Step | Hyp | Ref
| Expression |
1 | | tfsconcat.op |
. . . 4
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) |
2 | 1 | tfsconcatun 42390 |
. . 3
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) = (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))})) |
3 | 2 | rneqd 5937 |
. 2
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 + 𝐵) = ran (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))})) |
4 | | rnun 6145 |
. . 3
⊢ ran
(𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) = (ran 𝐴 ∪ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) |
5 | 4 | a1i 11 |
. 2
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) = (ran 𝐴 ∪ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))})) |
6 | | df-rex 3070 |
. . . . . 6
⊢
(∃𝑥 ∈
((𝐶 +o 𝐷) ∖ 𝐶)∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ ∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))) |
7 | | pm3.22 459 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐷 ∈ On ∧ 𝐶 ∈ On)) |
8 | 7 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐷 ∈ On ∧ 𝐶 ∈ On)) |
9 | | oaordi 8550 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ On ∧ 𝐶 ∈ On) → (𝑑 ∈ 𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷))) |
10 | 8, 9 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑑 ∈ 𝐷 → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷))) |
11 | 10 | imp 406 |
. . . . . . . 8
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷) → (𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷)) |
12 | | simplrl 774 |
. . . . . . . . 9
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷) → 𝐶 ∈ On) |
13 | | simprr 770 |
. . . . . . . . . 10
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐷 ∈ On) |
14 | | onelon 6389 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ On ∧ 𝑑 ∈ 𝐷) → 𝑑 ∈ On) |
15 | 13, 14 | sylan 579 |
. . . . . . . . 9
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷) → 𝑑 ∈ On) |
16 | | oaword1 8556 |
. . . . . . . . 9
⊢ ((𝐶 ∈ On ∧ 𝑑 ∈ On) → 𝐶 ⊆ (𝐶 +o 𝑑)) |
17 | 12, 15, 16 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷) → 𝐶 ⊆ (𝐶 +o 𝑑)) |
18 | | oacl 8539 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +o 𝐷) ∈ On) |
19 | 18 | ad2antlr 724 |
. . . . . . . . . 10
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷) → (𝐶 +o 𝐷) ∈ On) |
20 | | eloni 6374 |
. . . . . . . . . 10
⊢ ((𝐶 +o 𝐷) ∈ On → Ord (𝐶 +o 𝐷)) |
21 | 19, 20 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷) → Ord (𝐶 +o 𝐷)) |
22 | | eloni 6374 |
. . . . . . . . . 10
⊢ (𝐶 ∈ On → Ord 𝐶) |
23 | 12, 22 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷) → Ord 𝐶) |
24 | | ordeldif 42311 |
. . . . . . . . 9
⊢ ((Ord
(𝐶 +o 𝐷) ∧ Ord 𝐶) → ((𝐶 +o 𝑑) ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ ((𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷) ∧ 𝐶 ⊆ (𝐶 +o 𝑑)))) |
25 | 21, 23, 24 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷) → ((𝐶 +o 𝑑) ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ ((𝐶 +o 𝑑) ∈ (𝐶 +o 𝐷) ∧ 𝐶 ⊆ (𝐶 +o 𝑑)))) |
26 | 11, 17, 25 | mpbir2and 710 |
. . . . . . 7
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷) → (𝐶 +o 𝑑) ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) |
27 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐶 ∈ On ∧ 𝐷 ∈ On)) |
28 | 27 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝐶 ∈ On ∧ 𝐷 ∈ On)) |
29 | 18, 20 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord (𝐶 +o 𝐷)) |
30 | 22 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord 𝐶) |
31 | 29, 30 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (Ord (𝐶 +o 𝐷) ∧ Ord 𝐶)) |
32 | 31 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (Ord (𝐶 +o 𝐷) ∧ Ord 𝐶)) |
33 | | ordeldif 42311 |
. . . . . . . . . . . 12
⊢ ((Ord
(𝐶 +o 𝐷) ∧ Ord 𝐶) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶 ⊆ 𝑥))) |
34 | 32, 33 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶 ⊆ 𝑥))) |
35 | 34 | biimpa 476 |
. . . . . . . . . 10
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝑥 ∈ (𝐶 +o 𝐷) ∧ 𝐶 ⊆ 𝑥)) |
36 | 35 | ancomd 461 |
. . . . . . . . 9
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → (𝐶 ⊆ 𝑥 ∧ 𝑥 ∈ (𝐶 +o 𝐷))) |
37 | | oawordex2 42379 |
. . . . . . . . 9
⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ On) ∧ (𝐶 ⊆ 𝑥 ∧ 𝑥 ∈ (𝐶 +o 𝐷))) → ∃𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑥) |
38 | 28, 36, 37 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → ∃𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑥) |
39 | | eqcom 2738 |
. . . . . . . . 9
⊢ ((𝐶 +o 𝑑) = 𝑥 ↔ 𝑥 = (𝐶 +o 𝑑)) |
40 | 39 | rexbii 3093 |
. . . . . . . 8
⊢
(∃𝑑 ∈
𝐷 (𝐶 +o 𝑑) = 𝑥 ↔ ∃𝑑 ∈ 𝐷 𝑥 = (𝐶 +o 𝑑)) |
41 | 38, 40 | sylib 217 |
. . . . . . 7
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) → ∃𝑑 ∈ 𝐷 𝑥 = (𝐶 +o 𝑑)) |
42 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → 𝑥 = (𝐶 +o 𝑧)) |
43 | | simpll3 1213 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → 𝑥 = (𝐶 +o 𝑑)) |
44 | 42, 43 | eqtr3d 2773 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝐶 +o 𝑧) = (𝐶 +o 𝑑)) |
45 | | simp1rl 1237 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) → 𝐶 ∈ On) |
46 | 45 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) → 𝐶 ∈ On) |
47 | | simp1rr 1238 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) → 𝐷 ∈ On) |
48 | | onelon 6389 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐷 ∈ On ∧ 𝑧 ∈ 𝐷) → 𝑧 ∈ On) |
49 | 47, 48 | sylan 579 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) → 𝑧 ∈ On) |
50 | | simp2 1136 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) → 𝑑 ∈ 𝐷) |
51 | 47, 50, 14 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) → 𝑑 ∈ On) |
52 | 51 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) → 𝑑 ∈ On) |
53 | 46, 49, 52 | 3jca 1127 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) → (𝐶 ∈ On ∧ 𝑧 ∈ On ∧ 𝑑 ∈ On)) |
54 | 53 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → (𝐶 ∈ On ∧ 𝑧 ∈ On ∧ 𝑑 ∈ On)) |
55 | | oacan 8552 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 ∈ On ∧ 𝑧 ∈ On ∧ 𝑑 ∈ On) → ((𝐶 +o 𝑧) = (𝐶 +o 𝑑) ↔ 𝑧 = 𝑑)) |
56 | 54, 55 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → ((𝐶 +o 𝑧) = (𝐶 +o 𝑑) ↔ 𝑧 = 𝑑)) |
57 | 44, 56 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → 𝑧 = 𝑑) |
58 | | velsn 4644 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ {𝑑} ↔ 𝑧 = 𝑑) |
59 | 57, 58 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢
((((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) ∧ 𝑥 = (𝐶 +o 𝑧)) → 𝑧 ∈ {𝑑}) |
60 | 59 | ex 412 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) → (𝑥 = (𝐶 +o 𝑧) → 𝑧 ∈ {𝑑})) |
61 | 60 | adantrd 491 |
. . . . . . . . . . . 12
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑧 ∈ 𝐷) → ((𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) → 𝑧 ∈ {𝑑})) |
62 | 61 | expimpd 453 |
. . . . . . . . . . 11
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) → ((𝑧 ∈ 𝐷 ∧ (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) → 𝑧 ∈ {𝑑})) |
63 | | simprr 770 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝐷 ∧ (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) → 𝑦 = (𝐵‘𝑧)) |
64 | 62, 63 | jca2 513 |
. . . . . . . . . 10
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) → ((𝑧 ∈ 𝐷 ∧ (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) → (𝑧 ∈ {𝑑} ∧ 𝑦 = (𝐵‘𝑧)))) |
65 | 64 | reximdv2 3163 |
. . . . . . . . 9
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) → (∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) → ∃𝑧 ∈ {𝑑}𝑦 = (𝐵‘𝑧))) |
66 | | vex 3477 |
. . . . . . . . . 10
⊢ 𝑑 ∈ V |
67 | | fveq2 6891 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑑 → (𝐵‘𝑧) = (𝐵‘𝑑)) |
68 | 67 | eqeq2d 2742 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑑 → (𝑦 = (𝐵‘𝑧) ↔ 𝑦 = (𝐵‘𝑑))) |
69 | 66, 68 | rexsn 4686 |
. . . . . . . . 9
⊢
(∃𝑧 ∈
{𝑑}𝑦 = (𝐵‘𝑧) ↔ 𝑦 = (𝐵‘𝑑)) |
70 | 65, 69 | imbitrdi 250 |
. . . . . . . 8
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) → (∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) → 𝑦 = (𝐵‘𝑑))) |
71 | 50 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑦 = (𝐵‘𝑑)) → 𝑑 ∈ 𝐷) |
72 | | simpl3 1192 |
. . . . . . . . . 10
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑦 = (𝐵‘𝑑)) → 𝑥 = (𝐶 +o 𝑑)) |
73 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑦 = (𝐵‘𝑑)) → 𝑦 = (𝐵‘𝑑)) |
74 | | oveq2 7420 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑑 → (𝐶 +o 𝑧) = (𝐶 +o 𝑑)) |
75 | 74 | eqeq2d 2742 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑑 → (𝑥 = (𝐶 +o 𝑧) ↔ 𝑥 = (𝐶 +o 𝑑))) |
76 | 75, 68 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑑 → ((𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ (𝑥 = (𝐶 +o 𝑑) ∧ 𝑦 = (𝐵‘𝑑)))) |
77 | 76 | rspcev 3612 |
. . . . . . . . . 10
⊢ ((𝑑 ∈ 𝐷 ∧ (𝑥 = (𝐶 +o 𝑑) ∧ 𝑦 = (𝐵‘𝑑))) → ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) |
78 | 71, 72, 73, 77 | syl12anc 834 |
. . . . . . . . 9
⊢
(((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) ∧ 𝑦 = (𝐵‘𝑑)) → ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) |
79 | 78 | ex 412 |
. . . . . . . 8
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) → (𝑦 = (𝐵‘𝑑) → ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))) |
80 | 70, 79 | impbid 211 |
. . . . . . 7
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = (𝐶 +o 𝑑)) → (∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ 𝑦 = (𝐵‘𝑑))) |
81 | 26, 41, 80 | rexxfrd2 5411 |
. . . . . 6
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (∃𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ ∃𝑑 ∈ 𝐷 𝑦 = (𝐵‘𝑑))) |
82 | 6, 81 | bitr3id 285 |
. . . . 5
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) ↔ ∃𝑑 ∈ 𝐷 𝑦 = (𝐵‘𝑑))) |
83 | 82 | abbidv 2800 |
. . . 4
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → {𝑦 ∣ ∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} = {𝑦 ∣ ∃𝑑 ∈ 𝐷 𝑦 = (𝐵‘𝑑)}) |
84 | | rnopab 5953 |
. . . . 5
⊢ ran
{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} = {𝑦 ∣ ∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} |
85 | 84 | a1i 11 |
. . . 4
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} = {𝑦 ∣ ∃𝑥(𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) |
86 | | fnrnfv 6951 |
. . . . 5
⊢ (𝐵 Fn 𝐷 → ran 𝐵 = {𝑦 ∣ ∃𝑑 ∈ 𝐷 𝑦 = (𝐵‘𝑑)}) |
87 | 86 | ad2antlr 724 |
. . . 4
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran 𝐵 = {𝑦 ∣ ∃𝑑 ∈ 𝐷 𝑦 = (𝐵‘𝑑)}) |
88 | 83, 85, 87 | 3eqtr4d 2781 |
. . 3
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} = ran 𝐵) |
89 | 88 | uneq2d 4163 |
. 2
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran 𝐴 ∪ ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) = (ran 𝐴 ∪ ran 𝐵)) |
90 | 3, 5, 89 | 3eqtrd 2775 |
1
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵)) |