Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsneine0lem Structured version   Visualization version   GIF version

Theorem ntrclsneine0lem 40421
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that at least one (pseudo-)neighborbood of a particular point exists hold equally. (Contributed by RP, 21-May-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
ntrclslem0.x (𝜑𝑋𝐵)
Assertion
Ref Expression
ntrclsneine0lem (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾𝑠)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑠   𝑗,𝐼,𝑘,𝑠   𝑋,𝑠   𝜑,𝑖,𝑗,𝑘,𝑠
Allowed substitution hints:   𝐷(𝑖,𝑗,𝑘,𝑠)   𝐼(𝑖)   𝐾(𝑖,𝑗,𝑘,𝑠)   𝑂(𝑖,𝑗,𝑘,𝑠)   𝑋(𝑖,𝑗,𝑘)

Proof of Theorem ntrclsneine0lem
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6672 . . . 4 (𝑠 = 𝑡 → (𝐼𝑠) = (𝐼𝑡))
21eleq2d 2900 . . 3 (𝑠 = 𝑡 → (𝑋 ∈ (𝐼𝑠) ↔ 𝑋 ∈ (𝐼𝑡)))
32cbvrexvw 3452 . 2 (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠) ↔ ∃𝑡 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑡))
4 ntrcls.d . . . . 5 𝐷 = (𝑂𝐵)
5 ntrcls.r . . . . 5 (𝜑𝐼𝐷𝐾)
64, 5ntrclsrcomplex 40392 . . . 4 (𝜑 → (𝐵𝑠) ∈ 𝒫 𝐵)
76adantr 483 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐵𝑠) ∈ 𝒫 𝐵)
84, 5ntrclsrcomplex 40392 . . . . 5 (𝜑 → (𝐵𝑡) ∈ 𝒫 𝐵)
98adantr 483 . . . 4 ((𝜑𝑡 ∈ 𝒫 𝐵) → (𝐵𝑡) ∈ 𝒫 𝐵)
10 difeq2 4095 . . . . . 6 (𝑠 = (𝐵𝑡) → (𝐵𝑠) = (𝐵 ∖ (𝐵𝑡)))
1110adantl 484 . . . . 5 (((𝜑𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵𝑡)) → (𝐵𝑠) = (𝐵 ∖ (𝐵𝑡)))
12 elpwi 4550 . . . . . . 7 (𝑡 ∈ 𝒫 𝐵𝑡𝐵)
13 dfss4 4237 . . . . . . 7 (𝑡𝐵 ↔ (𝐵 ∖ (𝐵𝑡)) = 𝑡)
1412, 13sylib 220 . . . . . 6 (𝑡 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵𝑡)) = 𝑡)
1514ad2antlr 725 . . . . 5 (((𝜑𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵𝑡)) → (𝐵 ∖ (𝐵𝑡)) = 𝑡)
1611, 15eqtr2d 2859 . . . 4 (((𝜑𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵𝑡)) → 𝑡 = (𝐵𝑠))
179, 16rspcedeq2vd 3632 . . 3 ((𝜑𝑡 ∈ 𝒫 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠))
18 fveq2 6672 . . . . . 6 (𝑡 = (𝐵𝑠) → (𝐼𝑡) = (𝐼‘(𝐵𝑠)))
1918eleq2d 2900 . . . . 5 (𝑡 = (𝐵𝑠) → (𝑋 ∈ (𝐼𝑡) ↔ 𝑋 ∈ (𝐼‘(𝐵𝑠))))
20193ad2ant3 1131 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → (𝑋 ∈ (𝐼𝑡) ↔ 𝑋 ∈ (𝐼‘(𝐵𝑠))))
21 ntrcls.o . . . . . 6 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
225adantr 483 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝐼𝐷𝐾)
23 ntrclslem0.x . . . . . . 7 (𝜑𝑋𝐵)
2423adantr 483 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑋𝐵)
25 simpr 487 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵)
2621, 4, 22, 24, 25ntrclselnel2 40415 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝑋 ∈ (𝐼‘(𝐵𝑠)) ↔ ¬ 𝑋 ∈ (𝐾𝑠)))
27263adant3 1128 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → (𝑋 ∈ (𝐼‘(𝐵𝑠)) ↔ ¬ 𝑋 ∈ (𝐾𝑠)))
2820, 27bitrd 281 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵𝑠)) → (𝑋 ∈ (𝐼𝑡) ↔ ¬ 𝑋 ∈ (𝐾𝑠)))
297, 17, 28rexxfrd2 5316 . 2 (𝜑 → (∃𝑡 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑡) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾𝑠)))
303, 29syl5bb 285 1 (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾𝑠)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3141  Vcvv 3496  cdif 3935  wss 3938  𝒫 cpw 4541   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  m cmap 8408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-map 8410
This theorem is referenced by:  ntrclsneine0  40422
  Copyright terms: Public domain W3C validator