MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmqusker Structured version   Visualization version   GIF version

Theorem ghmqusker 19219
Description: A surjective group homomorphism 𝐹 from 𝐺 to 𝐻 induces an isomorphism 𝐽 from 𝑄 to 𝐻, where 𝑄 is the factor group of 𝐺 by 𝐹's kernel 𝐾. (Contributed by Thierry Arnoux, 15-Feb-2025.)
Hypotheses
Ref Expression
ghmqusker.1 0 = (0g𝐻)
ghmqusker.f (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
ghmqusker.k 𝐾 = (𝐹 “ { 0 })
ghmqusker.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
ghmqusker.j 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
ghmqusker.s (𝜑 → ran 𝐹 = (Base‘𝐻))
Assertion
Ref Expression
ghmqusker (𝜑𝐽 ∈ (𝑄 GrpIso 𝐻))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞   𝐻,𝑞   𝐽,𝑞   𝐾,𝑞   𝑄,𝑞   𝜑,𝑞
Allowed substitution hint:   0 (𝑞)

Proof of Theorem ghmqusker
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmqusker.1 . . 3 0 = (0g𝐻)
2 ghmqusker.f . . 3 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
3 ghmqusker.k . . 3 𝐾 = (𝐹 “ { 0 })
4 ghmqusker.q . . 3 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾))
5 ghmqusker.j . . 3 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞))
61, 2, 3, 4, 5ghmquskerlem3 19218 . 2 (𝜑𝐽 ∈ (𝑄 GrpHom 𝐻))
7 ghmgrp1 19150 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
82, 7syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ Grp)
98ad4antr 732 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → 𝐺 ∈ Grp)
101ghmker 19174 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
112, 10syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ { 0 }) ∈ (NrmSGrp‘𝐺))
123, 11eqeltrid 2832 . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ (NrmSGrp‘𝐺))
13 nsgsubg 19090 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (NrmSGrp‘𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
1412, 13syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ (SubGrp‘𝐺))
1514ad4antr 732 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → 𝐾 ∈ (SubGrp‘𝐺))
16 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (Base‘𝐺) = (Base‘𝐺)
17 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (Base‘𝐻) = (Base‘𝐻)
1816, 17ghmf 19152 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:(Base‘𝐺)⟶(Base‘𝐻))
192, 18syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:(Base‘𝐺)⟶(Base‘𝐻))
2019ffnd 6689 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 Fn (Base‘𝐺))
2120ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝐹 Fn (Base‘𝐺))
2221adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → 𝐹 Fn (Base‘𝐺))
234a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)))
24 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
25 ovexd 7422 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐺 ~QG 𝐾) ∈ V)
2623, 24, 25, 8qusbas 17508 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
27 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐺 ~QG 𝐾) = (𝐺 ~QG 𝐾)
2816, 27eqger 19110 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐾 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
2912, 13, 283syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
3029qsss 8749 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ⊆ 𝒫 (Base‘𝐺))
3126, 30eqsstrrd 3982 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (Base‘𝑄) ⊆ 𝒫 (Base‘𝐺))
3231sselda 3946 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ 𝒫 (Base‘𝐺))
3332elpwid 4572 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ⊆ (Base‘𝐺))
3433sselda 3946 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) → 𝑥 ∈ (Base‘𝐺))
3534adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → 𝑥 ∈ (Base‘𝐺))
3635adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → 𝑥 ∈ (Base‘𝐺))
37 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽𝑟) = (𝐹𝑥))
3837eqeq1d 2731 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → ((𝐽𝑟) = 0 ↔ (𝐹𝑥) = 0 ))
3938biimpa 476 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → (𝐹𝑥) = 0 )
40 fniniseg 7032 . . . . . . . . . . . . . . . . 17 (𝐹 Fn (Base‘𝐺) → (𝑥 ∈ (𝐹 “ { 0 }) ↔ (𝑥 ∈ (Base‘𝐺) ∧ (𝐹𝑥) = 0 )))
4140biimpar 477 . . . . . . . . . . . . . . . 16 ((𝐹 Fn (Base‘𝐺) ∧ (𝑥 ∈ (Base‘𝐺) ∧ (𝐹𝑥) = 0 )) → 𝑥 ∈ (𝐹 “ { 0 }))
4222, 36, 39, 41syl12anc 836 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → 𝑥 ∈ (𝐹 “ { 0 }))
4342, 3eleqtrrdi 2839 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → 𝑥𝐾)
4427eqg0el 19115 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝐾 ∈ (SubGrp‘𝐺)) → ([𝑥](𝐺 ~QG 𝐾) = 𝐾𝑥𝐾))
4544biimpar 477 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ 𝐾 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝐾) → [𝑥](𝐺 ~QG 𝐾) = 𝐾)
469, 15, 43, 45syl21anc 837 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → [𝑥](𝐺 ~QG 𝐾) = 𝐾)
4729ad4antr 732 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → (𝐺 ~QG 𝐾) Er (Base‘𝐺))
48 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ (Base‘𝑄))
4926adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ (Base‘𝑄)) → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
5048, 49eleqtrrd 2831 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
5150ad3antrrr 730 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
52 simpllr 775 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → 𝑥𝑟)
53 qsel 8769 . . . . . . . . . . . . . 14 (((𝐺 ~QG 𝐾) Er (Base‘𝐺) ∧ 𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) ∧ 𝑥𝑟) → 𝑟 = [𝑥](𝐺 ~QG 𝐾))
5447, 51, 52, 53syl3anc 1373 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → 𝑟 = [𝑥](𝐺 ~QG 𝐾))
55 eqid 2729 . . . . . . . . . . . . . . . 16 (0g𝐺) = (0g𝐺)
5616, 27, 55eqgid 19112 . . . . . . . . . . . . . . 15 (𝐾 ∈ (SubGrp‘𝐺) → [(0g𝐺)](𝐺 ~QG 𝐾) = 𝐾)
5714, 56syl 17 . . . . . . . . . . . . . 14 (𝜑 → [(0g𝐺)](𝐺 ~QG 𝐾) = 𝐾)
5857ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → [(0g𝐺)](𝐺 ~QG 𝐾) = 𝐾)
5946, 54, 583eqtr4d 2774 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → 𝑟 = [(0g𝐺)](𝐺 ~QG 𝐾))
604, 55qus0 19121 . . . . . . . . . . . . . . 15 (𝐾 ∈ (NrmSGrp‘𝐺) → [(0g𝐺)](𝐺 ~QG 𝐾) = (0g𝑄))
6112, 60syl 17 . . . . . . . . . . . . . 14 (𝜑 → [(0g𝐺)](𝐺 ~QG 𝐾) = (0g𝑄))
6261ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → [(0g𝐺)](𝐺 ~QG 𝐾) = (0g𝑄))
6362adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → [(0g𝐺)](𝐺 ~QG 𝐾) = (0g𝑄))
6459, 63eqtrd 2764 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ (𝐽𝑟) = 0 ) → 𝑟 = (0g𝑄))
6562eqeq2d 2740 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝑟 = [(0g𝐺)](𝐺 ~QG 𝐾) ↔ 𝑟 = (0g𝑄)))
6665biimpar 477 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑟 = (0g𝑄)) → 𝑟 = [(0g𝐺)](𝐺 ~QG 𝐾))
6766fveq2d 6862 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑟 = (0g𝑄)) → (𝐽𝑟) = (𝐽‘[(0g𝐺)](𝐺 ~QG 𝐾)))
682adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
6968ad3antrrr 730 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑟 = (0g𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
7016, 55grpidcl 18897 . . . . . . . . . . . . . . 15 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
718, 70syl 17 . . . . . . . . . . . . . 14 (𝜑 → (0g𝐺) ∈ (Base‘𝐺))
7271ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑟 = (0g𝑄)) → (0g𝐺) ∈ (Base‘𝐺))
731, 69, 3, 4, 5, 72ghmquskerlem1 19215 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑟 = (0g𝑄)) → (𝐽‘[(0g𝐺)](𝐺 ~QG 𝐾)) = (𝐹‘(0g𝐺)))
7455, 1ghmid 19154 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐺 GrpHom 𝐻) → (𝐹‘(0g𝐺)) = 0 )
752, 74syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐹‘(0g𝐺)) = 0 )
7675ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑟 = (0g𝑄)) → (𝐹‘(0g𝐺)) = 0 )
7767, 73, 763eqtrd 2768 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) ∧ 𝑟 = (0g𝑄)) → (𝐽𝑟) = 0 )
7864, 77impbida 800 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → ((𝐽𝑟) = 0𝑟 = (0g𝑄)))
791, 68, 3, 4, 5, 48ghmquskerlem2 19217 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝑄)) → ∃𝑥𝑟 (𝐽𝑟) = (𝐹𝑥))
8078, 79r19.29a 3141 . . . . . . . . 9 ((𝜑𝑟 ∈ (Base‘𝑄)) → ((𝐽𝑟) = 0𝑟 = (0g𝑄)))
8180pm5.32da 579 . . . . . . . 8 (𝜑 → ((𝑟 ∈ (Base‘𝑄) ∧ (𝐽𝑟) = 0 ) ↔ (𝑟 ∈ (Base‘𝑄) ∧ 𝑟 = (0g𝑄))))
82 simpr 484 . . . . . . . . . . 11 ((𝜑𝑟 = (0g𝑄)) → 𝑟 = (0g𝑄))
834qusgrp 19118 . . . . . . . . . . . . . 14 (𝐾 ∈ (NrmSGrp‘𝐺) → 𝑄 ∈ Grp)
8412, 83syl 17 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ Grp)
85 eqid 2729 . . . . . . . . . . . . . 14 (Base‘𝑄) = (Base‘𝑄)
86 eqid 2729 . . . . . . . . . . . . . 14 (0g𝑄) = (0g𝑄)
8785, 86grpidcl 18897 . . . . . . . . . . . . 13 (𝑄 ∈ Grp → (0g𝑄) ∈ (Base‘𝑄))
8884, 87syl 17 . . . . . . . . . . . 12 (𝜑 → (0g𝑄) ∈ (Base‘𝑄))
8988adantr 480 . . . . . . . . . . 11 ((𝜑𝑟 = (0g𝑄)) → (0g𝑄) ∈ (Base‘𝑄))
9082, 89eqeltrd 2828 . . . . . . . . . 10 ((𝜑𝑟 = (0g𝑄)) → 𝑟 ∈ (Base‘𝑄))
9190ex 412 . . . . . . . . 9 (𝜑 → (𝑟 = (0g𝑄) → 𝑟 ∈ (Base‘𝑄)))
9291pm4.71rd 562 . . . . . . . 8 (𝜑 → (𝑟 = (0g𝑄) ↔ (𝑟 ∈ (Base‘𝑄) ∧ 𝑟 = (0g𝑄))))
9381, 92bitr4d 282 . . . . . . 7 (𝜑 → ((𝑟 ∈ (Base‘𝑄) ∧ (𝐽𝑟) = 0 ) ↔ 𝑟 = (0g𝑄)))
942adantr 480 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ (Base‘𝑄)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
9594imaexd 7892 . . . . . . . . . . 11 ((𝜑𝑞 ∈ (Base‘𝑄)) → (𝐹𝑞) ∈ V)
9695uniexd 7718 . . . . . . . . . 10 ((𝜑𝑞 ∈ (Base‘𝑄)) → (𝐹𝑞) ∈ V)
975a1i 11 . . . . . . . . . 10 (𝜑𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ (𝐹𝑞)))
9821, 35fnfvelrnd 7054 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐹𝑥) ∈ ran 𝐹)
99 ghmqusker.s . . . . . . . . . . . . . 14 (𝜑 → ran 𝐹 = (Base‘𝐻))
10099ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → ran 𝐹 = (Base‘𝐻))
10198, 100eleqtrd 2830 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐹𝑥) ∈ (Base‘𝐻))
10237, 101eqeltrd 2828 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ (Base‘𝑄)) ∧ 𝑥𝑟) ∧ (𝐽𝑟) = (𝐹𝑥)) → (𝐽𝑟) ∈ (Base‘𝐻))
103102, 79r19.29a 3141 . . . . . . . . . 10 ((𝜑𝑟 ∈ (Base‘𝑄)) → (𝐽𝑟) ∈ (Base‘𝐻))
10496, 97, 103fmpt2d 7096 . . . . . . . . 9 (𝜑𝐽:(Base‘𝑄)⟶(Base‘𝐻))
105104ffnd 6689 . . . . . . . 8 (𝜑𝐽 Fn (Base‘𝑄))
106 fniniseg 7032 . . . . . . . 8 (𝐽 Fn (Base‘𝑄) → (𝑟 ∈ (𝐽 “ { 0 }) ↔ (𝑟 ∈ (Base‘𝑄) ∧ (𝐽𝑟) = 0 )))
107105, 106syl 17 . . . . . . 7 (𝜑 → (𝑟 ∈ (𝐽 “ { 0 }) ↔ (𝑟 ∈ (Base‘𝑄) ∧ (𝐽𝑟) = 0 )))
108 velsn 4605 . . . . . . . 8 (𝑟 ∈ {(0g𝑄)} ↔ 𝑟 = (0g𝑄))
109108a1i 11 . . . . . . 7 (𝜑 → (𝑟 ∈ {(0g𝑄)} ↔ 𝑟 = (0g𝑄)))
11093, 107, 1093bitr4d 311 . . . . . 6 (𝜑 → (𝑟 ∈ (𝐽 “ { 0 }) ↔ 𝑟 ∈ {(0g𝑄)}))
111110eqrdv 2727 . . . . 5 (𝜑 → (𝐽 “ { 0 }) = {(0g𝑄)})
11285, 17, 86, 1kerf1ghm 19179 . . . . . 6 (𝐽 ∈ (𝑄 GrpHom 𝐻) → (𝐽:(Base‘𝑄)–1-1→(Base‘𝐻) ↔ (𝐽 “ { 0 }) = {(0g𝑄)}))
113112biimpar 477 . . . . 5 ((𝐽 ∈ (𝑄 GrpHom 𝐻) ∧ (𝐽 “ { 0 }) = {(0g𝑄)}) → 𝐽:(Base‘𝑄)–1-1→(Base‘𝐻))
1146, 111, 113syl2anc 584 . . . 4 (𝜑𝐽:(Base‘𝑄)–1-1→(Base‘𝐻))
115 f1f1orn 6811 . . . 4 (𝐽:(Base‘𝑄)–1-1→(Base‘𝐻) → 𝐽:(Base‘𝑄)–1-1-onto→ran 𝐽)
116114, 115syl 17 . . 3 (𝜑𝐽:(Base‘𝑄)–1-1-onto→ran 𝐽)
117 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺))
118 ovex 7420 . . . . . . . . . . 11 (𝐺 ~QG 𝐾) ∈ V
119118ecelqsi 8743 . . . . . . . . . 10 (𝑥 ∈ (Base‘𝐺) → [𝑥](𝐺 ~QG 𝐾) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
120117, 119syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐺)) → [𝑥](𝐺 ~QG 𝐾) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)))
12126adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐺)) → ((Base‘𝐺) / (𝐺 ~QG 𝐾)) = (Base‘𝑄))
122120, 121eleqtrd 2830 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐺)) → [𝑥](𝐺 ~QG 𝐾) ∈ (Base‘𝑄))
123 elqsi 8739 . . . . . . . . 9 (𝑟 ∈ ((Base‘𝐺) / (𝐺 ~QG 𝐾)) → ∃𝑥 ∈ (Base‘𝐺)𝑟 = [𝑥](𝐺 ~QG 𝐾))
12450, 123syl 17 . . . . . . . 8 ((𝜑𝑟 ∈ (Base‘𝑄)) → ∃𝑥 ∈ (Base‘𝐺)𝑟 = [𝑥](𝐺 ~QG 𝐾))
125 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑟 = [𝑥](𝐺 ~QG 𝐾)) → 𝑟 = [𝑥](𝐺 ~QG 𝐾))
126125fveq2d 6862 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑟 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽𝑟) = (𝐽‘[𝑥](𝐺 ~QG 𝐾)))
1272adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝐺)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
1281, 127, 3, 4, 5, 117ghmquskerlem1 19215 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝐺)) → (𝐽‘[𝑥](𝐺 ~QG 𝐾)) = (𝐹𝑥))
129128adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑟 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽‘[𝑥](𝐺 ~QG 𝐾)) = (𝐹𝑥))
130126, 129eqtrd 2764 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑟 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽𝑟) = (𝐹𝑥))
1311303impa 1109 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐺) ∧ 𝑟 = [𝑥](𝐺 ~QG 𝐾)) → (𝐽𝑟) = (𝐹𝑥))
132131eqeq1d 2731 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐺) ∧ 𝑟 = [𝑥](𝐺 ~QG 𝐾)) → ((𝐽𝑟) = 𝑦 ↔ (𝐹𝑥) = 𝑦))
133122, 124, 132rexxfrd2 5368 . . . . . . 7 (𝜑 → (∃𝑟 ∈ (Base‘𝑄)(𝐽𝑟) = 𝑦 ↔ ∃𝑥 ∈ (Base‘𝐺)(𝐹𝑥) = 𝑦))
134 fvelrnb 6921 . . . . . . . 8 (𝐽 Fn (Base‘𝑄) → (𝑦 ∈ ran 𝐽 ↔ ∃𝑟 ∈ (Base‘𝑄)(𝐽𝑟) = 𝑦))
135105, 134syl 17 . . . . . . 7 (𝜑 → (𝑦 ∈ ran 𝐽 ↔ ∃𝑟 ∈ (Base‘𝑄)(𝐽𝑟) = 𝑦))
136 fvelrnb 6921 . . . . . . . 8 (𝐹 Fn (Base‘𝐺) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ (Base‘𝐺)(𝐹𝑥) = 𝑦))
13720, 136syl 17 . . . . . . 7 (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ (Base‘𝐺)(𝐹𝑥) = 𝑦))
138133, 135, 1373bitr4rd 312 . . . . . 6 (𝜑 → (𝑦 ∈ ran 𝐹𝑦 ∈ ran 𝐽))
139138eqrdv 2727 . . . . 5 (𝜑 → ran 𝐹 = ran 𝐽)
140139, 99eqtr3d 2766 . . . 4 (𝜑 → ran 𝐽 = (Base‘𝐻))
141140f1oeq3d 6797 . . 3 (𝜑 → (𝐽:(Base‘𝑄)–1-1-onto→ran 𝐽𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻)))
142116, 141mpbid 232 . 2 (𝜑𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻))
14385, 17isgim 19194 . 2 (𝐽 ∈ (𝑄 GrpIso 𝐻) ↔ (𝐽 ∈ (𝑄 GrpHom 𝐻) ∧ 𝐽:(Base‘𝑄)–1-1-onto→(Base‘𝐻)))
1446, 142, 143sylanbrc 583 1 (𝜑𝐽 ∈ (𝑄 GrpIso 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  𝒫 cpw 4563  {csn 4589   cuni 4871  cmpt 5188  ccnv 5637  ran crn 5639  cima 5641   Fn wfn 6506  wf 6507  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387   Er wer 8668  [cec 8669   / cqs 8670  Basecbs 17179  0gc0g 17402   /s cqus 17468  Grpcgrp 18865  SubGrpcsubg 19052  NrmSGrpcnsg 19053   ~QG cqg 19054   GrpHom cghm 19144   GrpIso cgim 19189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-0g 17404  df-imas 17471  df-qus 17472  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-nsg 19056  df-eqg 19057  df-ghm 19145  df-gim 19191
This theorem is referenced by:  gicqusker  19220  lmhmqusker  33388  rhmqusker  33397  aks6d1c6lem5  42165
  Copyright terms: Public domain W3C validator