![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsneine0lem | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that at least one (pseudo-)neighborbood of a particular point exists hold equally. (Contributed by RP, 21-May-2021.) |
Ref | Expression |
---|---|
ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
ntrclslem0.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
ntrclsneine0lem | ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾‘𝑠))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . . 4 ⊢ (𝑠 = 𝑡 → (𝐼‘𝑠) = (𝐼‘𝑡)) | |
2 | 1 | eleq2d 2818 | . . 3 ⊢ (𝑠 = 𝑡 → (𝑋 ∈ (𝐼‘𝑠) ↔ 𝑋 ∈ (𝐼‘𝑡))) |
3 | 2 | cbvrexvw 3234 | . 2 ⊢ (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ ∃𝑡 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑡)) |
4 | ntrcls.d | . . . . 5 ⊢ 𝐷 = (𝑂‘𝐵) | |
5 | ntrcls.r | . . . . 5 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
6 | 4, 5 | ntrclsrcomplex 43089 | . . . 4 ⊢ (𝜑 → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) |
8 | 4, 5 | ntrclsrcomplex 43089 | . . . . 5 ⊢ (𝜑 → (𝐵 ∖ 𝑡) ∈ 𝒫 𝐵) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑡) ∈ 𝒫 𝐵) |
10 | difeq2 4116 | . . . . . 6 ⊢ (𝑠 = (𝐵 ∖ 𝑡) → (𝐵 ∖ 𝑠) = (𝐵 ∖ (𝐵 ∖ 𝑡))) | |
11 | 10 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑡)) → (𝐵 ∖ 𝑠) = (𝐵 ∖ (𝐵 ∖ 𝑡))) |
12 | elpwi 4609 | . . . . . . 7 ⊢ (𝑡 ∈ 𝒫 𝐵 → 𝑡 ⊆ 𝐵) | |
13 | dfss4 4258 | . . . . . . 7 ⊢ (𝑡 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝑡)) = 𝑡) | |
14 | 12, 13 | sylib 217 | . . . . . 6 ⊢ (𝑡 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵 ∖ 𝑡)) = 𝑡) |
15 | 14 | ad2antlr 724 | . . . . 5 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑡)) → (𝐵 ∖ (𝐵 ∖ 𝑡)) = 𝑡) |
16 | 11, 15 | eqtr2d 2772 | . . . 4 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑡)) → 𝑡 = (𝐵 ∖ 𝑠)) |
17 | 9, 16 | rspcedeq2vd 3619 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵 ∖ 𝑠)) |
18 | fveq2 6891 | . . . . . 6 ⊢ (𝑡 = (𝐵 ∖ 𝑠) → (𝐼‘𝑡) = (𝐼‘(𝐵 ∖ 𝑠))) | |
19 | 18 | eleq2d 2818 | . . . . 5 ⊢ (𝑡 = (𝐵 ∖ 𝑠) → (𝑋 ∈ (𝐼‘𝑡) ↔ 𝑋 ∈ (𝐼‘(𝐵 ∖ 𝑠)))) |
20 | 19 | 3ad2ant3 1134 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = (𝐵 ∖ 𝑠)) → (𝑋 ∈ (𝐼‘𝑡) ↔ 𝑋 ∈ (𝐼‘(𝐵 ∖ 𝑠)))) |
21 | ntrcls.o | . . . . . 6 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
22 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐼𝐷𝐾) |
23 | ntrclslem0.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
24 | 23 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑋 ∈ 𝐵) |
25 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) | |
26 | 21, 4, 22, 24, 25 | ntrclselnel2 43112 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑋 ∈ (𝐼‘(𝐵 ∖ 𝑠)) ↔ ¬ 𝑋 ∈ (𝐾‘𝑠))) |
27 | 26 | 3adant3 1131 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = (𝐵 ∖ 𝑠)) → (𝑋 ∈ (𝐼‘(𝐵 ∖ 𝑠)) ↔ ¬ 𝑋 ∈ (𝐾‘𝑠))) |
28 | 20, 27 | bitrd 279 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = (𝐵 ∖ 𝑠)) → (𝑋 ∈ (𝐼‘𝑡) ↔ ¬ 𝑋 ∈ (𝐾‘𝑠))) |
29 | 7, 17, 28 | rexxfrd2 5411 | . 2 ⊢ (𝜑 → (∃𝑡 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑡) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾‘𝑠))) |
30 | 3, 29 | bitrid 283 | 1 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾‘𝑠))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 Vcvv 3473 ∖ cdif 3945 ⊆ wss 3948 𝒫 cpw 4602 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7412 ↑m cmap 8824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-map 8826 |
This theorem is referenced by: ntrclsneine0 43119 |
Copyright terms: Public domain | W3C validator |