MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshimadifsn Structured version   Visualization version   GIF version

Theorem cshimadifsn 14719
Description: The image of a cyclically shifted word under its domain without its left bound is the image of a cyclically shifted word under its domain without the number of shifted symbols. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
cshimadifsn ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift 𝐽) “ (1..^𝑁)))

Proof of Theorem cshimadifsn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrdfn 14417 . . . . . 6 (𝐹 ∈ Word 𝑆𝐹 Fn (0..^(♯‘𝐹)))
2 fnfun 6603 . . . . . 6 (𝐹 Fn (0..^(♯‘𝐹)) → Fun 𝐹)
31, 2syl 17 . . . . 5 (𝐹 ∈ Word 𝑆 → Fun 𝐹)
433ad2ant1 1134 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → Fun 𝐹)
5 wrddm 14410 . . . . . 6 (𝐹 ∈ Word 𝑆 → dom 𝐹 = (0..^(♯‘𝐹)))
6 difssd 4093 . . . . . . . . 9 ((dom 𝐹 = (0..^(♯‘𝐹)) ∧ 𝑁 = (♯‘𝐹)) → ((0..^(♯‘𝐹)) ∖ {𝐽}) ⊆ (0..^(♯‘𝐹)))
7 oveq2 7366 . . . . . . . . . . 11 (𝑁 = (♯‘𝐹) → (0..^𝑁) = (0..^(♯‘𝐹)))
87difeq1d 4082 . . . . . . . . . 10 (𝑁 = (♯‘𝐹) → ((0..^𝑁) ∖ {𝐽}) = ((0..^(♯‘𝐹)) ∖ {𝐽}))
98adantl 483 . . . . . . . . 9 ((dom 𝐹 = (0..^(♯‘𝐹)) ∧ 𝑁 = (♯‘𝐹)) → ((0..^𝑁) ∖ {𝐽}) = ((0..^(♯‘𝐹)) ∖ {𝐽}))
10 simpl 484 . . . . . . . . 9 ((dom 𝐹 = (0..^(♯‘𝐹)) ∧ 𝑁 = (♯‘𝐹)) → dom 𝐹 = (0..^(♯‘𝐹)))
116, 9, 103sstr4d 3992 . . . . . . . 8 ((dom 𝐹 = (0..^(♯‘𝐹)) ∧ 𝑁 = (♯‘𝐹)) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹)
1211a1d 25 . . . . . . 7 ((dom 𝐹 = (0..^(♯‘𝐹)) ∧ 𝑁 = (♯‘𝐹)) → (𝐽 ∈ (0..^𝑁) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹))
1312ex 414 . . . . . 6 (dom 𝐹 = (0..^(♯‘𝐹)) → (𝑁 = (♯‘𝐹) → (𝐽 ∈ (0..^𝑁) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹)))
145, 13syl 17 . . . . 5 (𝐹 ∈ Word 𝑆 → (𝑁 = (♯‘𝐹) → (𝐽 ∈ (0..^𝑁) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹)))
15143imp 1112 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹)
164, 15jca 513 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (Fun 𝐹 ∧ ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹))
17 dfimafn 6906 . . 3 ((Fun 𝐹 ∧ ((0..^𝑁) ∖ {𝐽}) ⊆ dom 𝐹) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = {𝑧 ∣ ∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧})
1816, 17syl 17 . 2 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = {𝑧 ∣ ∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧})
19 modsumfzodifsn 13850 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝑦 ∈ (1..^𝑁)) → ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
20193ad2antl3 1188 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
21 oveq2 7366 . . . . . . . . . 10 ((♯‘𝐹) = 𝑁 → ((𝑦 + 𝐽) mod (♯‘𝐹)) = ((𝑦 + 𝐽) mod 𝑁))
2221eqcoms 2745 . . . . . . . . 9 (𝑁 = (♯‘𝐹) → ((𝑦 + 𝐽) mod (♯‘𝐹)) = ((𝑦 + 𝐽) mod 𝑁))
2322eleq1d 2823 . . . . . . . 8 (𝑁 = (♯‘𝐹) → (((𝑦 + 𝐽) mod (♯‘𝐹)) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})))
24233ad2ant2 1135 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (((𝑦 + 𝐽) mod (♯‘𝐹)) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})))
2524adantr 482 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → (((𝑦 + 𝐽) mod (♯‘𝐹)) ∈ ((0..^𝑁) ∖ {𝐽}) ↔ ((𝑦 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽})))
2620, 25mpbird 257 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → ((𝑦 + 𝐽) mod (♯‘𝐹)) ∈ ((0..^𝑁) ∖ {𝐽}))
27 modfzo0difsn 13849 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝑥 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁))
28273ad2antl3 1188 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁))
29 oveq2 7366 . . . . . . . . . . 11 (𝑁 = (♯‘𝐹) → ((𝑦 + 𝐽) mod 𝑁) = ((𝑦 + 𝐽) mod (♯‘𝐹)))
3029eqcomd 2743 . . . . . . . . . 10 (𝑁 = (♯‘𝐹) → ((𝑦 + 𝐽) mod (♯‘𝐹)) = ((𝑦 + 𝐽) mod 𝑁))
3130eqeq2d 2748 . . . . . . . . 9 (𝑁 = (♯‘𝐹) → (𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹)) ↔ 𝑥 = ((𝑦 + 𝐽) mod 𝑁)))
3231rexbidv 3176 . . . . . . . 8 (𝑁 = (♯‘𝐹) → (∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹)) ↔ ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁)))
33323ad2ant2 1135 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹)) ↔ ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁)))
3433adantr 482 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ((0..^𝑁) ∖ {𝐽})) → (∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹)) ↔ ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod 𝑁)))
3528, 34mpbird 257 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑦 ∈ (1..^𝑁)𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹)))
36 fveq2 6843 . . . . . . . 8 (𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹)) → (𝐹𝑥) = (𝐹‘((𝑦 + 𝐽) mod (♯‘𝐹))))
37363ad2ant3 1136 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹))) → (𝐹𝑥) = (𝐹‘((𝑦 + 𝐽) mod (♯‘𝐹))))
38 simpl1 1192 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → 𝐹 ∈ Word 𝑆)
39 elfzoelz 13573 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
40393ad2ant3 1136 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → 𝐽 ∈ ℤ)
4140adantr 482 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → 𝐽 ∈ ℤ)
42 oveq2 7366 . . . . . . . . . . . . 13 (𝑁 = (♯‘𝐹) → (1..^𝑁) = (1..^(♯‘𝐹)))
4342eleq2d 2824 . . . . . . . . . . . 12 (𝑁 = (♯‘𝐹) → (𝑦 ∈ (1..^𝑁) ↔ 𝑦 ∈ (1..^(♯‘𝐹))))
44 fzo0ss1 13603 . . . . . . . . . . . . 13 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
4544sseli 3941 . . . . . . . . . . . 12 (𝑦 ∈ (1..^(♯‘𝐹)) → 𝑦 ∈ (0..^(♯‘𝐹)))
4643, 45syl6bi 253 . . . . . . . . . . 11 (𝑁 = (♯‘𝐹) → (𝑦 ∈ (1..^𝑁) → 𝑦 ∈ (0..^(♯‘𝐹))))
47463ad2ant2 1135 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝑦 ∈ (1..^𝑁) → 𝑦 ∈ (0..^(♯‘𝐹))))
4847imp 408 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → 𝑦 ∈ (0..^(♯‘𝐹)))
49 cshwidxmod 14692 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑆𝐽 ∈ ℤ ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝐹 cyclShift 𝐽)‘𝑦) = (𝐹‘((𝑦 + 𝐽) mod (♯‘𝐹))))
5049eqcomd 2743 . . . . . . . . 9 ((𝐹 ∈ Word 𝑆𝐽 ∈ ℤ ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝐹‘((𝑦 + 𝐽) mod (♯‘𝐹))) = ((𝐹 cyclShift 𝐽)‘𝑦))
5138, 41, 48, 50syl3anc 1372 . . . . . . . 8 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁)) → (𝐹‘((𝑦 + 𝐽) mod (♯‘𝐹))) = ((𝐹 cyclShift 𝐽)‘𝑦))
52513adant3 1133 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹))) → (𝐹‘((𝑦 + 𝐽) mod (♯‘𝐹))) = ((𝐹 cyclShift 𝐽)‘𝑦))
5337, 52eqtrd 2777 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹))) → (𝐹𝑥) = ((𝐹 cyclShift 𝐽)‘𝑦))
5453eqeq1d 2739 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 = ((𝑦 + 𝐽) mod (♯‘𝐹))) → ((𝐹𝑥) = 𝑧 ↔ ((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧))
5526, 35, 54rexxfrd2 5369 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧 ↔ ∃𝑦 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧))
5655abbidv 2806 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → {𝑧 ∣ ∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧} = {𝑧 ∣ ∃𝑦 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧})
5739anim2i 618 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆𝐽 ∈ ℤ))
58573adant2 1132 . . . . . 6 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆𝐽 ∈ ℤ))
59 cshwfn 14690 . . . . . 6 ((𝐹 ∈ Word 𝑆𝐽 ∈ ℤ) → (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹)))
6058, 59syl 17 . . . . 5 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹)))
61 fnfun 6603 . . . . . . 7 ((𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹)) → Fun (𝐹 cyclShift 𝐽))
6261adantl 483 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → Fun (𝐹 cyclShift 𝐽))
6342, 44eqsstrdi 3999 . . . . . . . . 9 (𝑁 = (♯‘𝐹) → (1..^𝑁) ⊆ (0..^(♯‘𝐹)))
64633ad2ant2 1135 . . . . . . . 8 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (1..^𝑁) ⊆ (0..^(♯‘𝐹)))
6564adantr 482 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → (1..^𝑁) ⊆ (0..^(♯‘𝐹)))
66 fndm 6606 . . . . . . . 8 ((𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹)) → dom (𝐹 cyclShift 𝐽) = (0..^(♯‘𝐹)))
6766adantl 483 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → dom (𝐹 cyclShift 𝐽) = (0..^(♯‘𝐹)))
6865, 67sseqtrrd 3986 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽))
6962, 68jca 513 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → (Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)))
7060, 69mpdan 686 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)))
71 dfimafn 6906 . . . 4 ((Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)) → ((𝐹 cyclShift 𝐽) “ (1..^𝑁)) = {𝑧 ∣ ∃𝑦 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧})
7270, 71syl 17 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐹 cyclShift 𝐽) “ (1..^𝑁)) = {𝑧 ∣ ∃𝑦 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑦) = 𝑧})
7356, 72eqtr4d 2780 . 2 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → {𝑧 ∣ ∃𝑥 ∈ ((0..^𝑁) ∖ {𝐽})(𝐹𝑥) = 𝑧} = ((𝐹 cyclShift 𝐽) “ (1..^𝑁)))
7418, 73eqtrd 2777 1 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift 𝐽) “ (1..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  {cab 2714  wrex 3074  cdif 3908  wss 3911  {csn 4587  dom cdm 5634  cima 5637  Fun wfun 6491   Fn wfn 6492  cfv 6497  (class class class)co 7358  0cc0 11052  1c1 11053   + caddc 11055  cz 12500  ..^cfzo 13568   mod cmo 13775  chash 14231  Word cword 14403   cyclShift ccsh 14677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129  ax-pre-sup 11130
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3354  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-fin 8888  df-sup 9379  df-inf 9380  df-card 9876  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-div 11814  df-nn 12155  df-2 12217  df-n0 12415  df-z 12501  df-uz 12765  df-rp 12917  df-ico 13271  df-fz 13426  df-fzo 13569  df-fl 13698  df-mod 13776  df-hash 14232  df-word 14404  df-concat 14460  df-substr 14530  df-pfx 14560  df-csh 14678
This theorem is referenced by:  cshimadifsn0  14720
  Copyright terms: Public domain W3C validator