MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshimadifsn Structured version   Visualization version   GIF version

Theorem cshimadifsn 14787
Description: The image of a cyclically shifted word under its domain without its left bound is the image of a cyclically shifted word under its domain without the number of shifted symbols. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
cshimadifsn ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift 𝐽) “ (1..^𝑁)))

Proof of Theorem cshimadifsn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrdfn 14485 . . . . . 6 (𝐹 ∈ Word 𝑆𝐹 Fn (0..^(♯‘𝐹)))
2 fnfun 6649 . . . . . 6 (𝐹 Fn (0..^(♯‘𝐹)) → Fun 𝐹)
31, 2syl 17 . . . . 5 (𝐹 ∈ Word 𝑆 → Fun 𝐹)
433ad2ant1 1132 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → Fun 𝐹)
5 wrddm 14478 . . . . . 6 (𝐹 ∈ Word 𝑆 → dom 𝐹 = (0..^(♯‘𝐹)))
6 difssd 4132 . . . . . . . . 9 ((dom 𝐹 = (0..^(♯‘𝐹)) ∧ 𝑁 = (♯‘𝐹)) → ((0..^(♯‘𝐹)) ∖ {𝐽}) ⊆ (0..^(♯‘𝐹)))
7 oveq2 7420 . . . . . . . . . . 11 (𝑁 = (♯‘𝐹) → (0..^𝑁) = (0..^(♯‘𝐹)))
87difeq1d 4121 . . . . . . . . . 10 (𝑁 = (♯‘𝐹) → ((0..^𝑁) ∖ {𝐽}) = ((0..^(♯‘𝐹)) ∖ {𝐽}))
98adantl 481 . . . . . . . . 9 ((dom 𝐹 = (0..^(♯‘𝐹)) ∧ 𝑁 = (♯‘𝐹)) → ((0..^𝑁) ∖ {𝐽}) = ((0..^(♯‘𝐹)) ∖ {𝐽}))
10 simpl 482 . . . . . . . . 9 ((dom 𝐹 = (0..^(♯‘𝐹)) ∧ 𝑁 = (♯‘𝐹)) → dom 𝐹 = (0..^(♯‘𝐹)))
116, 9, 103sstr4d 4029 . . . . . . . 8 ((dom 𝐹 = (0..^(♯‘𝐹)) ∧ 𝑁 = (♯‘𝐹)) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹)
1211a1d 25 . . . . . . 7 ((dom 𝐹 = (0..^(♯‘𝐹)) ∧ 𝑁 = (♯‘𝐹)) → (𝐽 ∈ (0..^𝑁) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹))
1312ex 412 . . . . . 6 (dom 𝐹 = (0..^(♯‘𝐹)) → (𝑁 = (♯‘𝐹) → (𝐽 ∈ (0..^𝑁) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹)))
145, 13syl 17 . . . . 5 (𝐹 ∈ Word 𝑆 → (𝑁 = (♯‘𝐹) → (𝐽 ∈ (0..^𝑁) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹)))
15143imp 1110 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹)
164, 15jca 511 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (Fun 𝐹 ∧ ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹))
17 dfimafn 6954 . . 3 ((Fun 𝐹 ∧ ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = {𝑧 ∣ ∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧})
1816, 17syl 17 . 2 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = {𝑧 ∣ ∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧})
19 modsumfzodifsn 13916 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝑦 ∈ (1..^𝑁)) → ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
20193ad2antl3 1186 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
21 oveq2 7420 . . . . . . . . . 10 ((♯‘𝐹) = 𝑁 → ((𝑦 + 𝐽) mod (♯‘𝐹)) = ((𝑦 + 𝐽) mod 𝑁))
2221eqcoms 2739 . . . . . . . . 9 (𝑁 = (♯‘𝐹) → ((𝑦 + 𝐽) mod (♯‘𝐹)) = ((𝑦 + 𝐽) mod 𝑁))
2322eleq1d 2817 . . . . . . . 8 (𝑁 = (♯‘𝐹) → (((𝑦 + 𝐽) mod (♯‘𝐹)) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})))
24233ad2ant2 1133 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (((𝑦 + 𝐽) mod (♯‘𝐹)) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})))
2524adantr 480 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → (((𝑦 + 𝐽) mod (♯‘𝐹)) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})))
2620, 25mpbird 257 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → ((𝑦 + 𝐽) mod (♯‘𝐹)) ∈ ((0..^𝑁) ∖ {𝐽}))
27 modfzo0difsn 13915 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝑥 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁))
28273ad2antl3 1186 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁))
29 oveq2 7420 . . . . . . . . . . 11 (𝑁 = (♯‘𝐹) → ((𝑦 + 𝐽) mod 𝑁) = ((𝑦 + 𝐽) mod (♯‘𝐹)))
3029eqcomd 2737 . . . . . . . . . 10 (𝑁 = (♯‘𝐹) → ((𝑦 + 𝐽) mod (♯‘𝐹)) = ((𝑦 + 𝐽) mod 𝑁))
3130eqeq2d 2742 . . . . . . . . 9 (𝑁 = (♯‘𝐹) → (𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹)) ↔ 𝑥 = ((𝑦 + 𝐽) mod 𝑁)))
3231rexbidv 3177 . . . . . . . 8 (𝑁 = (♯‘𝐹) → (∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹)) ↔ ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁)))
33323ad2ant2 1133 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹)) ↔ ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁)))
3433adantr 480 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ((0..^𝑁) ∖ {𝐽})) → (∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹)) ↔ ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁)))
3528, 34mpbird 257 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹)))
36 fveq2 6891 . . . . . . . 8 (𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹)) → (𝐹𝑥) = (𝐹‘((𝑦 + 𝐽) mod (♯‘𝐹))))
37363ad2ant3 1134 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹))) → (𝐹𝑥) = (𝐹‘((𝑦 + 𝐽) mod (♯‘𝐹))))
38 simpl1 1190 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → 𝐹 ∈ Word 𝑆)
39 elfzoelz 13639 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
40393ad2ant3 1134 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → 𝐽 ∈ ℤ)
4140adantr 480 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → 𝐽 ∈ ℤ)
42 oveq2 7420 . . . . . . . . . . . . 13 (𝑁 = (♯‘𝐹) → (1..^𝑁) = (1..^(♯‘𝐹)))
4342eleq2d 2818 . . . . . . . . . . . 12 (𝑁 = (♯‘𝐹) → (𝑦 ∈ (1..^𝑁) ↔ 𝑦 ∈ (1..^(♯‘𝐹))))
44 fzo0ss1 13669 . . . . . . . . . . . . 13 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
4544sseli 3978 . . . . . . . . . . . 12 (𝑦 ∈ (1..^(♯‘𝐹)) → 𝑦 ∈ (0..^(♯‘𝐹)))
4643, 45syl6bi 253 . . . . . . . . . . 11 (𝑁 = (♯‘𝐹) → (𝑦 ∈ (1..^𝑁) → 𝑦 ∈ (0..^(♯‘𝐹))))
47463ad2ant2 1133 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝑦 ∈ (1..^𝑁) → 𝑦 ∈ (0..^(♯‘𝐹))))
4847imp 406 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → 𝑦 ∈ (0..^(♯‘𝐹)))
49 cshwidxmod 14760 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑆𝐽 ∈ ℤ ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝐹 cyclShift 𝐽)‘𝑦) = (𝐹‘((𝑦 + 𝐽) mod (♯‘𝐹))))
5049eqcomd 2737 . . . . . . . . 9 ((𝐹 ∈ Word 𝑆𝐽 ∈ ℤ ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝐹‘((𝑦 + 𝐽) mod (♯‘𝐹))) = ((𝐹 cyclShift 𝐽)‘𝑦))
5138, 41, 48, 50syl3anc 1370 . . . . . . . 8 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → (𝐹‘((𝑦 + 𝐽) mod (♯‘𝐹))) = ((𝐹 cyclShift 𝐽)‘𝑦))
52513adant3 1131 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹))) → (𝐹‘((𝑦 + 𝐽) mod (♯‘𝐹))) = ((𝐹 cyclShift 𝐽)‘𝑦))
5337, 52eqtrd 2771 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹))) → (𝐹𝑥) = ((𝐹 cyclShift 𝐽)‘𝑦))
5453eqeq1d 2733 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹))) → ((𝐹𝑥) = 𝑧 ↔ ((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧))
5526, 35, 54rexxfrd2 5411 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧 ↔ ∃𝑦 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧))
5655abbidv 2800 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → {𝑧 ∣ ∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧} = {𝑧 ∣ ∃𝑦 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧})
5739anim2i 616 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆𝐽 ∈ ℤ))
58573adant2 1130 . . . . . 6 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆𝐽 ∈ ℤ))
59 cshwfn 14758 . . . . . 6 ((𝐹 ∈ Word 𝑆𝐽 ∈ ℤ) → (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹)))
6058, 59syl 17 . . . . 5 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹)))
61 fnfun 6649 . . . . . . 7 ((𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹)) → Fun (𝐹 cyclShift 𝐽))
6261adantl 481 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → Fun (𝐹 cyclShift 𝐽))
6342, 44eqsstrdi 4036 . . . . . . . . 9 (𝑁 = (♯‘𝐹) → (1..^𝑁) ⊆ (0..^(♯‘𝐹)))
64633ad2ant2 1133 . . . . . . . 8 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (1..^𝑁) ⊆ (0..^(♯‘𝐹)))
6564adantr 480 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → (1..^𝑁) ⊆ (0..^(♯‘𝐹)))
66 fndm 6652 . . . . . . . 8 ((𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹)) → dom (𝐹 cyclShift 𝐽) = (0..^(♯‘𝐹)))
6766adantl 481 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → dom (𝐹 cyclShift 𝐽) = (0..^(♯‘𝐹)))
6865, 67sseqtrrd 4023 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽))
6962, 68jca 511 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → (Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)))
7060, 69mpdan 684 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)))
71 dfimafn 6954 . . . 4 ((Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)) → ((𝐹 cyclShift 𝐽) “ (1..^𝑁)) = {𝑧 ∣ ∃𝑦 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧})
7270, 71syl 17 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐹 cyclShift 𝐽) “ (1..^𝑁)) = {𝑧 ∣ ∃𝑦 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧})
7356, 72eqtr4d 2774 . 2 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → {𝑧 ∣ ∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧} = ((𝐹 cyclShift 𝐽) “ (1..^𝑁)))
7418, 73eqtrd 2771 1 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift 𝐽) “ (1..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  {cab 2708  wrex 3069  cdif 3945  wss 3948  {csn 4628  dom cdm 5676  cima 5679  Fun wfun 6537   Fn wfn 6538  cfv 6543  (class class class)co 7412  0cc0 11116  1c1 11117   + caddc 11119  cz 12565  ..^cfzo 13634   mod cmo 13841  chash 14297  Word cword 14471   cyclShift ccsh 14745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-sup 9443  df-inf 9444  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-n0 12480  df-z 12566  df-uz 12830  df-rp 12982  df-ico 13337  df-fz 13492  df-fzo 13635  df-fl 13764  df-mod 13842  df-hash 14298  df-word 14472  df-concat 14528  df-substr 14598  df-pfx 14628  df-csh 14746
This theorem is referenced by:  cshimadifsn0  14788
  Copyright terms: Public domain W3C validator