Step | Hyp | Ref
| Expression |
1 | | ghmqusker.1 |
. . 3
β’ 0 =
(0gβπ») |
2 | | ghmqusker.f |
. . 3
β’ (π β πΉ β (πΊ GrpHom π»)) |
3 | | ghmqusker.k |
. . 3
β’ πΎ = (β‘πΉ β { 0 }) |
4 | | ghmqusker.q |
. . 3
β’ π = (πΊ /s (πΊ ~QG πΎ)) |
5 | | ghmqusker.j |
. . 3
β’ π½ = (π β (Baseβπ) β¦ βͺ
(πΉ β π)) |
6 | 1, 2, 3, 4, 5 | ghmquskerlem3 32519 |
. 2
β’ (π β π½ β (π GrpHom π»)) |
7 | | ghmgrp1 19088 |
. . . . . . . . . . . . . . . 16
β’ (πΉ β (πΊ GrpHom π») β πΊ β Grp) |
8 | 2, 7 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β πΊ β Grp) |
9 | 8 | ad4antr 730 |
. . . . . . . . . . . . . 14
β’
(((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β§ (π½βπ) = 0 ) β πΊ β Grp) |
10 | 1 | ghmker 19112 |
. . . . . . . . . . . . . . . . . 18
β’ (πΉ β (πΊ GrpHom π») β (β‘πΉ β { 0 }) β
(NrmSGrpβπΊ)) |
11 | 2, 10 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’ (π β (β‘πΉ β { 0 }) β
(NrmSGrpβπΊ)) |
12 | 3, 11 | eqeltrid 2837 |
. . . . . . . . . . . . . . . 16
β’ (π β πΎ β (NrmSGrpβπΊ)) |
13 | | nsgsubg 19032 |
. . . . . . . . . . . . . . . 16
β’ (πΎ β (NrmSGrpβπΊ) β πΎ β (SubGrpβπΊ)) |
14 | 12, 13 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β πΎ β (SubGrpβπΊ)) |
15 | 14 | ad4antr 730 |
. . . . . . . . . . . . . 14
β’
(((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β§ (π½βπ) = 0 ) β πΎ β (SubGrpβπΊ)) |
16 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(BaseβπΊ) =
(BaseβπΊ) |
17 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . 21
β’
(Baseβπ») =
(Baseβπ») |
18 | 16, 17 | ghmf 19090 |
. . . . . . . . . . . . . . . . . . . 20
β’ (πΉ β (πΊ GrpHom π») β πΉ:(BaseβπΊ)βΆ(Baseβπ»)) |
19 | 2, 18 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β πΉ:(BaseβπΊ)βΆ(Baseβπ»)) |
20 | 19 | ffnd 6715 |
. . . . . . . . . . . . . . . . . 18
β’ (π β πΉ Fn (BaseβπΊ)) |
21 | 20 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β πΉ Fn (BaseβπΊ)) |
22 | 21 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’
(((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β§ (π½βπ) = 0 ) β πΉ Fn (BaseβπΊ)) |
23 | 4 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π β π = (πΊ /s (πΊ ~QG πΎ))) |
24 | | eqidd 2733 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π β (BaseβπΊ) = (BaseβπΊ)) |
25 | | ovexd 7440 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π β (πΊ ~QG πΎ) β V) |
26 | 23, 24, 25, 8 | qusbas 17487 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β ((BaseβπΊ) / (πΊ ~QG πΎ)) = (Baseβπ)) |
27 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (πΊ ~QG πΎ) = (πΊ ~QG πΎ) |
28 | 16, 27 | eqger 19052 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (πΎ β (SubGrpβπΊ) β (πΊ ~QG πΎ) Er (BaseβπΊ)) |
29 | 12, 13, 28 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π β (πΊ ~QG πΎ) Er (BaseβπΊ)) |
30 | 29 | qsss 8768 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β ((BaseβπΊ) / (πΊ ~QG πΎ)) β π« (BaseβπΊ)) |
31 | 26, 30 | eqsstrrd 4020 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β (Baseβπ) β π«
(BaseβπΊ)) |
32 | 31 | sselda 3981 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β (Baseβπ)) β π β π« (BaseβπΊ)) |
33 | 32 | elpwid 4610 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β (Baseβπ)) β π β (BaseβπΊ)) |
34 | 33 | sselda 3981 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π β (Baseβπ)) β§ π₯ β π) β π₯ β (BaseβπΊ)) |
35 | 34 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β π₯ β (BaseβπΊ)) |
36 | 35 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’
(((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β§ (π½βπ) = 0 ) β π₯ β (BaseβπΊ)) |
37 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β (π½βπ) = (πΉβπ₯)) |
38 | 37 | eqeq1d 2734 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β ((π½βπ) = 0 β (πΉβπ₯) = 0 )) |
39 | 38 | biimpa 477 |
. . . . . . . . . . . . . . . 16
β’
(((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β§ (π½βπ) = 0 ) β (πΉβπ₯) = 0 ) |
40 | | fniniseg 7058 |
. . . . . . . . . . . . . . . . 17
β’ (πΉ Fn (BaseβπΊ) β (π₯ β (β‘πΉ β { 0 }) β (π₯ β (BaseβπΊ) β§ (πΉβπ₯) = 0 ))) |
41 | 40 | biimpar 478 |
. . . . . . . . . . . . . . . 16
β’ ((πΉ Fn (BaseβπΊ) β§ (π₯ β (BaseβπΊ) β§ (πΉβπ₯) = 0 )) β π₯ β (β‘πΉ β { 0 })) |
42 | 22, 36, 39, 41 | syl12anc 835 |
. . . . . . . . . . . . . . 15
β’
(((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β§ (π½βπ) = 0 ) β π₯ β (β‘πΉ β { 0 })) |
43 | 42, 3 | eleqtrrdi 2844 |
. . . . . . . . . . . . . 14
β’
(((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β§ (π½βπ) = 0 ) β π₯ β πΎ) |
44 | 27 | eqg0el 32461 |
. . . . . . . . . . . . . . 15
β’ ((πΊ β Grp β§ πΎ β (SubGrpβπΊ)) β ([π₯](πΊ ~QG πΎ) = πΎ β π₯ β πΎ)) |
45 | 44 | biimpar 478 |
. . . . . . . . . . . . . 14
β’ (((πΊ β Grp β§ πΎ β (SubGrpβπΊ)) β§ π₯ β πΎ) β [π₯](πΊ ~QG πΎ) = πΎ) |
46 | 9, 15, 43, 45 | syl21anc 836 |
. . . . . . . . . . . . 13
β’
(((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β§ (π½βπ) = 0 ) β [π₯](πΊ ~QG πΎ) = πΎ) |
47 | 29 | ad4antr 730 |
. . . . . . . . . . . . . 14
β’
(((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β§ (π½βπ) = 0 ) β (πΊ ~QG πΎ) Er (BaseβπΊ)) |
48 | | simpr 485 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β (Baseβπ)) β π β (Baseβπ)) |
49 | 26 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β (Baseβπ)) β ((BaseβπΊ) / (πΊ ~QG πΎ)) = (Baseβπ)) |
50 | 48, 49 | eleqtrrd 2836 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β (Baseβπ)) β π β ((BaseβπΊ) / (πΊ ~QG πΎ))) |
51 | 50 | ad3antrrr 728 |
. . . . . . . . . . . . . 14
β’
(((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β§ (π½βπ) = 0 ) β π β ((BaseβπΊ) / (πΊ ~QG πΎ))) |
52 | | simpllr 774 |
. . . . . . . . . . . . . 14
β’
(((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β§ (π½βπ) = 0 ) β π₯ β π) |
53 | | qsel 8786 |
. . . . . . . . . . . . . 14
β’ (((πΊ ~QG πΎ) Er (BaseβπΊ) β§ π β ((BaseβπΊ) / (πΊ ~QG πΎ)) β§ π₯ β π) β π = [π₯](πΊ ~QG πΎ)) |
54 | 47, 51, 52, 53 | syl3anc 1371 |
. . . . . . . . . . . . 13
β’
(((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β§ (π½βπ) = 0 ) β π = [π₯](πΊ ~QG πΎ)) |
55 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
β’
(0gβπΊ) = (0gβπΊ) |
56 | 16, 27, 55 | eqgid 19054 |
. . . . . . . . . . . . . . 15
β’ (πΎ β (SubGrpβπΊ) β
[(0gβπΊ)](πΊ ~QG πΎ) = πΎ) |
57 | 14, 56 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β
[(0gβπΊ)](πΊ ~QG πΎ) = πΎ) |
58 | 57 | ad4antr 730 |
. . . . . . . . . . . . 13
β’
(((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β§ (π½βπ) = 0 ) β
[(0gβπΊ)](πΊ ~QG πΎ) = πΎ) |
59 | 46, 54, 58 | 3eqtr4d 2782 |
. . . . . . . . . . . 12
β’
(((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β§ (π½βπ) = 0 ) β π = [(0gβπΊ)](πΊ ~QG πΎ)) |
60 | 4, 55 | qus0 19062 |
. . . . . . . . . . . . . . 15
β’ (πΎ β (NrmSGrpβπΊ) β
[(0gβπΊ)](πΊ ~QG πΎ) = (0gβπ)) |
61 | 12, 60 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β
[(0gβπΊ)](πΊ ~QG πΎ) = (0gβπ)) |
62 | 61 | ad3antrrr 728 |
. . . . . . . . . . . . 13
β’ ((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β [(0gβπΊ)](πΊ ~QG πΎ) = (0gβπ)) |
63 | 62 | adantr 481 |
. . . . . . . . . . . 12
β’
(((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β§ (π½βπ) = 0 ) β
[(0gβπΊ)](πΊ ~QG πΎ) = (0gβπ)) |
64 | 59, 63 | eqtrd 2772 |
. . . . . . . . . . 11
β’
(((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β§ (π½βπ) = 0 ) β π = (0gβπ)) |
65 | 62 | eqeq2d 2743 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β (π = [(0gβπΊ)](πΊ ~QG πΎ) β π = (0gβπ))) |
66 | 65 | biimpar 478 |
. . . . . . . . . . . . 13
β’
(((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β§ π = (0gβπ)) β π = [(0gβπΊ)](πΊ ~QG πΎ)) |
67 | 66 | fveq2d 6892 |
. . . . . . . . . . . 12
β’
(((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β§ π = (0gβπ)) β (π½βπ) = (π½β[(0gβπΊ)](πΊ ~QG πΎ))) |
68 | 2 | adantr 481 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β (Baseβπ)) β πΉ β (πΊ GrpHom π»)) |
69 | 68 | ad3antrrr 728 |
. . . . . . . . . . . . 13
β’
(((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β§ π = (0gβπ)) β πΉ β (πΊ GrpHom π»)) |
70 | 16, 55 | grpidcl 18846 |
. . . . . . . . . . . . . . 15
β’ (πΊ β Grp β
(0gβπΊ)
β (BaseβπΊ)) |
71 | 8, 70 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β (0gβπΊ) β (BaseβπΊ)) |
72 | 71 | ad4antr 730 |
. . . . . . . . . . . . 13
β’
(((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β§ π = (0gβπ)) β (0gβπΊ) β (BaseβπΊ)) |
73 | 1, 69, 3, 4, 5, 72 | ghmquskerlem1 32516 |
. . . . . . . . . . . 12
β’
(((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β§ π = (0gβπ)) β (π½β[(0gβπΊ)](πΊ ~QG πΎ)) = (πΉβ(0gβπΊ))) |
74 | 55, 1 | ghmid 19092 |
. . . . . . . . . . . . . 14
β’ (πΉ β (πΊ GrpHom π») β (πΉβ(0gβπΊ)) = 0 ) |
75 | 2, 74 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β (πΉβ(0gβπΊ)) = 0 ) |
76 | 75 | ad4antr 730 |
. . . . . . . . . . . 12
β’
(((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β§ π = (0gβπ)) β (πΉβ(0gβπΊ)) = 0 ) |
77 | 67, 73, 76 | 3eqtrd 2776 |
. . . . . . . . . . 11
β’
(((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β§ π = (0gβπ)) β (π½βπ) = 0 ) |
78 | 64, 77 | impbida 799 |
. . . . . . . . . 10
β’ ((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β ((π½βπ) = 0 β π = (0gβπ))) |
79 | 1, 68, 3, 4, 5, 48 | ghmquskerlem2 32518 |
. . . . . . . . . 10
β’ ((π β§ π β (Baseβπ)) β βπ₯ β π (π½βπ) = (πΉβπ₯)) |
80 | 78, 79 | r19.29a 3162 |
. . . . . . . . 9
β’ ((π β§ π β (Baseβπ)) β ((π½βπ) = 0 β π = (0gβπ))) |
81 | 80 | pm5.32da 579 |
. . . . . . . 8
β’ (π β ((π β (Baseβπ) β§ (π½βπ) = 0 ) β (π β (Baseβπ) β§ π = (0gβπ)))) |
82 | | simpr 485 |
. . . . . . . . . . 11
β’ ((π β§ π = (0gβπ)) β π = (0gβπ)) |
83 | 4 | qusgrp 19059 |
. . . . . . . . . . . . . 14
β’ (πΎ β (NrmSGrpβπΊ) β π β Grp) |
84 | 12, 83 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β π β Grp) |
85 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(Baseβπ) =
(Baseβπ) |
86 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(0gβπ) = (0gβπ) |
87 | 85, 86 | grpidcl 18846 |
. . . . . . . . . . . . 13
β’ (π β Grp β
(0gβπ)
β (Baseβπ)) |
88 | 84, 87 | syl 17 |
. . . . . . . . . . . 12
β’ (π β (0gβπ) β (Baseβπ)) |
89 | 88 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ π = (0gβπ)) β (0gβπ) β (Baseβπ)) |
90 | 82, 89 | eqeltrd 2833 |
. . . . . . . . . 10
β’ ((π β§ π = (0gβπ)) β π β (Baseβπ)) |
91 | 90 | ex 413 |
. . . . . . . . 9
β’ (π β (π = (0gβπ) β π β (Baseβπ))) |
92 | 91 | pm4.71rd 563 |
. . . . . . . 8
β’ (π β (π = (0gβπ) β (π β (Baseβπ) β§ π = (0gβπ)))) |
93 | 81, 92 | bitr4d 281 |
. . . . . . 7
β’ (π β ((π β (Baseβπ) β§ (π½βπ) = 0 ) β π = (0gβπ))) |
94 | 2 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ π β (Baseβπ)) β πΉ β (πΊ GrpHom π»)) |
95 | 94 | imaexd 31891 |
. . . . . . . . . . 11
β’ ((π β§ π β (Baseβπ)) β (πΉ β π) β V) |
96 | 95 | uniexd 7728 |
. . . . . . . . . 10
β’ ((π β§ π β (Baseβπ)) β βͺ
(πΉ β π) β V) |
97 | 5 | a1i 11 |
. . . . . . . . . 10
β’ (π β π½ = (π β (Baseβπ) β¦ βͺ
(πΉ β π))) |
98 | 21, 35 | fnfvelrnd 7081 |
. . . . . . . . . . . . 13
β’ ((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β (πΉβπ₯) β ran πΉ) |
99 | | ghmqusker.s |
. . . . . . . . . . . . . 14
β’ (π β ran πΉ = (Baseβπ»)) |
100 | 99 | ad3antrrr 728 |
. . . . . . . . . . . . 13
β’ ((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β ran πΉ = (Baseβπ»)) |
101 | 98, 100 | eleqtrd 2835 |
. . . . . . . . . . . 12
β’ ((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β (πΉβπ₯) β (Baseβπ»)) |
102 | 37, 101 | eqeltrd 2833 |
. . . . . . . . . . 11
β’ ((((π β§ π β (Baseβπ)) β§ π₯ β π) β§ (π½βπ) = (πΉβπ₯)) β (π½βπ) β (Baseβπ»)) |
103 | 102, 79 | r19.29a 3162 |
. . . . . . . . . 10
β’ ((π β§ π β (Baseβπ)) β (π½βπ) β (Baseβπ»)) |
104 | 96, 97, 103 | fmpt2d 7119 |
. . . . . . . . 9
β’ (π β π½:(Baseβπ)βΆ(Baseβπ»)) |
105 | 104 | ffnd 6715 |
. . . . . . . 8
β’ (π β π½ Fn (Baseβπ)) |
106 | | fniniseg 7058 |
. . . . . . . 8
β’ (π½ Fn (Baseβπ) β (π β (β‘π½ β { 0 }) β (π β (Baseβπ) β§ (π½βπ) = 0 ))) |
107 | 105, 106 | syl 17 |
. . . . . . 7
β’ (π β (π β (β‘π½ β { 0 }) β (π β (Baseβπ) β§ (π½βπ) = 0 ))) |
108 | | velsn 4643 |
. . . . . . . 8
β’ (π β
{(0gβπ)}
β π =
(0gβπ)) |
109 | 108 | a1i 11 |
. . . . . . 7
β’ (π β (π β {(0gβπ)} β π = (0gβπ))) |
110 | 93, 107, 109 | 3bitr4d 310 |
. . . . . 6
β’ (π β (π β (β‘π½ β { 0 }) β π β
{(0gβπ)})) |
111 | 110 | eqrdv 2730 |
. . . . 5
β’ (π β (β‘π½ β { 0 }) =
{(0gβπ)}) |
112 | 85, 17, 86, 1 | kerf1ghm 20274 |
. . . . . 6
β’ (π½ β (π GrpHom π») β (π½:(Baseβπ)β1-1β(Baseβπ») β (β‘π½ β { 0 }) =
{(0gβπ)})) |
113 | 112 | biimpar 478 |
. . . . 5
β’ ((π½ β (π GrpHom π») β§ (β‘π½ β { 0 }) =
{(0gβπ)})
β π½:(Baseβπ)β1-1β(Baseβπ»)) |
114 | 6, 111, 113 | syl2anc 584 |
. . . 4
β’ (π β π½:(Baseβπ)β1-1β(Baseβπ»)) |
115 | | f1f1orn 6841 |
. . . 4
β’ (π½:(Baseβπ)β1-1β(Baseβπ») β π½:(Baseβπ)β1-1-ontoβran
π½) |
116 | 114, 115 | syl 17 |
. . 3
β’ (π β π½:(Baseβπ)β1-1-ontoβran
π½) |
117 | | simpr 485 |
. . . . . . . . . 10
β’ ((π β§ π₯ β (BaseβπΊ)) β π₯ β (BaseβπΊ)) |
118 | | ovex 7438 |
. . . . . . . . . . 11
β’ (πΊ ~QG πΎ) β V |
119 | 118 | ecelqsi 8763 |
. . . . . . . . . 10
β’ (π₯ β (BaseβπΊ) β [π₯](πΊ ~QG πΎ) β ((BaseβπΊ) / (πΊ ~QG πΎ))) |
120 | 117, 119 | syl 17 |
. . . . . . . . 9
β’ ((π β§ π₯ β (BaseβπΊ)) β [π₯](πΊ ~QG πΎ) β ((BaseβπΊ) / (πΊ ~QG πΎ))) |
121 | 26 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π₯ β (BaseβπΊ)) β ((BaseβπΊ) / (πΊ ~QG πΎ)) = (Baseβπ)) |
122 | 120, 121 | eleqtrd 2835 |
. . . . . . . 8
β’ ((π β§ π₯ β (BaseβπΊ)) β [π₯](πΊ ~QG πΎ) β (Baseβπ)) |
123 | | elqsi 8760 |
. . . . . . . . 9
β’ (π β ((BaseβπΊ) / (πΊ ~QG πΎ)) β βπ₯ β (BaseβπΊ)π = [π₯](πΊ ~QG πΎ)) |
124 | 50, 123 | syl 17 |
. . . . . . . 8
β’ ((π β§ π β (Baseβπ)) β βπ₯ β (BaseβπΊ)π = [π₯](πΊ ~QG πΎ)) |
125 | | simpr 485 |
. . . . . . . . . . . 12
β’ (((π β§ π₯ β (BaseβπΊ)) β§ π = [π₯](πΊ ~QG πΎ)) β π = [π₯](πΊ ~QG πΎ)) |
126 | 125 | fveq2d 6892 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β (BaseβπΊ)) β§ π = [π₯](πΊ ~QG πΎ)) β (π½βπ) = (π½β[π₯](πΊ ~QG πΎ))) |
127 | 2 | adantr 481 |
. . . . . . . . . . . . 13
β’ ((π β§ π₯ β (BaseβπΊ)) β πΉ β (πΊ GrpHom π»)) |
128 | 1, 127, 3, 4, 5, 117 | ghmquskerlem1 32516 |
. . . . . . . . . . . 12
β’ ((π β§ π₯ β (BaseβπΊ)) β (π½β[π₯](πΊ ~QG πΎ)) = (πΉβπ₯)) |
129 | 128 | adantr 481 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β (BaseβπΊ)) β§ π = [π₯](πΊ ~QG πΎ)) β (π½β[π₯](πΊ ~QG πΎ)) = (πΉβπ₯)) |
130 | 126, 129 | eqtrd 2772 |
. . . . . . . . . 10
β’ (((π β§ π₯ β (BaseβπΊ)) β§ π = [π₯](πΊ ~QG πΎ)) β (π½βπ) = (πΉβπ₯)) |
131 | 130 | 3impa 1110 |
. . . . . . . . 9
β’ ((π β§ π₯ β (BaseβπΊ) β§ π = [π₯](πΊ ~QG πΎ)) β (π½βπ) = (πΉβπ₯)) |
132 | 131 | eqeq1d 2734 |
. . . . . . . 8
β’ ((π β§ π₯ β (BaseβπΊ) β§ π = [π₯](πΊ ~QG πΎ)) β ((π½βπ) = π¦ β (πΉβπ₯) = π¦)) |
133 | 122, 124,
132 | rexxfrd2 5410 |
. . . . . . 7
β’ (π β (βπ β (Baseβπ)(π½βπ) = π¦ β βπ₯ β (BaseβπΊ)(πΉβπ₯) = π¦)) |
134 | | fvelrnb 6949 |
. . . . . . . 8
β’ (π½ Fn (Baseβπ) β (π¦ β ran π½ β βπ β (Baseβπ)(π½βπ) = π¦)) |
135 | 105, 134 | syl 17 |
. . . . . . 7
β’ (π β (π¦ β ran π½ β βπ β (Baseβπ)(π½βπ) = π¦)) |
136 | | fvelrnb 6949 |
. . . . . . . 8
β’ (πΉ Fn (BaseβπΊ) β (π¦ β ran πΉ β βπ₯ β (BaseβπΊ)(πΉβπ₯) = π¦)) |
137 | 20, 136 | syl 17 |
. . . . . . 7
β’ (π β (π¦ β ran πΉ β βπ₯ β (BaseβπΊ)(πΉβπ₯) = π¦)) |
138 | 133, 135,
137 | 3bitr4rd 311 |
. . . . . 6
β’ (π β (π¦ β ran πΉ β π¦ β ran π½)) |
139 | 138 | eqrdv 2730 |
. . . . 5
β’ (π β ran πΉ = ran π½) |
140 | 139, 99 | eqtr3d 2774 |
. . . 4
β’ (π β ran π½ = (Baseβπ»)) |
141 | 140 | f1oeq3d 6827 |
. . 3
β’ (π β (π½:(Baseβπ)β1-1-ontoβran
π½ β π½:(Baseβπ)β1-1-ontoβ(Baseβπ»))) |
142 | 116, 141 | mpbid 231 |
. 2
β’ (π β π½:(Baseβπ)β1-1-ontoβ(Baseβπ»)) |
143 | 85, 17 | isgim 19130 |
. 2
β’ (π½ β (π GrpIso π») β (π½ β (π GrpHom π») β§ π½:(Baseβπ)β1-1-ontoβ(Baseβπ»))) |
144 | 6, 142, 143 | sylanbrc 583 |
1
β’ (π β π½ β (π GrpIso π»)) |