Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . 3
⊢
(Base‘𝑄) =
(Base‘𝑄) |
2 | | eqid 2732 |
. . 3
⊢
(Base‘𝐻) =
(Base‘𝐻) |
3 | | eqid 2732 |
. . 3
⊢
(+g‘𝑄) = (+g‘𝑄) |
4 | | eqid 2732 |
. . 3
⊢
(+g‘𝐻) = (+g‘𝐻) |
5 | | ghmqusker.k |
. . . . 5
⊢ 𝐾 = (◡𝐹 “ { 0 }) |
6 | | ghmqusker.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
7 | | ghmqusker.1 |
. . . . . . 7
⊢ 0 =
(0g‘𝐻) |
8 | 7 | ghmker 19086 |
. . . . . 6
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → (◡𝐹 “ { 0 }) ∈
(NrmSGrp‘𝐺)) |
9 | 6, 8 | syl 17 |
. . . . 5
⊢ (𝜑 → (◡𝐹 “ { 0 }) ∈
(NrmSGrp‘𝐺)) |
10 | 5, 9 | eqeltrid 2837 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ (NrmSGrp‘𝐺)) |
11 | | ghmqusker.q |
. . . . 5
⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) |
12 | 11 | qusgrp 19037 |
. . . 4
⊢ (𝐾 ∈ (NrmSGrp‘𝐺) → 𝑄 ∈ Grp) |
13 | 10, 12 | syl 17 |
. . 3
⊢ (𝜑 → 𝑄 ∈ Grp) |
14 | | ghmrn 19073 |
. . . 4
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → ran 𝐹 ∈ (SubGrp‘𝐻)) |
15 | | subgrcl 18985 |
. . . 4
⊢ (ran
𝐹 ∈
(SubGrp‘𝐻) →
𝐻 ∈
Grp) |
16 | 6, 14, 15 | 3syl 18 |
. . 3
⊢ (𝜑 → 𝐻 ∈ Grp) |
17 | 6 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑞 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
18 | 17 | imaexd 31838 |
. . . . 5
⊢ ((𝜑 ∧ 𝑞 ∈ (Base‘𝑄)) → (𝐹 “ 𝑞) ∈ V) |
19 | 18 | uniexd 7716 |
. . . 4
⊢ ((𝜑 ∧ 𝑞 ∈ (Base‘𝑄)) → ∪
(𝐹 “ 𝑞) ∈ V) |
20 | | ghmqusker.j |
. . . . 5
⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪
(𝐹 “ 𝑞)) |
21 | 20 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪
(𝐹 “ 𝑞))) |
22 | | simpr 485 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐽‘𝑟) = (𝐹‘𝑥)) |
23 | | eqid 2732 |
. . . . . . . . . . . 12
⊢
(Base‘𝐺) =
(Base‘𝐺) |
24 | 23, 2 | ghmf 19064 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
25 | 6, 24 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:(Base‘𝐺)⟶(Base‘𝐻)) |
26 | 25 | ffnd 6706 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 Fn (Base‘𝐺)) |
27 | 26 | ad3antrrr 728 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝐹 Fn (Base‘𝐺)) |
28 | 11 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))) |
29 | | eqidd 2733 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) |
30 | | ovexd 7429 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐺 ~QG 𝐾) ∈ V) |
31 | | ghmgrp1 19062 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp) |
32 | 6, 31 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 ∈ Grp) |
33 | 28, 29, 30, 32 | qusbas 17475 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
34 | | nsgsubg 19012 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (NrmSGrp‘𝐺) → 𝐾 ∈ (SubGrp‘𝐺)) |
35 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾) |
36 | 23, 35 | eqger 19032 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
37 | 10, 34, 36 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
38 | 37 | qsss 8757 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ⊆ 𝒫 (Base‘𝐺)) |
39 | 33, 38 | eqsstrrd 4018 |
. . . . . . . . . . . 12
⊢ (𝜑 → (Base‘𝑄) ⊆ 𝒫
(Base‘𝐺)) |
40 | 39 | sselda 3979 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ 𝒫 (Base‘𝐺)) |
41 | 40 | elpwid 4606 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ⊆ (Base‘𝐺)) |
42 | 41 | sselda 3979 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) → 𝑥 ∈ (Base‘𝐺)) |
43 | 42 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑥 ∈ (Base‘𝐺)) |
44 | 27, 43 | fnfvelrnd 7070 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐹‘𝑥) ∈ ran 𝐹) |
45 | | ghmqusker.s |
. . . . . . . 8
⊢ (𝜑 → ran 𝐹 = (Base‘𝐻)) |
46 | 45 | ad3antrrr 728 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → ran 𝐹 = (Base‘𝐻)) |
47 | 44, 46 | eleqtrd 2835 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐹‘𝑥) ∈ (Base‘𝐻)) |
48 | 22, 47 | eqeltrd 2833 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐽‘𝑟) ∈ (Base‘𝐻)) |
49 | 6 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
50 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ (Base‘𝑄)) |
51 | 7, 49, 5, 11, 20, 50 | ghmquskerlem2 32450 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → ∃𝑥 ∈ 𝑟 (𝐽‘𝑟) = (𝐹‘𝑥)) |
52 | 48, 51 | r19.29a 3162 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → (𝐽‘𝑟) ∈ (Base‘𝐻)) |
53 | 19, 21, 52 | fmpt2d 7108 |
. . 3
⊢ (𝜑 → 𝐽:(Base‘𝑄)⟶(Base‘𝐻)) |
54 | 37 | ad6antr 734 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
55 | 50 | ad5antr 732 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑟 ∈ (Base‘𝑄)) |
56 | 33 | ad6antr 734 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
57 | 55, 56 | eleqtrrd 2836 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) |
58 | | simp-4r 782 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑥 ∈ 𝑟) |
59 | | qsel 8775 |
. . . . . . . . . . . 12
⊢ (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ∧ 𝑥 ∈ 𝑟) → 𝑟 = [𝑥](𝐺 ~QG 𝐾)) |
60 | 54, 57, 58, 59 | syl3anc 1371 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑟 = [𝑥](𝐺 ~QG 𝐾)) |
61 | | simp-5r 784 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑠 ∈ (Base‘𝑄)) |
62 | 61, 56 | eleqtrrd 2836 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) |
63 | | simplr 767 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑦 ∈ 𝑠) |
64 | | qsel 8775 |
. . . . . . . . . . . 12
⊢ (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑠 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ∧ 𝑦 ∈ 𝑠) → 𝑠 = [𝑦](𝐺 ~QG 𝐾)) |
65 | 54, 62, 63, 64 | syl3anc 1371 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑠 = [𝑦](𝐺 ~QG 𝐾)) |
66 | 60, 65 | oveq12d 7412 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝑟(+g‘𝑄)𝑠) = ([𝑥](𝐺 ~QG 𝐾)(+g‘𝑄)[𝑦](𝐺 ~QG 𝐾))) |
67 | 10 | ad6antr 734 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝐾 ∈ (NrmSGrp‘𝐺)) |
68 | 41 | ad5antr 732 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑟 ⊆ (Base‘𝐺)) |
69 | 68, 58 | sseldd 3980 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑥 ∈ (Base‘𝐺)) |
70 | 39 | sselda 3979 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑠 ∈ 𝒫 (Base‘𝐺)) |
71 | 70 | elpwid 4606 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺)) |
72 | 71 | adantlr 713 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → 𝑠 ⊆ (Base‘𝐺)) |
73 | 72 | ad4antr 730 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑠 ⊆ (Base‘𝐺)) |
74 | 73, 63 | sseldd 3980 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝑦 ∈ (Base‘𝐺)) |
75 | | eqid 2732 |
. . . . . . . . . . . 12
⊢
(+g‘𝐺) = (+g‘𝐺) |
76 | 11, 23, 75, 3 | qusadd 19039 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ (NrmSGrp‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ([𝑥](𝐺 ~QG 𝐾)(+g‘𝑄)[𝑦](𝐺 ~QG 𝐾)) = [(𝑥(+g‘𝐺)𝑦)](𝐺 ~QG 𝐾)) |
77 | 67, 69, 74, 76 | syl3anc 1371 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → ([𝑥](𝐺 ~QG 𝐾)(+g‘𝑄)[𝑦](𝐺 ~QG 𝐾)) = [(𝑥(+g‘𝐺)𝑦)](𝐺 ~QG 𝐾)) |
78 | 66, 77 | eqtrd 2772 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝑟(+g‘𝑄)𝑠) = [(𝑥(+g‘𝐺)𝑦)](𝐺 ~QG 𝐾)) |
79 | 78 | fveq2d 6883 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘(𝑟(+g‘𝑄)𝑠)) = (𝐽‘[(𝑥(+g‘𝐺)𝑦)](𝐺 ~QG 𝐾))) |
80 | 6 | ad6antr 734 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
81 | 80, 31 | syl 17 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → 𝐺 ∈ Grp) |
82 | 23, 75, 81, 69, 74 | grpcld 18810 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
83 | 7, 80, 5, 11, 20, 82 | ghmquskerlem1 32448 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘[(𝑥(+g‘𝐺)𝑦)](𝐺 ~QG 𝐾)) = (𝐹‘(𝑥(+g‘𝐺)𝑦))) |
84 | 23, 75, 4 | ghmlin 19065 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝐹‘(𝑥(+g‘𝐺)𝑦)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝑦))) |
85 | 80, 69, 74, 84 | syl3anc 1371 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐹‘(𝑥(+g‘𝐺)𝑦)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝑦))) |
86 | 79, 83, 85 | 3eqtrd 2776 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘(𝑟(+g‘𝑄)𝑠)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝑦))) |
87 | | simpllr 774 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘𝑟) = (𝐹‘𝑥)) |
88 | | simpr 485 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘𝑠) = (𝐹‘𝑦)) |
89 | 87, 88 | oveq12d 7412 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → ((𝐽‘𝑟)(+g‘𝐻)(𝐽‘𝑠)) = ((𝐹‘𝑥)(+g‘𝐻)(𝐹‘𝑦))) |
90 | 86, 89 | eqtr4d 2775 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑦 ∈ 𝑠) ∧ (𝐽‘𝑠) = (𝐹‘𝑦)) → (𝐽‘(𝑟(+g‘𝑄)𝑠)) = ((𝐽‘𝑟)(+g‘𝐻)(𝐽‘𝑠))) |
91 | 49 | ad3antrrr 728 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
92 | | simpllr 774 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → 𝑠 ∈ (Base‘𝑄)) |
93 | 7, 91, 5, 11, 20, 92 | ghmquskerlem2 32450 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → ∃𝑦 ∈ 𝑠 (𝐽‘𝑠) = (𝐹‘𝑦)) |
94 | 90, 93 | r19.29a 3162 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝐽‘(𝑟(+g‘𝑄)𝑠)) = ((𝐽‘𝑟)(+g‘𝐻)(𝐽‘𝑠))) |
95 | 51 | adantr 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → ∃𝑥 ∈ 𝑟 (𝐽‘𝑟) = (𝐹‘𝑥)) |
96 | 94, 95 | r19.29a 3162 |
. . . 4
⊢ (((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑠 ∈ (Base‘𝑄)) → (𝐽‘(𝑟(+g‘𝑄)𝑠)) = ((𝐽‘𝑟)(+g‘𝐻)(𝐽‘𝑠))) |
97 | 96 | anasss 467 |
. . 3
⊢ ((𝜑 ∧ (𝑟 ∈ (Base‘𝑄) ∧ 𝑠 ∈ (Base‘𝑄))) → (𝐽‘(𝑟(+g‘𝑄)𝑠)) = ((𝐽‘𝑟)(+g‘𝐻)(𝐽‘𝑠))) |
98 | 1, 2, 3, 4, 13, 16, 53, 97 | isghmd 19069 |
. 2
⊢ (𝜑 → 𝐽 ∈ (𝑄 GrpHom 𝐻)) |
99 | 32 | ad4antr 730 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → 𝐺 ∈ Grp) |
100 | 10, 34 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 ∈ (SubGrp‘𝐺)) |
101 | 100 | ad4antr 730 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → 𝐾 ∈ (SubGrp‘𝐺)) |
102 | 27 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → 𝐹 Fn (Base‘𝐺)) |
103 | 43 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → 𝑥 ∈ (Base‘𝐺)) |
104 | 22 | eqeq1d 2734 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → ((𝐽‘𝑟) = 0 ↔ (𝐹‘𝑥) = 0 )) |
105 | 104 | biimpa 477 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → (𝐹‘𝑥) = 0 ) |
106 | | fniniseg 7047 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 Fn (Base‘𝐺) → (𝑥 ∈ (◡𝐹 “ { 0 }) ↔ (𝑥 ∈ (Base‘𝐺) ∧ (𝐹‘𝑥) = 0 ))) |
107 | 106 | biimpar 478 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 Fn (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ (𝐹‘𝑥) = 0 )) → 𝑥 ∈ (◡𝐹 “ { 0 })) |
108 | 102, 103,
105, 107 | syl12anc 835 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → 𝑥 ∈ (◡𝐹 “ { 0 })) |
109 | 108, 5 | eleqtrrdi 2844 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → 𝑥 ∈ 𝐾) |
110 | 35 | eqg0el 32399 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ Grp ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ([𝑥](𝐺 ~QG 𝐾) = 𝐾 ↔ 𝑥 ∈ 𝐾)) |
111 | 110 | biimpar 478 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ Grp ∧ 𝐾 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝐾) → [𝑥](𝐺 ~QG 𝐾) = 𝐾) |
112 | 99, 101, 109, 111 | syl21anc 836 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → [𝑥](𝐺 ~QG 𝐾) = 𝐾) |
113 | 37 | ad4antr 730 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → (𝐺 ~QG 𝐾) Er (Base‘𝐺)) |
114 | 33 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
115 | 50, 114 | eleqtrrd 2836 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) |
116 | 115 | ad3antrrr 728 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) |
117 | | simpllr 774 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → 𝑥 ∈ 𝑟) |
118 | 113, 116,
117, 59 | syl3anc 1371 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → 𝑟 = [𝑥](𝐺 ~QG 𝐾)) |
119 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
⊢
(0g‘𝐺) = (0g‘𝐺) |
120 | 23, 35, 119 | eqgid 19034 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (SubGrp‘𝐺) →
[(0g‘𝐺)](𝐺 ~QG 𝐾) = 𝐾) |
121 | 100, 120 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
[(0g‘𝐺)](𝐺 ~QG 𝐾) = 𝐾) |
122 | 121 | ad4antr 730 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) →
[(0g‘𝐺)](𝐺 ~QG 𝐾) = 𝐾) |
123 | 112, 118,
122 | 3eqtr4d 2782 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → 𝑟 = [(0g‘𝐺)](𝐺 ~QG 𝐾)) |
124 | 11, 119 | qus0 19040 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ (NrmSGrp‘𝐺) →
[(0g‘𝐺)](𝐺 ~QG 𝐾) = (0g‘𝑄)) |
125 | 10, 124 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 →
[(0g‘𝐺)](𝐺 ~QG 𝐾) = (0g‘𝑄)) |
126 | 125 | ad3antrrr 728 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → [(0g‘𝐺)](𝐺 ~QG 𝐾) = (0g‘𝑄)) |
127 | 126 | adantr 481 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) →
[(0g‘𝐺)](𝐺 ~QG 𝐾) = (0g‘𝑄)) |
128 | 123, 127 | eqtrd 2772 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ (𝐽‘𝑟) = 0 ) → 𝑟 = (0g‘𝑄)) |
129 | 126 | eqeq2d 2743 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → (𝑟 = [(0g‘𝐺)](𝐺 ~QG 𝐾) ↔ 𝑟 = (0g‘𝑄))) |
130 | 129 | biimpar 478 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑟 = (0g‘𝑄)) → 𝑟 = [(0g‘𝐺)](𝐺 ~QG 𝐾)) |
131 | 130 | fveq2d 6883 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑟 = (0g‘𝑄)) → (𝐽‘𝑟) = (𝐽‘[(0g‘𝐺)](𝐺 ~QG 𝐾))) |
132 | 49 | ad3antrrr 728 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑟 = (0g‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
133 | 23, 119 | grpidcl 18827 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ (Base‘𝐺)) |
134 | 32, 133 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0g‘𝐺) ∈ (Base‘𝐺)) |
135 | 134 | ad4antr 730 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑟 = (0g‘𝑄)) → (0g‘𝐺) ∈ (Base‘𝐺)) |
136 | 7, 132, 5, 11, 20, 135 | ghmquskerlem1 32448 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑟 = (0g‘𝑄)) → (𝐽‘[(0g‘𝐺)](𝐺 ~QG 𝐾)) = (𝐹‘(0g‘𝐺))) |
137 | 119, 7 | ghmid 19066 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹‘(0g‘𝐺)) = 0 ) |
138 | 6, 137 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹‘(0g‘𝐺)) = 0 ) |
139 | 138 | ad4antr 730 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑟 = (0g‘𝑄)) → (𝐹‘(0g‘𝐺)) = 0 ) |
140 | 131, 136,
139 | 3eqtrd 2776 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) ∧ 𝑟 = (0g‘𝑄)) → (𝐽‘𝑟) = 0 ) |
141 | 128, 140 | impbida 799 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) ∧ 𝑥 ∈ 𝑟) ∧ (𝐽‘𝑟) = (𝐹‘𝑥)) → ((𝐽‘𝑟) = 0 ↔ 𝑟 = (0g‘𝑄))) |
142 | 141, 51 | r19.29a 3162 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → ((𝐽‘𝑟) = 0 ↔ 𝑟 = (0g‘𝑄))) |
143 | 142 | pm5.32da 579 |
. . . . . . . 8
⊢ (𝜑 → ((𝑟 ∈ (Base‘𝑄) ∧ (𝐽‘𝑟) = 0 ) ↔ (𝑟 ∈ (Base‘𝑄) ∧ 𝑟 = (0g‘𝑄)))) |
144 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑟 = (0g‘𝑄)) → 𝑟 = (0g‘𝑄)) |
145 | | eqid 2732 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝑄) = (0g‘𝑄) |
146 | 1, 145 | grpidcl 18827 |
. . . . . . . . . . . . 13
⊢ (𝑄 ∈ Grp →
(0g‘𝑄)
∈ (Base‘𝑄)) |
147 | 13, 146 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0g‘𝑄) ∈ (Base‘𝑄)) |
148 | 147 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑟 = (0g‘𝑄)) → (0g‘𝑄) ∈ (Base‘𝑄)) |
149 | 144, 148 | eqeltrd 2833 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 = (0g‘𝑄)) → 𝑟 ∈ (Base‘𝑄)) |
150 | 149 | ex 413 |
. . . . . . . . 9
⊢ (𝜑 → (𝑟 = (0g‘𝑄) → 𝑟 ∈ (Base‘𝑄))) |
151 | 150 | pm4.71rd 563 |
. . . . . . . 8
⊢ (𝜑 → (𝑟 = (0g‘𝑄) ↔ (𝑟 ∈ (Base‘𝑄) ∧ 𝑟 = (0g‘𝑄)))) |
152 | 143, 151 | bitr4d 281 |
. . . . . . 7
⊢ (𝜑 → ((𝑟 ∈ (Base‘𝑄) ∧ (𝐽‘𝑟) = 0 ) ↔ 𝑟 = (0g‘𝑄))) |
153 | 53 | ffnd 6706 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 Fn (Base‘𝑄)) |
154 | | fniniseg 7047 |
. . . . . . . 8
⊢ (𝐽 Fn (Base‘𝑄) → (𝑟 ∈ (◡𝐽 “ { 0 }) ↔ (𝑟 ∈ (Base‘𝑄) ∧ (𝐽‘𝑟) = 0 ))) |
155 | 153, 154 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑟 ∈ (◡𝐽 “ { 0 }) ↔ (𝑟 ∈ (Base‘𝑄) ∧ (𝐽‘𝑟) = 0 ))) |
156 | | velsn 4639 |
. . . . . . . 8
⊢ (𝑟 ∈
{(0g‘𝑄)}
↔ 𝑟 =
(0g‘𝑄)) |
157 | 156 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝑟 ∈ {(0g‘𝑄)} ↔ 𝑟 = (0g‘𝑄))) |
158 | 152, 155,
157 | 3bitr4d 310 |
. . . . . 6
⊢ (𝜑 → (𝑟 ∈ (◡𝐽 “ { 0 }) ↔ 𝑟 ∈
{(0g‘𝑄)})) |
159 | 158 | eqrdv 2730 |
. . . . 5
⊢ (𝜑 → (◡𝐽 “ { 0 }) =
{(0g‘𝑄)}) |
160 | 1, 2, 145, 7 | kerf1ghm 20234 |
. . . . . 6
⊢ (𝐽 ∈ (𝑄 GrpHom 𝐻) → (𝐽:(Base‘𝑄)–1-1→(Base‘𝐻) ↔ (◡𝐽 “ { 0 }) =
{(0g‘𝑄)})) |
161 | 160 | biimpar 478 |
. . . . 5
⊢ ((𝐽 ∈ (𝑄 GrpHom 𝐻) ∧ (◡𝐽 “ { 0 }) =
{(0g‘𝑄)})
→ 𝐽:(Base‘𝑄)–1-1→(Base‘𝐻)) |
162 | 98, 159, 161 | syl2anc 584 |
. . . 4
⊢ (𝜑 → 𝐽:(Base‘𝑄)–1-1→(Base‘𝐻)) |
163 | | f1f1orn 6832 |
. . . 4
⊢ (𝐽:(Base‘𝑄)–1-1→(Base‘𝐻) → 𝐽:(Base‘𝑄)–1-1-onto→ran
𝐽) |
164 | 162, 163 | syl 17 |
. . 3
⊢ (𝜑 → 𝐽:(Base‘𝑄)–1-1-onto→ran
𝐽) |
165 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺)) |
166 | | ovex 7427 |
. . . . . . . . . . 11
⊢ (𝐺 ~QG 𝐾) ∈ V |
167 | 166 | ecelqsi 8752 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (Base‘𝐺) → [𝑥](𝐺 ~QG 𝐾) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) |
168 | 165, 167 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → [𝑥](𝐺 ~QG 𝐾) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾))) |
169 | 33 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄)) |
170 | 168, 169 | eleqtrd 2835 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → [𝑥](𝐺 ~QG 𝐾) ∈ (Base‘𝑄)) |
171 | | elqsi 8749 |
. . . . . . . . 9
⊢ (𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) → ∃𝑥 ∈ (Base‘𝐺)𝑟 = [𝑥](𝐺 ~QG 𝐾)) |
172 | 115, 171 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 ∈ (Base‘𝑄)) → ∃𝑥 ∈ (Base‘𝐺)𝑟 = [𝑥](𝐺 ~QG 𝐾)) |
173 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑟 = [𝑥](𝐺 ~QG 𝐾)) → 𝑟 = [𝑥](𝐺 ~QG 𝐾)) |
174 | 173 | fveq2d 6883 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑟 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽‘𝑟) = (𝐽‘[𝑥](𝐺 ~QG 𝐾))) |
175 | 6 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
176 | 7, 175, 5, 11, 20, 165 | ghmquskerlem1 32448 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → (𝐽‘[𝑥](𝐺 ~QG 𝐾)) = (𝐹‘𝑥)) |
177 | 176 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑟 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽‘[𝑥](𝐺 ~QG 𝐾)) = (𝐹‘𝑥)) |
178 | 174, 177 | eqtrd 2772 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑟 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽‘𝑟) = (𝐹‘𝑥)) |
179 | 178 | 3impa 1110 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑟 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽‘𝑟) = (𝐹‘𝑥)) |
180 | 179 | eqeq1d 2734 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑟 = [𝑥](𝐺 ~QG 𝐾)) → ((𝐽‘𝑟) = 𝑦 ↔ (𝐹‘𝑥) = 𝑦)) |
181 | 170, 172,
180 | rexxfrd2 5405 |
. . . . . . 7
⊢ (𝜑 → (∃𝑟 ∈ (Base‘𝑄)(𝐽‘𝑟) = 𝑦 ↔ ∃𝑥 ∈ (Base‘𝐺)(𝐹‘𝑥) = 𝑦)) |
182 | | fvelrnb 6940 |
. . . . . . . 8
⊢ (𝐽 Fn (Base‘𝑄) → (𝑦 ∈ ran 𝐽 ↔ ∃𝑟 ∈ (Base‘𝑄)(𝐽‘𝑟) = 𝑦)) |
183 | 153, 182 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ ran 𝐽 ↔ ∃𝑟 ∈ (Base‘𝑄)(𝐽‘𝑟) = 𝑦)) |
184 | | fvelrnb 6940 |
. . . . . . . 8
⊢ (𝐹 Fn (Base‘𝐺) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ (Base‘𝐺)(𝐹‘𝑥) = 𝑦)) |
185 | 26, 184 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ (Base‘𝐺)(𝐹‘𝑥) = 𝑦)) |
186 | 181, 183,
185 | 3bitr4rd 311 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ ran 𝐹 ↔ 𝑦 ∈ ran 𝐽)) |
187 | 186 | eqrdv 2730 |
. . . . 5
⊢ (𝜑 → ran 𝐹 = ran 𝐽) |
188 | 187, 45 | eqtr3d 2774 |
. . . 4
⊢ (𝜑 → ran 𝐽 = (Base‘𝐻)) |
189 | 188 | f1oeq3d 6818 |
. . 3
⊢ (𝜑 → (𝐽:(Base‘𝑄)–1-1-onto→ran
𝐽 ↔ 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻))) |
190 | 164, 189 | mpbid 231 |
. 2
⊢ (𝜑 → 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻)) |
191 | 1, 2 | isgim 19104 |
. 2
⊢ (𝐽 ∈ (𝑄 GrpIso 𝐻) ↔ (𝐽 ∈ (𝑄 GrpHom 𝐻) ∧ 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻))) |
192 | 98, 190, 191 | sylanbrc 583 |
1
⊢ (𝜑 → 𝐽 ∈ (𝑄 GrpIso 𝐻)) |