Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsneine0lem Structured version   Visualization version   GIF version

Theorem ntrclsneine0lem 44053
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that at least one (pseudo-)neighborbood of a particular point exists hold equally. (Contributed by RP, 21-May-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
ntrclslem0.x (𝜑𝑋𝐵)
Assertion
Ref Expression
ntrclsneine0lem (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾𝑠)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑠   𝑗,𝐼,𝑘,𝑠   𝑋,𝑠   𝜑,𝑖,𝑗,𝑘,𝑠
Allowed substitution hints:   𝐷(𝑖,𝑗,𝑘,𝑠)   𝐼(𝑖)   𝐾(𝑖,𝑗,𝑘,𝑠)   𝑂(𝑖,𝑗,𝑘,𝑠)   𝑋(𝑖,𝑗,𝑘)

Proof of Theorem ntrclsneine0lem
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . 4 (𝑠 = 𝑡 → (𝐼𝑠) = (𝐼𝑡))
21eleq2d 2814 . . 3 (𝑠 = 𝑡 → (𝑋 ∈ (𝐼𝑠) ↔ 𝑋 ∈ (𝐼𝑡)))
32cbvrexvw 3216 . 2 (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠) ↔ ∃𝑡 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑡))
4 ntrcls.d . . . . 5 𝐷 = (𝑂𝐵)
5 ntrcls.r . . . . 5 (𝜑𝐼𝐷𝐾)
64, 5ntrclsrcomplex 44024 . . . 4 (𝜑 → (𝐵𝑠) ∈ 𝒫 𝐵)
76adantr 480 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐵𝑠) ∈ 𝒫 𝐵)
84, 5ntrclsrcomplex 44024 . . . . 5 (𝜑 → (𝐵𝑡) ∈ 𝒫 𝐵)
98adantr 480 . . . 4 ((𝜑𝑡 ∈ 𝒫 𝐵) → (𝐵𝑡) ∈ 𝒫 𝐵)
10 difeq2 4083 . . . . . 6 (𝑠 = (𝐵𝑡) → (𝐵𝑠) = (𝐵 ∖ (𝐵𝑡)))
1110adantl 481 . . . . 5 (((𝜑𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵𝑡)) → (𝐵𝑠) = (𝐵 ∖ (𝐵𝑡)))
12 elpwi 4570 . . . . . . 7 (𝑡 ∈ 𝒫 𝐵𝑡𝐵)
13 dfss4 4232 . . . . . . 7 (𝑡𝐵 ↔ (𝐵 ∖ (𝐵𝑡)) = 𝑡)
1412, 13sylib 218 . . . . . 6 (𝑡 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵𝑡)) = 𝑡)
1514ad2antlr 727 . . . . 5 (((𝜑𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵𝑡)) → (𝐵 ∖ (𝐵𝑡)) = 𝑡)
1611, 15eqtr2d 2765 . . . 4 (((𝜑𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵𝑡)) → 𝑡 = (𝐵𝑠))
179, 16rspcedeq2vd 3596 . . 3 ((𝜑𝑡 ∈ 𝒫 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠))
18 fveq2 6858 . . . . . 6 (𝑡 = (𝐵𝑠) → (𝐼𝑡) = (𝐼‘(𝐵𝑠)))
1918eleq2d 2814 . . . . 5 (𝑡 = (𝐵𝑠) → (𝑋 ∈ (𝐼𝑡) ↔ 𝑋 ∈ (𝐼‘(𝐵𝑠))))
20193ad2ant3 1135 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → (𝑋 ∈ (𝐼𝑡) ↔ 𝑋 ∈ (𝐼‘(𝐵𝑠))))
21 ntrcls.o . . . . . 6 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
225adantr 480 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐼𝐷𝐾)
23 ntrclslem0.x . . . . . . 7 (𝜑𝑋𝐵)
2423adantr 480 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑋𝐵)
25 simpr 484 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
2621, 4, 22, 24, 25ntrclselnel2 44047 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑋 ∈ (𝐼‘(𝐵𝑠)) ↔ ¬ 𝑋 ∈ (𝐾𝑠)))
27263adant3 1132 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → (𝑋 ∈ (𝐼‘(𝐵𝑠)) ↔ ¬ 𝑋 ∈ (𝐾𝑠)))
2820, 27bitrd 279 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → (𝑋 ∈ (𝐼𝑡) ↔ ¬ 𝑋 ∈ (𝐾𝑠)))
297, 17, 28rexxfrd2 5368 . 2 (𝜑 → (∃𝑡 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑡) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾𝑠)))
303, 29bitrid 283 1 (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾𝑠)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  cdif 3911  wss 3914  𝒫 cpw 4563   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  m cmap 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801
This theorem is referenced by:  ntrclsneine0  44054
  Copyright terms: Public domain W3C validator