Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsneine0lem Structured version   Visualization version   GIF version

Theorem ntrclsneine0lem 40399
 Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that at least one (pseudo-)neighborbood of a particular point exists hold equally. (Contributed by RP, 21-May-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
ntrclslem0.x (𝜑𝑋𝐵)
Assertion
Ref Expression
ntrclsneine0lem (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾𝑠)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑠   𝑗,𝐼,𝑘,𝑠   𝑋,𝑠   𝜑,𝑖,𝑗,𝑘,𝑠
Allowed substitution hints:   𝐷(𝑖,𝑗,𝑘,𝑠)   𝐼(𝑖)   𝐾(𝑖,𝑗,𝑘,𝑠)   𝑂(𝑖,𝑗,𝑘,𝑠)   𝑋(𝑖,𝑗,𝑘)

Proof of Theorem ntrclsneine0lem
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6663 . . . 4 (𝑠 = 𝑡 → (𝐼𝑠) = (𝐼𝑡))
21eleq2d 2896 . . 3 (𝑠 = 𝑡 → (𝑋 ∈ (𝐼𝑠) ↔ 𝑋 ∈ (𝐼𝑡)))
32cbvrexvw 3449 . 2 (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠) ↔ ∃𝑡 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑡))
4 ntrcls.d . . . . 5 𝐷 = (𝑂𝐵)
5 ntrcls.r . . . . 5 (𝜑𝐼𝐷𝐾)
64, 5ntrclsrcomplex 40370 . . . 4 (𝜑 → (𝐵𝑠) ∈ 𝒫 𝐵)
76adantr 483 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐵𝑠) ∈ 𝒫 𝐵)
84, 5ntrclsrcomplex 40370 . . . . 5 (𝜑 → (𝐵𝑡) ∈ 𝒫 𝐵)
98adantr 483 . . . 4 ((𝜑𝑡 ∈ 𝒫 𝐵) → (𝐵𝑡) ∈ 𝒫 𝐵)
10 difeq2 4091 . . . . . 6 (𝑠 = (𝐵𝑡) → (𝐵𝑠) = (𝐵 ∖ (𝐵𝑡)))
1110adantl 484 . . . . 5 (((𝜑𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵𝑡)) → (𝐵𝑠) = (𝐵 ∖ (𝐵𝑡)))
12 elpwi 4549 . . . . . . 7 (𝑡 ∈ 𝒫 𝐵𝑡𝐵)
13 dfss4 4233 . . . . . . 7 (𝑡𝐵 ↔ (𝐵 ∖ (𝐵𝑡)) = 𝑡)
1412, 13sylib 220 . . . . . 6 (𝑡 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵𝑡)) = 𝑡)
1514ad2antlr 725 . . . . 5 (((𝜑𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵𝑡)) → (𝐵 ∖ (𝐵𝑡)) = 𝑡)
1611, 15eqtr2d 2855 . . . 4 (((𝜑𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵𝑡)) → 𝑡 = (𝐵𝑠))
179, 16rspcedeq2vd 3628 . . 3 ((𝜑𝑡 ∈ 𝒫 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠))
18 fveq2 6663 . . . . . 6 (𝑡 = (𝐵𝑠) → (𝐼𝑡) = (𝐼‘(𝐵𝑠)))
1918eleq2d 2896 . . . . 5 (𝑡 = (𝐵𝑠) → (𝑋 ∈ (𝐼𝑡) ↔ 𝑋 ∈ (𝐼‘(𝐵𝑠))))
20193ad2ant3 1129 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → (𝑋 ∈ (𝐼𝑡) ↔ 𝑋 ∈ (𝐼‘(𝐵𝑠))))
21 ntrcls.o . . . . . 6 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
225adantr 483 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐼𝐷𝐾)
23 ntrclslem0.x . . . . . . 7 (𝜑𝑋𝐵)
2423adantr 483 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑋𝐵)
25 simpr 487 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
2621, 4, 22, 24, 25ntrclselnel2 40393 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑋 ∈ (𝐼‘(𝐵𝑠)) ↔ ¬ 𝑋 ∈ (𝐾𝑠)))
27263adant3 1126 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → (𝑋 ∈ (𝐼‘(𝐵𝑠)) ↔ ¬ 𝑋 ∈ (𝐾𝑠)))
2820, 27bitrd 281 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → (𝑋 ∈ (𝐼𝑡) ↔ ¬ 𝑋 ∈ (𝐾𝑠)))
297, 17, 28rexxfrd2 5304 . 2 (𝜑 → (∃𝑡 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑡) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾𝑠)))
303, 29syl5bb 285 1 (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾𝑠)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107  ∃wrex 3137  Vcvv 3493   ∖ cdif 3931   ⊆ wss 3934  𝒫 cpw 4537   class class class wbr 5057   ↦ cmpt 5137  ‘cfv 6348  (class class class)co 7148   ↑m cmap 8398 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-map 8400 This theorem is referenced by:  ntrclsneine0  40400
 Copyright terms: Public domain W3C validator