![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsneine0lem | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that at least one (pseudo-)neighborbood of a particular point exists hold equally. (Contributed by RP, 21-May-2021.) |
Ref | Expression |
---|---|
ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
ntrclslem0.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
ntrclsneine0lem | ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾‘𝑠))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . 4 ⊢ (𝑠 = 𝑡 → (𝐼‘𝑠) = (𝐼‘𝑡)) | |
2 | 1 | eleq2d 2830 | . . 3 ⊢ (𝑠 = 𝑡 → (𝑋 ∈ (𝐼‘𝑠) ↔ 𝑋 ∈ (𝐼‘𝑡))) |
3 | 2 | cbvrexvw 3244 | . 2 ⊢ (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ ∃𝑡 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑡)) |
4 | ntrcls.d | . . . . 5 ⊢ 𝐷 = (𝑂‘𝐵) | |
5 | ntrcls.r | . . . . 5 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
6 | 4, 5 | ntrclsrcomplex 43997 | . . . 4 ⊢ (𝜑 → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) |
8 | 4, 5 | ntrclsrcomplex 43997 | . . . . 5 ⊢ (𝜑 → (𝐵 ∖ 𝑡) ∈ 𝒫 𝐵) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑡) ∈ 𝒫 𝐵) |
10 | difeq2 4143 | . . . . . 6 ⊢ (𝑠 = (𝐵 ∖ 𝑡) → (𝐵 ∖ 𝑠) = (𝐵 ∖ (𝐵 ∖ 𝑡))) | |
11 | 10 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑡)) → (𝐵 ∖ 𝑠) = (𝐵 ∖ (𝐵 ∖ 𝑡))) |
12 | elpwi 4629 | . . . . . . 7 ⊢ (𝑡 ∈ 𝒫 𝐵 → 𝑡 ⊆ 𝐵) | |
13 | dfss4 4288 | . . . . . . 7 ⊢ (𝑡 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝑡)) = 𝑡) | |
14 | 12, 13 | sylib 218 | . . . . . 6 ⊢ (𝑡 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵 ∖ 𝑡)) = 𝑡) |
15 | 14 | ad2antlr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑡)) → (𝐵 ∖ (𝐵 ∖ 𝑡)) = 𝑡) |
16 | 11, 15 | eqtr2d 2781 | . . . 4 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑡)) → 𝑡 = (𝐵 ∖ 𝑠)) |
17 | 9, 16 | rspcedeq2vd 3643 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵 ∖ 𝑠)) |
18 | fveq2 6920 | . . . . . 6 ⊢ (𝑡 = (𝐵 ∖ 𝑠) → (𝐼‘𝑡) = (𝐼‘(𝐵 ∖ 𝑠))) | |
19 | 18 | eleq2d 2830 | . . . . 5 ⊢ (𝑡 = (𝐵 ∖ 𝑠) → (𝑋 ∈ (𝐼‘𝑡) ↔ 𝑋 ∈ (𝐼‘(𝐵 ∖ 𝑠)))) |
20 | 19 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = (𝐵 ∖ 𝑠)) → (𝑋 ∈ (𝐼‘𝑡) ↔ 𝑋 ∈ (𝐼‘(𝐵 ∖ 𝑠)))) |
21 | ntrcls.o | . . . . . 6 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
22 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐼𝐷𝐾) |
23 | ntrclslem0.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
24 | 23 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑋 ∈ 𝐵) |
25 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) | |
26 | 21, 4, 22, 24, 25 | ntrclselnel2 44020 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑋 ∈ (𝐼‘(𝐵 ∖ 𝑠)) ↔ ¬ 𝑋 ∈ (𝐾‘𝑠))) |
27 | 26 | 3adant3 1132 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = (𝐵 ∖ 𝑠)) → (𝑋 ∈ (𝐼‘(𝐵 ∖ 𝑠)) ↔ ¬ 𝑋 ∈ (𝐾‘𝑠))) |
28 | 20, 27 | bitrd 279 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = (𝐵 ∖ 𝑠)) → (𝑋 ∈ (𝐼‘𝑡) ↔ ¬ 𝑋 ∈ (𝐾‘𝑠))) |
29 | 7, 17, 28 | rexxfrd2 5431 | . 2 ⊢ (𝜑 → (∃𝑡 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑡) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾‘𝑠))) |
30 | 3, 29 | bitrid 283 | 1 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾‘𝑠))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 𝒫 cpw 4622 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 |
This theorem is referenced by: ntrclsneine0 44027 |
Copyright terms: Public domain | W3C validator |