∧ Ord 𝐶) → ((𝐶 +o 𝑑) ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ ((𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷) ∧ 𝐶 ⊆ (𝐶 +o 𝑑))))
2521, 23, 24syl2anc 584 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → ((𝐶 +o 𝑑) ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ ((𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷) ∧ 𝐶 ⊆ (𝐶 +o 𝑑))))
2611, 17, 25mpbir2and 713 . . . . . . 7 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷) → (𝐶 +o 𝑑) ∈ ((𝐶 +o 𝐷) ∖ 𝐶))
27 simpr 484 . . . . . . . . . 10 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 ∈ On ∧ 𝐷 ∈ On))
2827adantr 480 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝐶 ∈ On ∧ 𝐷 ∈ On))
2918, 20syl 17 . . . . . . . . . . . . . 14 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord (𝐶 +o 𝐷))
3022adantr 480 . . . . . . . . . . . . . 14 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord 𝐶)
3129, 30jca 511 . . . . . . . . . . . . 13 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (Ord (𝐶 +o 𝐷) ∧ Ord 𝐶))
3231adantl 481 . . . . . . . . . . . 12 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (Ord (𝐶 +o 𝐷) ∧ Ord 𝐶))
33 ordeldif 43248 . . . . . . . . . . . 12 ((Ord (𝐶 +o 𝐷) ∧ Ord 𝐶) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥)))
3432, 33syl 17 . . . . . . . . . . 11 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥)))
3534biimpa 476 . . . . . . . . . 10 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝑥))
3635ancomd 461 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝐶𝑥𝑥 ∈ (𝐶 +o 𝐷)))
37 oawordex2 43316 . . . . . . . . 9 (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶𝑥𝑥 ∈ (𝐶 +o 𝐷))) → ∃𝑑𝐷 (𝐶 +o 𝑑) = 𝑥)
3828, 36, 37syl2anc 584 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → ∃𝑑𝐷 (𝐶 +o 𝑑) = 𝑥)
39 eqcom 2742 . . . . . . . . 9 ((𝐶 +o 𝑑) = 𝑥𝑥 = (𝐶 +o 𝑑))
4039rexbii 3092 . . . . . . . 8 (∃𝑑𝐷 (𝐶 +o 𝑑) = 𝑥 ↔ ∃𝑑𝐷 𝑥 = (𝐶 +o 𝑑))
4138, 40sylib 218 . . . . . . 7 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → ∃𝑑𝐷 𝑥 = (𝐶 +o 𝑑))
42 simpr 484 . . . . . . . . . . . . . . . . 17 ((((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → 𝑥 = (𝐶 +o 𝑧))
43 simpll3 1213 . . . . . . . . . . . . . . . . 17 ((((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → 𝑥 = (𝐶 +o 𝑑))
4442, 43eqtr3d 2777 . . . . . . . . . . . . . . . 16 ((((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝐶 +o 𝑧) = (𝐶 +o 𝑑))
45 simp1rl 1237 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → 𝐶 ∈ On)
4645adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) → 𝐶 ∈ On)
47 simp1rr 1238 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → 𝐷 ∈ On)
48 onelon 6411 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ On ∧ 𝑧𝐷) → 𝑧 ∈ On)
4947, 48sylan 580 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) → 𝑧 ∈ On)
50 simp2 1136 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → 𝑑𝐷)
5147, 50, 14syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → 𝑑 ∈ On)
5251adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) → 𝑑 ∈ On)
5346, 49, 523jca 1127 . . . . . . . . . . . . . . . . . 18 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) → (𝐶 ∈ On ∧ 𝑧 ∈ On ∧ 𝑑 ∈ On))
5453adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝐶 ∈ On ∧ 𝑧 ∈ On ∧ 𝑑 ∈ On))
55 oacan 8585 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ On ∧ 𝑧 ∈ On ∧ 𝑑 ∈ On) → ((𝐶 +o 𝑧) = (𝐶 +o 𝑑) ↔ 𝑧 = 𝑑))
5654, 55syl 17 . . . . . . . . . . . . . . . 16 ((((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → ((𝐶 +o 𝑧) = (𝐶 +o 𝑑) ↔ 𝑧 = 𝑑))
5744, 56mpbid 232 . . . . . . . . . . . . . . 15 ((((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → 𝑧 = 𝑑)
58 velsn 4647 . . . . . . . . . . . . . . 15 (𝑧 ∈ {𝑑} ↔ 𝑧 = 𝑑)
5957, 58sylibr 234 . . . . . . . . . . . . . 14 ((((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → 𝑧 ∈ {𝑑})
6059ex 412 . . . . . . . . . . . . 13 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) → (𝑥 = (𝐶 +o 𝑧) → 𝑧 ∈ {𝑑}))
6160adantrd 491 . . . . . . . . . . . 12 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧𝐷) → ((𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) → 𝑧 ∈ {𝑑}))
6261expimpd 453 . . . . . . . . . . 11 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → ((𝑧𝐷 ∧ (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) → 𝑧 ∈ {𝑑}))
63 simprr 773 . . . . . . . . . . 11 ((𝑧𝐷 ∧ (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) → 𝑦 = (𝐵𝑧))
6462, 63jca2 513 . . . . . . . . . 10 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → ((𝑧𝐷 ∧ (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) → (𝑧 ∈ {𝑑} ∧ 𝑦 = (𝐵𝑧))))
6564reximdv2 3162 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) → ∃𝑧 ∈ {𝑑}𝑦 = (𝐵𝑧)))
66 vex 3482 . . . . . . . . . 10 𝑑 ∈ V
67 fveq2 6907 . . . . . . . . . . 11 (𝑧 = 𝑑 → (𝐵𝑧) = (𝐵𝑑))
6867eqeq2d 2746 . . . . . . . . . 10 (𝑧 = 𝑑 → (𝑦 = (𝐵𝑧) ↔ 𝑦 = (𝐵𝑑)))
6966, 68rexsn 4687 . . . . . . . . 9 (∃𝑧 ∈ {𝑑}𝑦 = (𝐵𝑧) ↔ 𝑦 = (𝐵𝑑))
7065, 69imbitrdi 251 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) → 𝑦 = (𝐵𝑑)))
7150adantr 480 . . . . . . . . . 10 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑦 = (𝐵𝑑)) → 𝑑𝐷)
72 simpl3 1192 . . . . . . . . . 10 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑦 = (𝐵𝑑)) → 𝑥 = (𝐶 +o 𝑑))
73 simpr 484 . . . . . . . . . 10 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑦 = (𝐵𝑑)) → 𝑦 = (𝐵𝑑))
74 oveq2 7439 . . . . . . . . . . . . 13 (𝑧 = 𝑑 → (𝐶 +o 𝑧) = (𝐶 +o 𝑑))
7574eqeq2d 2746 . . . . . . . . . . . 12 (𝑧 = 𝑑 → (𝑥 = (𝐶 +o 𝑧) ↔ 𝑥 = (𝐶 +o 𝑑)))
7675, 68anbi12d 632 . . . . . . . . . . 11 (𝑧 = 𝑑 → ((𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ (𝑥 = (𝐶 +o 𝑑) ∧ 𝑦 = (𝐵𝑑))))
7776rspcev 3622 . . . . . . . . . 10 ((𝑑𝐷 ∧ (𝑥 = (𝐶 +o 𝑑) ∧ 𝑦 = (𝐵𝑑))) → ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))
7871, 72, 73, 77syl12anc 837 . . . . . . . . 9 (((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) ∧ 𝑦 = (𝐵𝑑)) → ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))
7978ex 412 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → (𝑦 = (𝐵𝑑) → ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))))
8070, 79impbid 212 . . . . . . 7 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑𝐷𝑥 = (𝐶 +o 𝑑)) → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ 𝑦 = (𝐵𝑑)))
8126, 41, 80rexxfrd2 5419 . . . . . 6 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (∃𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ ∃𝑑𝐷 𝑦 = (𝐵𝑑)))
826, 81bitr3id 285 . . . . 5 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) ↔ ∃𝑑𝐷 𝑦 = (𝐵𝑑)))
8382abbidv 2806 . . . 4 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → {𝑦 ∣ ∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} = {𝑦 ∣ ∃𝑑𝐷 𝑦 = (𝐵𝑑)})
84 rnopab 5968 . . . . 5 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} = {𝑦 ∣ ∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}
8584a1i 11 . . . 4 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} = {𝑦 ∣ ∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))})
86 fnrnfv 6968 . . . . 5 (𝐵 Fn 𝐷 → ran 𝐵 = {𝑦 ∣ ∃𝑑𝐷 𝑦 = (𝐵𝑑)})
8786ad2antlr 727 . . . 4 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran 𝐵 = {𝑦 ∣ ∃𝑑𝐷 𝑦 = (𝐵𝑑)})
8883, 85, 873eqtr4d 2785 . . 3 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} = ran 𝐵)
8988uneq2d 4178 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran 𝐴 ∪ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}) = (ran 𝐴 ∪ ran 𝐵))
903, 5, 893eqtrd 2779 1 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  {cab 2712  wrex 3068  Vcvv 3478  cdif 3960  cun 3961  wss 3963  {csn 4631  {copab 5210  dom cdm 5689  ran crn 5690  Ord word 6385  Oncon0 6386   Fn wfn 6558  cfv 6563  (class class class)co 7431  cmpo 7433   +o coa 8502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-oadd 8509
This theorem is referenced by:  tfsconcatfo  43333  tfsconcat00  43337  tfsconcatrnss12  43339  tfsconcatrnss  43340
  Copyright terms: Public domain W3C validator