| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsneine0lem | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that at least one (pseudo-)neighborbood of a particular point exists hold equally. (Contributed by RP, 21-May-2021.) |
| Ref | Expression |
|---|---|
| ntrcls.o | ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) |
| ntrcls.d | ⊢ 𝐷 = (𝑂‘𝐵) |
| ntrcls.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
| ntrclslem0.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ntrclsneine0lem | ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾‘𝑠))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6840 | . . . 4 ⊢ (𝑠 = 𝑡 → (𝐼‘𝑠) = (𝐼‘𝑡)) | |
| 2 | 1 | eleq2d 2814 | . . 3 ⊢ (𝑠 = 𝑡 → (𝑋 ∈ (𝐼‘𝑠) ↔ 𝑋 ∈ (𝐼‘𝑡))) |
| 3 | 2 | cbvrexvw 3214 | . 2 ⊢ (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ ∃𝑡 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑡)) |
| 4 | ntrcls.d | . . . . 5 ⊢ 𝐷 = (𝑂‘𝐵) | |
| 5 | ntrcls.r | . . . . 5 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
| 6 | 4, 5 | ntrclsrcomplex 44017 | . . . 4 ⊢ (𝜑 → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑠) ∈ 𝒫 𝐵) |
| 8 | 4, 5 | ntrclsrcomplex 44017 | . . . . 5 ⊢ (𝜑 → (𝐵 ∖ 𝑡) ∈ 𝒫 𝐵) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵 ∖ 𝑡) ∈ 𝒫 𝐵) |
| 10 | difeq2 4079 | . . . . . 6 ⊢ (𝑠 = (𝐵 ∖ 𝑡) → (𝐵 ∖ 𝑠) = (𝐵 ∖ (𝐵 ∖ 𝑡))) | |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑡)) → (𝐵 ∖ 𝑠) = (𝐵 ∖ (𝐵 ∖ 𝑡))) |
| 12 | elpwi 4566 | . . . . . . 7 ⊢ (𝑡 ∈ 𝒫 𝐵 → 𝑡 ⊆ 𝐵) | |
| 13 | dfss4 4228 | . . . . . . 7 ⊢ (𝑡 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝑡)) = 𝑡) | |
| 14 | 12, 13 | sylib 218 | . . . . . 6 ⊢ (𝑡 ∈ 𝒫 𝐵 → (𝐵 ∖ (𝐵 ∖ 𝑡)) = 𝑡) |
| 15 | 14 | ad2antlr 727 | . . . . 5 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑡)) → (𝐵 ∖ (𝐵 ∖ 𝑡)) = 𝑡) |
| 16 | 11, 15 | eqtr2d 2765 | . . . 4 ⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) ∧ 𝑠 = (𝐵 ∖ 𝑡)) → 𝑡 = (𝐵 ∖ 𝑠)) |
| 17 | 9, 16 | rspcedeq2vd 3593 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑡 = (𝐵 ∖ 𝑠)) |
| 18 | fveq2 6840 | . . . . . 6 ⊢ (𝑡 = (𝐵 ∖ 𝑠) → (𝐼‘𝑡) = (𝐼‘(𝐵 ∖ 𝑠))) | |
| 19 | 18 | eleq2d 2814 | . . . . 5 ⊢ (𝑡 = (𝐵 ∖ 𝑠) → (𝑋 ∈ (𝐼‘𝑡) ↔ 𝑋 ∈ (𝐼‘(𝐵 ∖ 𝑠)))) |
| 20 | 19 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = (𝐵 ∖ 𝑠)) → (𝑋 ∈ (𝐼‘𝑡) ↔ 𝑋 ∈ (𝐼‘(𝐵 ∖ 𝑠)))) |
| 21 | ntrcls.o | . . . . . 6 ⊢ 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖 ↑m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖 ∖ 𝑗)))))) | |
| 22 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝐼𝐷𝐾) |
| 23 | ntrclslem0.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 24 | 23 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑋 ∈ 𝐵) |
| 25 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → 𝑠 ∈ 𝒫 𝐵) | |
| 26 | 21, 4, 22, 24, 25 | ntrclselnel2 44040 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵) → (𝑋 ∈ (𝐼‘(𝐵 ∖ 𝑠)) ↔ ¬ 𝑋 ∈ (𝐾‘𝑠))) |
| 27 | 26 | 3adant3 1132 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = (𝐵 ∖ 𝑠)) → (𝑋 ∈ (𝐼‘(𝐵 ∖ 𝑠)) ↔ ¬ 𝑋 ∈ (𝐾‘𝑠))) |
| 28 | 20, 27 | bitrd 279 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = (𝐵 ∖ 𝑠)) → (𝑋 ∈ (𝐼‘𝑡) ↔ ¬ 𝑋 ∈ (𝐾‘𝑠))) |
| 29 | 7, 17, 28 | rexxfrd2 5363 | . 2 ⊢ (𝜑 → (∃𝑡 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑡) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾‘𝑠))) |
| 30 | 3, 29 | bitrid 283 | 1 ⊢ (𝜑 → (∃𝑠 ∈ 𝒫 𝐵𝑋 ∈ (𝐼‘𝑠) ↔ ∃𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ (𝐾‘𝑠))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3444 ∖ cdif 3908 ⊆ wss 3911 𝒫 cpw 4559 class class class wbr 5102 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-map 8778 |
| This theorem is referenced by: ntrclsneine0 44047 |
| Copyright terms: Public domain | W3C validator |