MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshimadifsn Structured version   Visualization version   GIF version

Theorem cshimadifsn 14185
Description: The image of a cyclically shifted word under its domain without its left bound is the image of a cyclically shifted word under its domain without the number of shifted symbols. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
cshimadifsn ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift 𝐽) “ (1..^𝑁)))

Proof of Theorem cshimadifsn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrdfn 13870 . . . . . 6 (𝐹 ∈ Word 𝑆𝐹 Fn (0..^(♯‘𝐹)))
2 fnfun 6448 . . . . . 6 (𝐹 Fn (0..^(♯‘𝐹)) → Fun 𝐹)
31, 2syl 17 . . . . 5 (𝐹 ∈ Word 𝑆 → Fun 𝐹)
433ad2ant1 1129 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → Fun 𝐹)
5 wrddm 13862 . . . . . 6 (𝐹 ∈ Word 𝑆 → dom 𝐹 = (0..^(♯‘𝐹)))
6 difssd 4109 . . . . . . . . 9 ((dom 𝐹 = (0..^(♯‘𝐹)) ∧ 𝑁 = (♯‘𝐹)) → ((0..^(♯‘𝐹)) ∖ {𝐽}) ⊆ (0..^(♯‘𝐹)))
7 oveq2 7158 . . . . . . . . . . 11 (𝑁 = (♯‘𝐹) → (0..^𝑁) = (0..^(♯‘𝐹)))
87difeq1d 4098 . . . . . . . . . 10 (𝑁 = (♯‘𝐹) → ((0..^𝑁) ∖ {𝐽}) = ((0..^(♯‘𝐹)) ∖ {𝐽}))
98adantl 484 . . . . . . . . 9 ((dom 𝐹 = (0..^(♯‘𝐹)) ∧ 𝑁 = (♯‘𝐹)) → ((0..^𝑁) ∖ {𝐽}) = ((0..^(♯‘𝐹)) ∖ {𝐽}))
10 simpl 485 . . . . . . . . 9 ((dom 𝐹 = (0..^(♯‘𝐹)) ∧ 𝑁 = (♯‘𝐹)) → dom 𝐹 = (0..^(♯‘𝐹)))
116, 9, 103sstr4d 4014 . . . . . . . 8 ((dom 𝐹 = (0..^(♯‘𝐹)) ∧ 𝑁 = (♯‘𝐹)) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹)
1211a1d 25 . . . . . . 7 ((dom 𝐹 = (0..^(♯‘𝐹)) ∧ 𝑁 = (♯‘𝐹)) → (𝐽 ∈ (0..^𝑁) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹))
1312ex 415 . . . . . 6 (dom 𝐹 = (0..^(♯‘𝐹)) → (𝑁 = (♯‘𝐹) → (𝐽 ∈ (0..^𝑁) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹)))
145, 13syl 17 . . . . 5 (𝐹 ∈ Word 𝑆 → (𝑁 = (♯‘𝐹) → (𝐽 ∈ (0..^𝑁) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹)))
15143imp 1107 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹)
164, 15jca 514 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (Fun 𝐹 ∧ ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹))
17 dfimafn 6723 . . 3 ((Fun 𝐹 ∧ ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = {𝑧 ∣ ∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧})
1816, 17syl 17 . 2 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = {𝑧 ∣ ∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧})
19 modsumfzodifsn 13306 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝑦 ∈ (1..^𝑁)) → ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
20193ad2antl3 1183 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
21 oveq2 7158 . . . . . . . . . 10 ((♯‘𝐹) = 𝑁 → ((𝑦 + 𝐽) mod (♯‘𝐹)) = ((𝑦 + 𝐽) mod 𝑁))
2221eqcoms 2829 . . . . . . . . 9 (𝑁 = (♯‘𝐹) → ((𝑦 + 𝐽) mod (♯‘𝐹)) = ((𝑦 + 𝐽) mod 𝑁))
2322eleq1d 2897 . . . . . . . 8 (𝑁 = (♯‘𝐹) → (((𝑦 + 𝐽) mod (♯‘𝐹)) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})))
24233ad2ant2 1130 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (((𝑦 + 𝐽) mod (♯‘𝐹)) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})))
2524adantr 483 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → (((𝑦 + 𝐽) mod (♯‘𝐹)) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})))
2620, 25mpbird 259 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → ((𝑦 + 𝐽) mod (♯‘𝐹)) ∈ ((0..^𝑁) ∖ {𝐽}))
27 modfzo0difsn 13305 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝑥 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁))
28273ad2antl3 1183 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁))
29 oveq2 7158 . . . . . . . . . . 11 (𝑁 = (♯‘𝐹) → ((𝑦 + 𝐽) mod 𝑁) = ((𝑦 + 𝐽) mod (♯‘𝐹)))
3029eqcomd 2827 . . . . . . . . . 10 (𝑁 = (♯‘𝐹) → ((𝑦 + 𝐽) mod (♯‘𝐹)) = ((𝑦 + 𝐽) mod 𝑁))
3130eqeq2d 2832 . . . . . . . . 9 (𝑁 = (♯‘𝐹) → (𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹)) ↔ 𝑥 = ((𝑦 + 𝐽) mod 𝑁)))
3231rexbidv 3297 . . . . . . . 8 (𝑁 = (♯‘𝐹) → (∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹)) ↔ ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁)))
33323ad2ant2 1130 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹)) ↔ ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁)))
3433adantr 483 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ((0..^𝑁) ∖ {𝐽})) → (∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹)) ↔ ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁)))
3528, 34mpbird 259 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹)))
36 fveq2 6665 . . . . . . . 8 (𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹)) → (𝐹𝑥) = (𝐹‘((𝑦 + 𝐽) mod (♯‘𝐹))))
37363ad2ant3 1131 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹))) → (𝐹𝑥) = (𝐹‘((𝑦 + 𝐽) mod (♯‘𝐹))))
38 simpl1 1187 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → 𝐹 ∈ Word 𝑆)
39 elfzoelz 13032 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
40393ad2ant3 1131 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → 𝐽 ∈ ℤ)
4140adantr 483 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → 𝐽 ∈ ℤ)
42 oveq2 7158 . . . . . . . . . . . . 13 (𝑁 = (♯‘𝐹) → (1..^𝑁) = (1..^(♯‘𝐹)))
4342eleq2d 2898 . . . . . . . . . . . 12 (𝑁 = (♯‘𝐹) → (𝑦 ∈ (1..^𝑁) ↔ 𝑦 ∈ (1..^(♯‘𝐹))))
44 fzo0ss1 13061 . . . . . . . . . . . . 13 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
4544sseli 3963 . . . . . . . . . . . 12 (𝑦 ∈ (1..^(♯‘𝐹)) → 𝑦 ∈ (0..^(♯‘𝐹)))
4643, 45syl6bi 255 . . . . . . . . . . 11 (𝑁 = (♯‘𝐹) → (𝑦 ∈ (1..^𝑁) → 𝑦 ∈ (0..^(♯‘𝐹))))
47463ad2ant2 1130 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝑦 ∈ (1..^𝑁) → 𝑦 ∈ (0..^(♯‘𝐹))))
4847imp 409 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → 𝑦 ∈ (0..^(♯‘𝐹)))
49 cshwidxmod 14159 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑆𝐽 ∈ ℤ ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝐹 cyclShift 𝐽)‘𝑦) = (𝐹‘((𝑦 + 𝐽) mod (♯‘𝐹))))
5049eqcomd 2827 . . . . . . . . 9 ((𝐹 ∈ Word 𝑆𝐽 ∈ ℤ ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝐹‘((𝑦 + 𝐽) mod (♯‘𝐹))) = ((𝐹 cyclShift 𝐽)‘𝑦))
5138, 41, 48, 50syl3anc 1367 . . . . . . . 8 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → (𝐹‘((𝑦 + 𝐽) mod (♯‘𝐹))) = ((𝐹 cyclShift 𝐽)‘𝑦))
52513adant3 1128 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹))) → (𝐹‘((𝑦 + 𝐽) mod (♯‘𝐹))) = ((𝐹 cyclShift 𝐽)‘𝑦))
5337, 52eqtrd 2856 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹))) → (𝐹𝑥) = ((𝐹 cyclShift 𝐽)‘𝑦))
5453eqeq1d 2823 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹))) → ((𝐹𝑥) = 𝑧 ↔ ((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧))
5526, 35, 54rexxfrd2 5306 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧 ↔ ∃𝑦 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧))
5655abbidv 2885 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → {𝑧 ∣ ∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧} = {𝑧 ∣ ∃𝑦 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧})
5739anim2i 618 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆𝐽 ∈ ℤ))
58573adant2 1127 . . . . . 6 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆𝐽 ∈ ℤ))
59 cshwfn 14157 . . . . . 6 ((𝐹 ∈ Word 𝑆𝐽 ∈ ℤ) → (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹)))
6058, 59syl 17 . . . . 5 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹)))
61 fnfun 6448 . . . . . . 7 ((𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹)) → Fun (𝐹 cyclShift 𝐽))
6261adantl 484 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → Fun (𝐹 cyclShift 𝐽))
6342, 44eqsstrdi 4021 . . . . . . . . 9 (𝑁 = (♯‘𝐹) → (1..^𝑁) ⊆ (0..^(♯‘𝐹)))
64633ad2ant2 1130 . . . . . . . 8 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (1..^𝑁) ⊆ (0..^(♯‘𝐹)))
6564adantr 483 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → (1..^𝑁) ⊆ (0..^(♯‘𝐹)))
66 fndm 6450 . . . . . . . 8 ((𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹)) → dom (𝐹 cyclShift 𝐽) = (0..^(♯‘𝐹)))
6766adantl 484 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → dom (𝐹 cyclShift 𝐽) = (0..^(♯‘𝐹)))
6865, 67sseqtrrd 4008 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽))
6962, 68jca 514 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → (Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)))
7060, 69mpdan 685 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)))
71 dfimafn 6723 . . . 4 ((Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)) → ((𝐹 cyclShift 𝐽) “ (1..^𝑁)) = {𝑧 ∣ ∃𝑦 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧})
7270, 71syl 17 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐹 cyclShift 𝐽) “ (1..^𝑁)) = {𝑧 ∣ ∃𝑦 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧})
7356, 72eqtr4d 2859 . 2 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → {𝑧 ∣ ∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧} = ((𝐹 cyclShift 𝐽) “ (1..^𝑁)))
7418, 73eqtrd 2856 1 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift 𝐽) “ (1..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  {cab 2799  wrex 3139  cdif 3933  wss 3936  {csn 4561  dom cdm 5550  cima 5553  Fun wfun 6344   Fn wfn 6345  cfv 6350  (class class class)co 7150  0cc0 10531  1c1 10532   + caddc 10534  cz 11975  ..^cfzo 13027   mod cmo 13231  chash 13684  Word cword 13855   cyclShift ccsh 14144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-ico 12738  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-hash 13685  df-word 13856  df-concat 13917  df-substr 13997  df-pfx 14027  df-csh 14145
This theorem is referenced by:  cshimadifsn0  14186
  Copyright terms: Public domain W3C validator