Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghmqusker Structured version   Visualization version   GIF version

Theorem ghmqusker 32451
Description: A surjective group homomorphism 𝐹 from 𝐺 to 𝐻 induces an isomorphism 𝐽 from 𝑄 to 𝐻, where 𝑄 is the factor group of 𝐺 by 𝐹's kernel 𝐾. (Contributed by Thierry Arnoux, 15-Feb-2025.)
Hypotheses
Ref Expression
ghmqusker.1 0 = (0g𝐻)
ghmqusker.f (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
ghmqusker.k 𝐾 = (𝐹 “ { 0 })
ghmqusker.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
ghmqusker.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
ghmqusker.s (𝜑 → ran 𝐹 = (Base‘𝐻))
Assertion
Ref Expression
ghmqusker (𝜑𝐽 ∈ (𝑄 GrpIso 𝐻))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝐻,𝑞   𝐽,𝑞   𝐾,𝑞   𝑄,𝑞   𝜑,𝑞
Allowed substitution hint:   0 (𝑞)

Proof of Theorem ghmqusker
Dummy variables 𝑟 𝑥 𝑦 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . 3 (Base‘𝑄) = (Base‘𝑄)
2 eqid 2732 . . 3 (Base‘𝐻) = (Base‘𝐻)
3 eqid 2732 . . 3 (+g𝑄) = (+g𝑄)
4 eqid 2732 . . 3 (+g𝐻) = (+g𝐻)
5 ghmqusker.k . . . . 5 𝐾 = (𝐹 “ { 0 })
6 ghmqusker.f . . . . . 6 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
7 ghmqusker.1 . . . . . . 7 0 = (0g𝐻)
87ghmker 19086 . . . . . 6 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
96, 8syl 17 . . . . 5 (𝜑 → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
105, 9eqeltrid 2837 . . . 4 (𝜑𝐾 ∈ (NrmSGrp‘𝐺))
11 ghmqusker.q . . . . 5 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
1211qusgrp 19037 . . . 4 (𝐾 ∈ (NrmSGrp‘𝐺) → 𝑄 ∈ Grp)
1310, 12syl 17 . . 3 (𝜑𝑄 ∈ Grp)
14 ghmrn 19073 . . . 4 (𝐹 ∈ (𝐺 GrpHom 𝐻) → ran 𝐹 ∈ (SubGrp‘𝐻))
15 subgrcl 18985 . . . 4 (ran 𝐹 ∈ (SubGrp‘𝐻) → 𝐻 ∈ Grp)
166, 14, 153syl 18 . . 3 (𝜑𝐻 ∈ Grp)
176adantr 481 . . . . . 6 ((𝜑𝑞 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
1817imaexd 31838 . . . . 5 ((𝜑𝑞 ∈ (Base‘𝑄)) → (𝐹𝑞) ∈ V)
1918uniexd 7716 . . . 4 ((𝜑𝑞 ∈ (Base‘𝑄)) → (𝐹𝑞) ∈ V)
20 ghmqusker.j . . . . 5 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
2120a1i 11 . . . 4 (𝜑𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞)))
22 simpr 485 . . . . . 6 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽𝑟) = (𝐹𝑥))
23 eqid 2732 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
2423, 2ghmf 19064 . . . . . . . . . . 11 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
256, 24syl 17 . . . . . . . . . 10 (𝜑𝐹:(Base‘𝐺)⟶(Base‘𝐻))
2625ffnd 6706 . . . . . . . . 9 (𝜑𝐹 Fn (Base‘𝐺))
2726ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐹 Fn (Base‘𝐺))
2811a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)))
29 eqidd 2733 . . . . . . . . . . . . . 14 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
30 ovexd 7429 . . . . . . . . . . . . . 14 (𝜑 → (𝐺 ~QG 𝐾) ∈ V)
31 ghmgrp1 19062 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
326, 31syl 17 . . . . . . . . . . . . . 14 (𝜑𝐺 ∈ Grp)
3328, 29, 30, 32qusbas 17475 . . . . . . . . . . . . 13 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
34 nsgsubg 19012 . . . . . . . . . . . . . . 15 (𝐾 ∈ (NrmSGrp‘𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
35 eqid 2732 . . . . . . . . . . . . . . . 16 (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾)
3623, 35eqger 19032 . . . . . . . . . . . . . . 15 (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
3710, 34, 363syl 18 . . . . . . . . . . . . . 14 (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
3837qsss 8757 . . . . . . . . . . . . 13 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ⊆ 𝒫 (Base‘𝐺))
3933, 38eqsstrrd 4018 . . . . . . . . . . . 12 (𝜑 → (Base‘𝑄) ⊆ 𝒫 (Base‘𝐺))
4039sselda 3979 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ 𝒫 (Base‘𝐺))
4140elpwid 4606 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ⊆ (Base‘𝐺))
4241sselda 3979 . . . . . . . . 9 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) → 𝑥 ∈ (Base‘𝐺))
4342adantr 481 . . . . . . . 8 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑥 ∈ (Base‘𝐺))
4427, 43fnfvelrnd 7070 . . . . . . 7 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐹𝑥) ∈ ran 𝐹)
45 ghmqusker.s . . . . . . . 8 (𝜑 → ran 𝐹 = (Base‘𝐻))
4645ad3antrrr 728 . . . . . . 7 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → ran 𝐹 = (Base‘𝐻))
4744, 46eleqtrd 2835 . . . . . 6 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐹𝑥) ∈ (Base‘𝐻))
4822, 47eqeltrd 2833 . . . . 5 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽𝑟) ∈ (Base‘𝐻))
496adantr 481 . . . . . 6 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
50 simpr 485 . . . . . 6 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ (Base‘𝑄))
517, 49, 5, 11, 20, 50ghmquskerlem2 32450 . . . . 5 ((𝜑𝑟 ∈ (Base‘𝑄)) → ∃𝑥𝑟 (𝐽𝑟) = (𝐹𝑥))
5248, 51r19.29a 3162 . . . 4 ((𝜑𝑟 ∈ (Base‘𝑄)) → (𝐽𝑟) ∈ (Base‘𝐻))
5319, 21, 52fmpt2d 7108 . . 3 (𝜑𝐽:(Base‘𝑄)⟶(Base‘𝐻))
5437ad6antr 734 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
5550ad5antr 732 . . . . . . . . . . . . 13 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 ∈ (Base‘𝑄))
5633ad6antr 734 . . . . . . . . . . . . 13 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
5755, 56eleqtrrd 2836 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
58 simp-4r 782 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑥𝑟)
59 qsel 8775 . . . . . . . . . . . 12 (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ∧ 𝑥𝑟) → 𝑟 = [𝑥](𝐺 ~QG 𝐾))
6054, 57, 58, 59syl3anc 1371 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 = [𝑥](𝐺 ~QG 𝐾))
61 simp-5r 784 . . . . . . . . . . . . 13 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 ∈ (Base‘𝑄))
6261, 56eleqtrrd 2836 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
63 simplr 767 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑦𝑠)
64 qsel 8775 . . . . . . . . . . . 12 (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ∧ 𝑦𝑠) → 𝑠 = [𝑦](𝐺 ~QG 𝐾))
6554, 62, 63, 64syl3anc 1371 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 = [𝑦](𝐺 ~QG 𝐾))
6660, 65oveq12d 7412 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝑟(+g𝑄)𝑠) = ([𝑥](𝐺 ~QG 𝐾)(+g𝑄)[𝑦](𝐺 ~QG 𝐾)))
6710ad6antr 734 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐾 ∈ (NrmSGrp‘𝐺))
6841ad5antr 732 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑟 ⊆ (Base‘𝐺))
6968, 58sseldd 3980 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑥 ∈ (Base‘𝐺))
7039sselda 3979 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (Base‘𝑄)) → 𝑠 ∈ 𝒫 (Base‘𝐺))
7170elpwid 4606 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺))
7271adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺))
7372ad4antr 730 . . . . . . . . . . . 12 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑠 ⊆ (Base‘𝐺))
7473, 63sseldd 3980 . . . . . . . . . . 11 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝑦 ∈ (Base‘𝐺))
75 eqid 2732 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
7611, 23, 75, 3qusadd 19039 . . . . . . . . . . 11 ((𝐾 ∈ (NrmSGrp‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ([𝑥](𝐺 ~QG 𝐾)(+g𝑄)[𝑦](𝐺 ~QG 𝐾)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝐾))
7767, 69, 74, 76syl3anc 1371 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → ([𝑥](𝐺 ~QG 𝐾)(+g𝑄)[𝑦](𝐺 ~QG 𝐾)) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝐾))
7866, 77eqtrd 2772 . . . . . . . . 9 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝑟(+g𝑄)𝑠) = [(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝐾))
7978fveq2d 6883 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘(𝑟(+g𝑄)𝑠)) = (𝐽‘[(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝐾)))
806ad6antr 734 . . . . . . . . 9 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
8180, 31syl 17 . . . . . . . . . 10 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → 𝐺 ∈ Grp)
8223, 75, 81, 69, 74grpcld 18810 . . . . . . . . 9 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
837, 80, 5, 11, 20, 82ghmquskerlem1 32448 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘[(𝑥(+g𝐺)𝑦)](𝐺 ~QG 𝐾)) = (𝐹‘(𝑥(+g𝐺)𝑦)))
8423, 75, 4ghmlin 19065 . . . . . . . . 9 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝐹‘(𝑥(+g𝐺)𝑦)) = ((𝐹𝑥)(+g𝐻)(𝐹𝑦)))
8580, 69, 74, 84syl3anc 1371 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐹‘(𝑥(+g𝐺)𝑦)) = ((𝐹𝑥)(+g𝐻)(𝐹𝑦)))
8679, 83, 853eqtrd 2776 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘(𝑟(+g𝑄)𝑠)) = ((𝐹𝑥)(+g𝐻)(𝐹𝑦)))
87 simpllr 774 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽𝑟) = (𝐹𝑥))
88 simpr 485 . . . . . . . 8 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽𝑠) = (𝐹𝑦))
8987, 88oveq12d 7412 . . . . . . 7 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → ((𝐽𝑟)(+g𝐻)(𝐽𝑠)) = ((𝐹𝑥)(+g𝐻)(𝐹𝑦)))
9086, 89eqtr4d 2775 . . . . . 6 (((((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑦𝑠) ∧ (𝐽𝑠) = (𝐹𝑦)) → (𝐽‘(𝑟(+g𝑄)𝑠)) = ((𝐽𝑟)(+g𝐻)(𝐽𝑠)))
9149ad3antrrr 728 . . . . . . 7 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
92 simpllr 774 . . . . . . 7 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑠 ∈ (Base‘𝑄))
937, 91, 5, 11, 20, 92ghmquskerlem2 32450 . . . . . 6 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → ∃𝑦𝑠 (𝐽𝑠) = (𝐹𝑦))
9490, 93r19.29a 3162 . . . . 5 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽‘(𝑟(+g𝑄)𝑠)) = ((𝐽𝑟)(+g𝐻)(𝐽𝑠)))
9551adantr 481 . . . . 5 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → ∃𝑥𝑟 (𝐽𝑟) = (𝐹𝑥))
9694, 95r19.29a 3162 . . . 4 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → (𝐽‘(𝑟(+g𝑄)𝑠)) = ((𝐽𝑟)(+g𝐻)(𝐽𝑠)))
9796anasss 467 . . 3 ((𝜑 ∧ (𝑟 ∈ (Base‘𝑄) ∧ 𝑠 ∈ (Base‘𝑄))) → (𝐽‘(𝑟(+g𝑄)𝑠)) = ((𝐽𝑟)(+g𝐻)(𝐽𝑠)))
981, 2, 3, 4, 13, 16, 53, 97isghmd 19069 . 2 (𝜑𝐽 ∈ (𝑄 GrpHom 𝐻))
9932ad4antr 730 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → 𝐺 ∈ Grp)
10010, 34syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ (SubGrp‘𝐺))
101100ad4antr 730 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → 𝐾 ∈ (SubGrp‘𝐺))
10227adantr 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → 𝐹 Fn (Base‘𝐺))
10343adantr 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → 𝑥 ∈ (Base‘𝐺))
10422eqeq1d 2734 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → ((𝐽𝑟) = 0 ↔ (𝐹𝑥) = 0 ))
105104biimpa 477 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → (𝐹𝑥) = 0 )
106 fniniseg 7047 . . . . . . . . . . . . . . . . 17 (𝐹 Fn (Base‘𝐺) → (𝑥 ∈ (𝐹 “ { 0 }) ↔ (𝑥 ∈ (Base‘𝐺) ∧ (𝐹𝑥) = 0 )))
107106biimpar 478 . . . . . . . . . . . . . . . 16 ((𝐹 Fn (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ (𝐹𝑥) = 0 )) → 𝑥 ∈ (𝐹 “ { 0 }))
108102, 103, 105, 107syl12anc 835 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → 𝑥 ∈ (𝐹 “ { 0 }))
109108, 5eleqtrrdi 2844 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → 𝑥𝐾)
11035eqg0el 32399 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ([𝑥](𝐺 ~QG 𝐾) = 𝐾𝑥𝐾))
111110biimpar 478 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ 𝐾 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝐾) → [𝑥](𝐺 ~QG 𝐾) = 𝐾)
11299, 101, 109, 111syl21anc 836 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → [𝑥](𝐺 ~QG 𝐾) = 𝐾)
11337ad4antr 730 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
11433adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ (Base‘𝑄)) → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
11550, 114eleqtrrd 2836 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
116115ad3antrrr 728 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
117 simpllr 774 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → 𝑥𝑟)
118113, 116, 117, 59syl3anc 1371 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → 𝑟 = [𝑥](𝐺 ~QG 𝐾))
119 eqid 2732 . . . . . . . . . . . . . . . 16 (0g𝐺) = (0g𝐺)
12023, 35, 119eqgid 19034 . . . . . . . . . . . . . . 15 (𝐾 ∈ (SubGrp‘𝐺) → [(0g𝐺)](𝐺 ~QG 𝐾) = 𝐾)
121100, 120syl 17 . . . . . . . . . . . . . 14 (𝜑 → [(0g𝐺)](𝐺 ~QG 𝐾) = 𝐾)
122121ad4antr 730 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → [(0g𝐺)](𝐺 ~QG 𝐾) = 𝐾)
123112, 118, 1223eqtr4d 2782 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → 𝑟 = [(0g𝐺)](𝐺 ~QG 𝐾))
12411, 119qus0 19040 . . . . . . . . . . . . . . 15 (𝐾 ∈ (NrmSGrp‘𝐺) → [(0g𝐺)](𝐺 ~QG 𝐾) = (0g𝑄))
12510, 124syl 17 . . . . . . . . . . . . . 14 (𝜑 → [(0g𝐺)](𝐺 ~QG 𝐾) = (0g𝑄))
126125ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → [(0g𝐺)](𝐺 ~QG 𝐾) = (0g𝑄))
127126adantr 481 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → [(0g𝐺)](𝐺 ~QG 𝐾) = (0g𝑄))
128123, 127eqtrd 2772 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → 𝑟 = (0g𝑄))
129126eqeq2d 2743 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑟 = [(0g𝐺)](𝐺 ~QG 𝐾) ↔ 𝑟 = (0g𝑄)))
130129biimpar 478 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑟 = (0g𝑄)) → 𝑟 = [(0g𝐺)](𝐺 ~QG 𝐾))
131130fveq2d 6883 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑟 = (0g𝑄)) → (𝐽𝑟) = (𝐽‘[(0g𝐺)](𝐺 ~QG 𝐾)))
13249ad3antrrr 728 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑟 = (0g𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
13323, 119grpidcl 18827 . . . . . . . . . . . . . . 15 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
13432, 133syl 17 . . . . . . . . . . . . . 14 (𝜑 → (0g𝐺) ∈ (Base‘𝐺))
135134ad4antr 730 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑟 = (0g𝑄)) → (0g𝐺) ∈ (Base‘𝐺))
1367, 132, 5, 11, 20, 135ghmquskerlem1 32448 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑟 = (0g𝑄)) → (𝐽‘[(0g𝐺)](𝐺 ~QG 𝐾)) = (𝐹‘(0g𝐺)))
137119, 7ghmid 19066 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹‘(0g𝐺)) = 0 )
1386, 137syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐹‘(0g𝐺)) = 0 )
139138ad4antr 730 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑟 = (0g𝑄)) → (𝐹‘(0g𝐺)) = 0 )
140131, 136, 1393eqtrd 2776 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑟 = (0g𝑄)) → (𝐽𝑟) = 0 )
141128, 140impbida 799 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → ((𝐽𝑟) = 0𝑟 = (0g𝑄)))
142141, 51r19.29a 3162 . . . . . . . . 9 ((𝜑𝑟 ∈ (Base‘𝑄)) → ((𝐽𝑟) = 0𝑟 = (0g𝑄)))
143142pm5.32da 579 . . . . . . . 8 (𝜑 → ((𝑟 ∈ (Base‘𝑄) ∧ (𝐽𝑟) = 0 ) ↔ (𝑟 ∈ (Base‘𝑄) ∧ 𝑟 = (0g𝑄))))
144 simpr 485 . . . . . . . . . . 11 ((𝜑𝑟 = (0g𝑄)) → 𝑟 = (0g𝑄))
145 eqid 2732 . . . . . . . . . . . . . 14 (0g𝑄) = (0g𝑄)
1461, 145grpidcl 18827 . . . . . . . . . . . . 13 (𝑄 ∈ Grp → (0g𝑄) ∈ (Base‘𝑄))
14713, 146syl 17 . . . . . . . . . . . 12 (𝜑 → (0g𝑄) ∈ (Base‘𝑄))
148147adantr 481 . . . . . . . . . . 11 ((𝜑𝑟 = (0g𝑄)) → (0g𝑄) ∈ (Base‘𝑄))
149144, 148eqeltrd 2833 . . . . . . . . . 10 ((𝜑𝑟 = (0g𝑄)) → 𝑟 ∈ (Base‘𝑄))
150149ex 413 . . . . . . . . 9 (𝜑 → (𝑟 = (0g𝑄) → 𝑟 ∈ (Base‘𝑄)))
151150pm4.71rd 563 . . . . . . . 8 (𝜑 → (𝑟 = (0g𝑄) ↔ (𝑟 ∈ (Base‘𝑄) ∧ 𝑟 = (0g𝑄))))
152143, 151bitr4d 281 . . . . . . 7 (𝜑 → ((𝑟 ∈ (Base‘𝑄) ∧ (𝐽𝑟) = 0 ) ↔ 𝑟 = (0g𝑄)))
15353ffnd 6706 . . . . . . . 8 (𝜑𝐽 Fn (Base‘𝑄))
154 fniniseg 7047 . . . . . . . 8 (𝐽 Fn (Base‘𝑄) → (𝑟 ∈ (𝐽 “ { 0 }) ↔ (𝑟 ∈ (Base‘𝑄) ∧ (𝐽𝑟) = 0 )))
155153, 154syl 17 . . . . . . 7 (𝜑 → (𝑟 ∈ (𝐽 “ { 0 }) ↔ (𝑟 ∈ (Base‘𝑄) ∧ (𝐽𝑟) = 0 )))
156 velsn 4639 . . . . . . . 8 (𝑟 ∈ {(0g𝑄)} ↔ 𝑟 = (0g𝑄))
157156a1i 11 . . . . . . 7 (𝜑 → (𝑟 ∈ {(0g𝑄)} ↔ 𝑟 = (0g𝑄)))
158152, 155, 1573bitr4d 310 . . . . . 6 (𝜑 → (𝑟 ∈ (𝐽 “ { 0 }) ↔ 𝑟 ∈ {(0g𝑄)}))
159158eqrdv 2730 . . . . 5 (𝜑 → (𝐽 “ { 0 }) = {(0g𝑄)})
1601, 2, 145, 7kerf1ghm 20234 . . . . . 6 (𝐽 ∈ (𝑄 GrpHom 𝐻) → (𝐽:(Base‘𝑄)–1-1→(Base‘𝐻) ↔ (𝐽 “ { 0 }) = {(0g𝑄)}))
161160biimpar 478 . . . . 5 ((𝐽 ∈ (𝑄 GrpHom 𝐻) ∧ (𝐽 “ { 0 }) = {(0g𝑄)}) → 𝐽:(Base‘𝑄)–1-1→(Base‘𝐻))
16298, 159, 161syl2anc 584 . . . 4 (𝜑𝐽:(Base‘𝑄)–1-1→(Base‘𝐻))
163 f1f1orn 6832 . . . 4 (𝐽:(Base‘𝑄)–1-1→(Base‘𝐻) → 𝐽:(Base‘𝑄)–1-1-onto→ran 𝐽)
164162, 163syl 17 . . 3 (𝜑𝐽:(Base‘𝑄)–1-1-onto→ran 𝐽)
165 simpr 485 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺))
166 ovex 7427 . . . . . . . . . . 11 (𝐺 ~QG 𝐾) ∈ V
167166ecelqsi 8752 . . . . . . . . . 10 (𝑥 ∈ (Base‘𝐺) → [𝑥](𝐺 ~QG 𝐾) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
168165, 167syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐺)) → [𝑥](𝐺 ~QG 𝐾) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
16933adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐺)) → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
170168, 169eleqtrd 2835 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐺)) → [𝑥](𝐺 ~QG 𝐾) ∈ (Base‘𝑄))
171 elqsi 8749 . . . . . . . . 9 (𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) → ∃𝑥 ∈ (Base‘𝐺)𝑟 = [𝑥](𝐺 ~QG 𝐾))
172115, 171syl 17 . . . . . . . 8 ((𝜑𝑟 ∈ (Base‘𝑄)) → ∃𝑥 ∈ (Base‘𝐺)𝑟 = [𝑥](𝐺 ~QG 𝐾))
173 simpr 485 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑟 = [𝑥](𝐺 ~QG 𝐾)) → 𝑟 = [𝑥](𝐺 ~QG 𝐾))
174173fveq2d 6883 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑟 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽𝑟) = (𝐽‘[𝑥](𝐺 ~QG 𝐾)))
1756adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝐺)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
1767, 175, 5, 11, 20, 165ghmquskerlem1 32448 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝐺)) → (𝐽‘[𝑥](𝐺 ~QG 𝐾)) = (𝐹𝑥))
177176adantr 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑟 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽‘[𝑥](𝐺 ~QG 𝐾)) = (𝐹𝑥))
178174, 177eqtrd 2772 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑟 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽𝑟) = (𝐹𝑥))
1791783impa 1110 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐺) ∧ 𝑟 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽𝑟) = (𝐹𝑥))
180179eqeq1d 2734 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐺) ∧ 𝑟 = [𝑥](𝐺 ~QG 𝐾)) → ((𝐽𝑟) = 𝑦 ↔ (𝐹𝑥) = 𝑦))
181170, 172, 180rexxfrd2 5405 . . . . . . 7 (𝜑 → (∃𝑟 ∈ (Base‘𝑄)(𝐽𝑟) = 𝑦 ↔ ∃𝑥 ∈ (Base‘𝐺)(𝐹𝑥) = 𝑦))
182 fvelrnb 6940 . . . . . . . 8 (𝐽 Fn (Base‘𝑄) → (𝑦 ∈ ran 𝐽 ↔ ∃𝑟 ∈ (Base‘𝑄)(𝐽𝑟) = 𝑦))
183153, 182syl 17 . . . . . . 7 (𝜑 → (𝑦 ∈ ran 𝐽 ↔ ∃𝑟 ∈ (Base‘𝑄)(𝐽𝑟) = 𝑦))
184 fvelrnb 6940 . . . . . . . 8 (𝐹 Fn (Base‘𝐺) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ (Base‘𝐺)(𝐹𝑥) = 𝑦))
18526, 184syl 17 . . . . . . 7 (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ (Base‘𝐺)(𝐹𝑥) = 𝑦))
186181, 183, 1853bitr4rd 311 . . . . . 6 (𝜑 → (𝑦 ∈ ran 𝐹𝑦 ∈ ran 𝐽))
187186eqrdv 2730 . . . . 5 (𝜑 → ran 𝐹 = ran 𝐽)
188187, 45eqtr3d 2774 . . . 4 (𝜑 → ran 𝐽 = (Base‘𝐻))
189188f1oeq3d 6818 . . 3 (𝜑 → (𝐽:(Base‘𝑄)–1-1-onto→ran 𝐽𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻)))
190164, 189mpbid 231 . 2 (𝜑𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻))
1911, 2isgim 19104 . 2 (𝐽 ∈ (𝑄 GrpIso 𝐻) ↔ (𝐽 ∈ (𝑄 GrpHom 𝐻) ∧ 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻)))
19298, 190, 191sylanbrc 583 1 (𝜑𝐽 ∈ (𝑄 GrpIso 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3070  Vcvv 3474  wss 3945  𝒫 cpw 4597  {csn 4623   cuni 4902  cmpt 5225  ccnv 5669  ran crn 5671  cima 5673   Fn wfn 6528  wf 6529  1-1wf1 6530  1-1-ontowf1o 6532  cfv 6533  (class class class)co 7394   Er wer 8685  [cec 8686   / cqs 8687  Basecbs 17128  +gcplusg 17181  0gc0g 17369   /s cqus 17435  Grpcgrp 18796  SubGrpcsubg 18974  NrmSGrpcnsg 18975   ~QG cqg 18976   GrpHom cghm 19057   GrpIso cgim 19099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7840  df-1st 7959  df-2nd 7960  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-1o 8450  df-er 8688  df-ec 8690  df-qs 8694  df-en 8925  df-dom 8926  df-sdom 8927  df-fin 8928  df-sup 9421  df-inf 9422  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-nn 12197  df-2 12259  df-3 12260  df-4 12261  df-5 12262  df-6 12263  df-7 12264  df-8 12265  df-9 12266  df-n0 12457  df-z 12543  df-dec 12662  df-uz 12807  df-fz 13469  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17129  df-ress 17158  df-plusg 17194  df-mulr 17195  df-sca 17197  df-vsca 17198  df-ip 17199  df-tset 17200  df-ple 17201  df-ds 17203  df-0g 17371  df-imas 17438  df-qus 17439  df-mgm 18545  df-sgrp 18594  df-mnd 18605  df-submnd 18650  df-grp 18799  df-minusg 18800  df-sbg 18801  df-subg 18977  df-nsg 18978  df-eqg 18979  df-ghm 19058  df-gim 19101
This theorem is referenced by:  gicqusker  32452  lmhmqusker  32453  rhmqusker  32459
  Copyright terms: Public domain W3C validator