Step | Hyp | Ref
| Expression |
1 | | ghmqusker.1 |
. . 3
⊢ 0 =
(0g‘𝐻) |
2 | | ghmqusker.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
3 | | ghmqusker.k |
. . 3
⊢ 𝐾 = (◡𝐹 “ { 0 }) |
4 | | ghmqusker.q |
. . 3
⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) |
5 | | ghmqusker.j |
. . 3
⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪
(𝐹 “ 𝑞)) |
6 | 1, 2, 3, 4, 5 | ghmquskerlem3 19326 |
. 2
⊢ (𝜑 → 𝐽 ∈ (𝑄 GrpHom 𝐻)) |
7 | | ghmgrp1 19258 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp) |
8 | 2, 7 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺 ∈ Grp) |
9 | 8 | ad4antr 731 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → 𝐺 ∈ Grp) |
10 | 1 | ghmker 19282 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → (◡𝐹 “ { 0 }) ∈
(NrmSGrp‘𝐺)) |
11 | 2, 10 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (◡𝐹 “ { 0 }) ∈
(NrmSGrp‘𝐺)) |
12 | 3, 11 | eqeltrid 2848 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ∈ (NrmSGrp‘𝐺)) |
13 | | nsgsubg 19198 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (NrmSGrp‘𝐺) → 𝐾 ∈ (SubGrp‘𝐺)) |
14 | 12, 13 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) |
15 | 14 | ad4antr 731 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → 𝐾 ∈ (SubGrp‘𝐺)) |
16 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(Base‘𝐺) =
(Base‘𝐺) |
17 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(Base‘𝐻) =
(Base‘𝐻) |
18 | 16, 17 | ghmf 19260 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
19 | 2, 18 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
20 | 19 | ffnd 6748 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹 Fn (Base‘𝐺)) |
21 | 20 | ad3antrrr 729 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝐹 Fn (Base‘𝐺)) |
22 | 21 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → 𝐹 Fn (Base‘𝐺)) |
23 | 4 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))) |
24 | | eqidd 2741 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) |
25 | | ovexd 7483 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝐺 ~QG 𝐾) ∈ V) |
26 | 23, 24, 25, 8 | qusbas 17605 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
27 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾) |
28 | 16, 27 | eqger 19218 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
29 | 12, 13, 28 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
30 | 29 | qsss 8836 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ⊆ 𝒫 (Base‘𝐺)) |
31 | 26, 30 | eqsstrrd 4048 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (Base‘𝑄) ⊆ 𝒫
(Base‘𝐺)) |
32 | 31 | sselda 4008 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ 𝒫 (Base‘𝐺)) |
33 | 32 | elpwid 4631 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ⊆ (Base‘𝐺)) |
34 | 33 | sselda 4008 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) → 𝑥 ∈ (Base‘𝐺)) |
35 | 34 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑥 ∈ (Base‘𝐺)) |
36 | 35 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → 𝑥 ∈ (Base‘𝐺)) |
37 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐽‘𝑟) = (𝐹‘𝑥)) |
38 | 37 | eqeq1d 2742 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → ((𝐽‘𝑟) = 0 ↔ (𝐹‘𝑥) = 0 )) |
39 | 38 | biimpa 476 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → (𝐹‘𝑥) = 0 ) |
40 | | fniniseg 7093 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 Fn (Base‘𝐺) → (𝑥 ∈ (◡𝐹 “ { 0 }) ↔ (𝑥 ∈ (Base‘𝐺) ∧ (𝐹‘𝑥) = 0 ))) |
41 | 40 | biimpar 477 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 Fn (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ (𝐹‘𝑥) = 0 )) → 𝑥 ∈ (◡𝐹 “ { 0 })) |
42 | 22, 36, 39, 41 | syl12anc 836 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → 𝑥 ∈ (◡𝐹 “ { 0 })) |
43 | 42, 3 | eleqtrrdi 2855 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → 𝑥 ∈ 𝐾) |
44 | 27 | eqg0el 19223 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ Grp ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ([𝑥](𝐺 ~QG 𝐾) = 𝐾 ↔ 𝑥 ∈ 𝐾)) |
45 | 44 | biimpar 477 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ Grp ∧ 𝐾 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝐾) → [𝑥](𝐺 ~QG 𝐾) = 𝐾) |
46 | 9, 15, 43, 45 | syl21anc 837 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → [𝑥](𝐺 ~QG 𝐾) = 𝐾) |
47 | 29 | ad4antr 731 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
48 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ (Base‘𝑄)) |
49 | 26 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
50 | 48, 49 | eleqtrrd 2847 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) |
51 | 50 | ad3antrrr 729 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) |
52 | | simpllr 775 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → 𝑥 ∈ 𝑟) |
53 | | qsel 8854 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ∧ 𝑥 ∈ 𝑟) → 𝑟 = [𝑥](𝐺 ~QG 𝐾)) |
54 | 47, 51, 52, 53 | syl3anc 1371 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → 𝑟 = [𝑥](𝐺 ~QG 𝐾)) |
55 | | eqid 2740 |
. . . . . . . . . . . . . . . 16
⊢
(0g‘𝐺) = (0g‘𝐺) |
56 | 16, 27, 55 | eqgid 19220 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (SubGrp‘𝐺) →
[(0g‘𝐺)](𝐺 ~QG 𝐾) = 𝐾) |
57 | 14, 56 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
[(0g‘𝐺)](𝐺 ~QG 𝐾) = 𝐾) |
58 | 57 | ad4antr 731 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) →
[(0g‘𝐺)](𝐺 ~QG 𝐾) = 𝐾) |
59 | 46, 54, 58 | 3eqtr4d 2790 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → 𝑟 = [(0g‘𝐺)](𝐺 ~QG 𝐾)) |
60 | 4, 55 | qus0 19229 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (NrmSGrp‘𝐺) →
[(0g‘𝐺)](𝐺 ~QG 𝐾) = (0g‘𝑄)) |
61 | 12, 60 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
[(0g‘𝐺)](𝐺 ~QG 𝐾) = (0g‘𝑄)) |
62 | 61 | ad3antrrr 729 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → [(0g‘𝐺)](𝐺 ~QG 𝐾) = (0g‘𝑄)) |
63 | 62 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) →
[(0g‘𝐺)](𝐺 ~QG 𝐾) = (0g‘𝑄)) |
64 | 59, 63 | eqtrd 2780 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → 𝑟 = (0g‘𝑄)) |
65 | 62 | eqeq2d 2751 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝑟 = [(0g‘𝐺)](𝐺 ~QG 𝐾) ↔ 𝑟 = (0g‘𝑄))) |
66 | 65 | biimpar 477 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑟 = (0g‘𝑄)) → 𝑟 = [(0g‘𝐺)](𝐺 ~QG 𝐾)) |
67 | 66 | fveq2d 6924 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑟 = (0g‘𝑄)) → (𝐽‘𝑟) = (𝐽‘[(0g‘𝐺)](𝐺 ~QG 𝐾))) |
68 | 2 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
69 | 68 | ad3antrrr 729 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑟 = (0g‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
70 | 16, 55 | grpidcl 19005 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ (Base‘𝐺)) |
71 | 8, 70 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0g‘𝐺) ∈ (Base‘𝐺)) |
72 | 71 | ad4antr 731 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑟 = (0g‘𝑄)) → (0g‘𝐺) ∈ (Base‘𝐺)) |
73 | 1, 69, 3, 4, 5, 72 | ghmquskerlem1 19323 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑟 = (0g‘𝑄)) → (𝐽‘[(0g‘𝐺)](𝐺 ~QG 𝐾)) = (𝐹‘(0g‘𝐺))) |
74 | 55, 1 | ghmid 19262 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹‘(0g‘𝐺)) = 0 ) |
75 | 2, 74 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹‘(0g‘𝐺)) = 0 ) |
76 | 75 | ad4antr 731 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑟 = (0g‘𝑄)) → (𝐹‘(0g‘𝐺)) = 0 ) |
77 | 67, 73, 76 | 3eqtrd 2784 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑟 = (0g‘𝑄)) → (𝐽‘𝑟) = 0 ) |
78 | 64, 77 | impbida 800 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → ((𝐽‘𝑟) = 0 ↔ 𝑟 = (0g‘𝑄))) |
79 | 1, 68, 3, 4, 5, 48 | ghmquskerlem2 19325 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → ∃𝑥 ∈ 𝑟 (𝐽‘𝑟) = (𝐹‘𝑥)) |
80 | 78, 79 | r19.29a 3168 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → ((𝐽‘𝑟) = 0 ↔ 𝑟 = (0g‘𝑄))) |
81 | 80 | pm5.32da 578 |
. . . . . . . 8
⊢ (𝜑 → ((𝑟 ∈ (Base‘𝑄) ∧ (𝐽‘𝑟) = 0 ) ↔ (𝑟 ∈ (Base‘𝑄) ∧ 𝑟 = (0g‘𝑄)))) |
82 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑟 = (0g‘𝑄)) → 𝑟 = (0g‘𝑄)) |
83 | 4 | qusgrp 19226 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (NrmSGrp‘𝐺) → 𝑄 ∈ Grp) |
84 | 12, 83 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑄 ∈ Grp) |
85 | | eqid 2740 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑄) =
(Base‘𝑄) |
86 | | eqid 2740 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝑄) = (0g‘𝑄) |
87 | 85, 86 | grpidcl 19005 |
. . . . . . . . . . . . 13
⊢ (𝑄 ∈ Grp →
(0g‘𝑄)
∈ (Base‘𝑄)) |
88 | 84, 87 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0g‘𝑄) ∈ (Base‘𝑄)) |
89 | 88 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑟 = (0g‘𝑄)) → (0g‘𝑄) ∈ (Base‘𝑄)) |
90 | 82, 89 | eqeltrd 2844 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 = (0g‘𝑄)) → 𝑟 ∈ (Base‘𝑄)) |
91 | 90 | ex 412 |
. . . . . . . . 9
⊢ (𝜑 → (𝑟 = (0g‘𝑄) → 𝑟 ∈ (Base‘𝑄))) |
92 | 91 | pm4.71rd 562 |
. . . . . . . 8
⊢ (𝜑 → (𝑟 = (0g‘𝑄) ↔ (𝑟 ∈ (Base‘𝑄) ∧ 𝑟 = (0g‘𝑄)))) |
93 | 81, 92 | bitr4d 282 |
. . . . . . 7
⊢ (𝜑 → ((𝑟 ∈ (Base‘𝑄) ∧ (𝐽‘𝑟) = 0 ) ↔ 𝑟 = (0g‘𝑄))) |
94 | 2 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑞 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
95 | 94 | imaexd 7956 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑞 ∈ (Base‘𝑄)) → (𝐹 “ 𝑞) ∈ V) |
96 | 95 | uniexd 7777 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ (Base‘𝑄)) → ∪
(𝐹 “ 𝑞) ∈ V) |
97 | 5 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪
(𝐹 “ 𝑞))) |
98 | 21, 35 | fnfvelrnd 7116 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐹‘𝑥) ∈ ran 𝐹) |
99 | | ghmqusker.s |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ran 𝐹 = (Base‘𝐻)) |
100 | 99 | ad3antrrr 729 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → ran 𝐹 = (Base‘𝐻)) |
101 | 98, 100 | eleqtrd 2846 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐹‘𝑥) ∈ (Base‘𝐻)) |
102 | 37, 101 | eqeltrd 2844 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐽‘𝑟) ∈ (Base‘𝐻)) |
103 | 102, 79 | r19.29a 3168 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → (𝐽‘𝑟) ∈ (Base‘𝐻)) |
104 | 96, 97, 103 | fmpt2d 7158 |
. . . . . . . . 9
⊢ (𝜑 → 𝐽:(Base‘𝑄)⟶(Base‘𝐻)) |
105 | 104 | ffnd 6748 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 Fn (Base‘𝑄)) |
106 | | fniniseg 7093 |
. . . . . . . 8
⊢ (𝐽 Fn (Base‘𝑄) → (𝑟 ∈ (◡𝐽 “ { 0 }) ↔ (𝑟 ∈ (Base‘𝑄) ∧ (𝐽‘𝑟) = 0 ))) |
107 | 105, 106 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑟 ∈ (◡𝐽 “ { 0 }) ↔ (𝑟 ∈ (Base‘𝑄) ∧ (𝐽‘𝑟) = 0 ))) |
108 | | velsn 4664 |
. . . . . . . 8
⊢ (𝑟 ∈
{(0g‘𝑄)}
↔ 𝑟 =
(0g‘𝑄)) |
109 | 108 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝑟 ∈ {(0g‘𝑄)} ↔ 𝑟 = (0g‘𝑄))) |
110 | 93, 107, 109 | 3bitr4d 311 |
. . . . . 6
⊢ (𝜑 → (𝑟 ∈ (◡𝐽 “ { 0 }) ↔ 𝑟 ∈
{(0g‘𝑄)})) |
111 | 110 | eqrdv 2738 |
. . . . 5
⊢ (𝜑 → (◡𝐽 “ { 0 }) =
{(0g‘𝑄)}) |
112 | 85, 17, 86, 1 | kerf1ghm 19287 |
. . . . . 6
⊢ (𝐽 ∈ (𝑄 GrpHom 𝐻) → (𝐽:(Base‘𝑄)–1-1→(Base‘𝐻) ↔ (◡𝐽 “ { 0 }) =
{(0g‘𝑄)})) |
113 | 112 | biimpar 477 |
. . . . 5
⊢ ((𝐽 ∈ (𝑄 GrpHom 𝐻) ∧ (◡𝐽 “ { 0 }) =
{(0g‘𝑄)})
→ 𝐽:(Base‘𝑄)–1-1→(Base‘𝐻)) |
114 | 6, 111, 113 | syl2anc 583 |
. . . 4
⊢ (𝜑 → 𝐽:(Base‘𝑄)–1-1→(Base‘𝐻)) |
115 | | f1f1orn 6873 |
. . . 4
⊢ (𝐽:(Base‘𝑄)–1-1→(Base‘𝐻) → 𝐽:(Base‘𝑄)–1-1-onto→ran
𝐽) |
116 | 114, 115 | syl 17 |
. . 3
⊢ (𝜑 → 𝐽:(Base‘𝑄)–1-1-onto→ran
𝐽) |
117 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺)) |
118 | | ovex 7481 |
. . . . . . . . . . 11
⊢ (𝐺 ~QG 𝐾) ∈ V |
119 | 118 | ecelqsi 8831 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (Base‘𝐺) → [𝑥](𝐺 ~QG 𝐾) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) |
120 | 117, 119 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → [𝑥](𝐺 ~QG 𝐾) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) |
121 | 26 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
122 | 120, 121 | eleqtrd 2846 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → [𝑥](𝐺 ~QG 𝐾) ∈ (Base‘𝑄)) |
123 | | elqsi 8828 |
. . . . . . . . 9
⊢ (𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) → ∃𝑥 ∈ (Base‘𝐺)𝑟 = [𝑥](𝐺 ~QG 𝐾)) |
124 | 50, 123 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → ∃𝑥 ∈ (Base‘𝐺)𝑟 = [𝑥](𝐺 ~QG 𝐾)) |
125 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑟 = [𝑥](𝐺 ~QG 𝐾)) → 𝑟 = [𝑥](𝐺 ~QG 𝐾)) |
126 | 125 | fveq2d 6924 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑟 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽‘𝑟) = (𝐽‘[𝑥](𝐺 ~QG 𝐾))) |
127 | 2 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
128 | 1, 127, 3, 4, 5, 117 | ghmquskerlem1 19323 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → (𝐽‘[𝑥](𝐺 ~QG 𝐾)) = (𝐹‘𝑥)) |
129 | 128 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑟 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽‘[𝑥](𝐺 ~QG 𝐾)) = (𝐹‘𝑥)) |
130 | 126, 129 | eqtrd 2780 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑟 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽‘𝑟) = (𝐹‘𝑥)) |
131 | 130 | 3impa 1110 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑟 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽‘𝑟) = (𝐹‘𝑥)) |
132 | 131 | eqeq1d 2742 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑟 = [𝑥](𝐺 ~QG 𝐾)) → ((𝐽‘𝑟) = 𝑦 ↔ (𝐹‘𝑥) = 𝑦)) |
133 | 122, 124,
132 | rexxfrd2 5431 |
. . . . . . 7
⊢ (𝜑 → (∃𝑟 ∈ (Base‘𝑄)(𝐽‘𝑟) = 𝑦 ↔ ∃𝑥 ∈ (Base‘𝐺)(𝐹‘𝑥) = 𝑦)) |
134 | | fvelrnb 6982 |
. . . . . . . 8
⊢ (𝐽 Fn (Base‘𝑄) → (𝑦 ∈ ran 𝐽 ↔ ∃𝑟 ∈ (Base‘𝑄)(𝐽‘𝑟) = 𝑦)) |
135 | 105, 134 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ ran 𝐽 ↔ ∃𝑟 ∈ (Base‘𝑄)(𝐽‘𝑟) = 𝑦)) |
136 | | fvelrnb 6982 |
. . . . . . . 8
⊢ (𝐹 Fn (Base‘𝐺) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ (Base‘𝐺)(𝐹‘𝑥) = 𝑦)) |
137 | 20, 136 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ (Base‘𝐺)(𝐹‘𝑥) = 𝑦)) |
138 | 133, 135,
137 | 3bitr4rd 312 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ ran 𝐹 ↔ 𝑦 ∈ ran 𝐽)) |
139 | 138 | eqrdv 2738 |
. . . . 5
⊢ (𝜑 → ran 𝐹 = ran 𝐽) |
140 | 139, 99 | eqtr3d 2782 |
. . . 4
⊢ (𝜑 → ran 𝐽 = (Base‘𝐻)) |
141 | 140 | f1oeq3d 6859 |
. . 3
⊢ (𝜑 → (𝐽:(Base‘𝑄)–1-1-onto→ran
𝐽 ↔ 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻))) |
142 | 116, 141 | mpbid 232 |
. 2
⊢ (𝜑 → 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻)) |
143 | 85, 17 | isgim 19302 |
. 2
⊢ (𝐽 ∈ (𝑄 GrpIso 𝐻) ↔ (𝐽 ∈ (𝑄 GrpHom 𝐻) ∧ 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻))) |
144 | 6, 142, 143 | sylanbrc 582 |
1
⊢ (𝜑 → 𝐽 ∈ (𝑄 GrpIso 𝐻)) |