Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cshwrnid Structured version   Visualization version   GIF version

Theorem cshwrnid 32963
Description: Cyclically shifting a word preserves its range. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Assertion
Ref Expression
cshwrnid ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = ran 𝑊)

Proof of Theorem cshwrnid
Dummy variables 𝑐 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzoelz 13705 . . . . . . . 8 (𝑖 ∈ (0..^(♯‘𝑊)) → 𝑖 ∈ ℤ)
213ad2ant3 1136 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ ℤ)
3 simp2 1138 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
42, 3zsubcld 12734 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑖𝑁) ∈ ℤ)
5 elfzo0 13746 . . . . . . . 8 (𝑖 ∈ (0..^(♯‘𝑊)) ↔ (𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑖 < (♯‘𝑊)))
65simp2bi 1147 . . . . . . 7 (𝑖 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
763ad2ant3 1136 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
8 zmodfzo 13940 . . . . . 6 (((𝑖𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((𝑖𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
94, 7, 8syl2anc 584 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
1093expa 1119 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
11 elfzoelz 13705 . . . . . . . 8 (𝑗 ∈ (0..^(♯‘𝑊)) → 𝑗 ∈ ℤ)
1211adantl 481 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑗 ∈ ℤ)
13 simplr 769 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
1412, 13zaddcld 12733 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (𝑗 + 𝑁) ∈ ℤ)
15 elfzo0 13746 . . . . . . . 8 (𝑗 ∈ (0..^(♯‘𝑊)) ↔ (𝑗 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑗 < (♯‘𝑊)))
1615simp2bi 1147 . . . . . . 7 (𝑗 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
1716adantl 481 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
18 zmodfzo 13940 . . . . . 6 (((𝑗 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((𝑗 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
1914, 17, 18syl2anc 584 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ((𝑗 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
20 simpr 484 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) ∧ 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊))) → 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊)))
2120oveq1d 7453 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) ∧ 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊))) → (𝑖𝑁) = (((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁))
2221oveq1d 7453 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) ∧ 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊))) → ((𝑖𝑁) mod (♯‘𝑊)) = ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊)))
2322eqeq2d 2748 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) ∧ 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊))) → (𝑗 = ((𝑖𝑁) mod (♯‘𝑊)) ↔ 𝑗 = ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊))))
2412zred 12729 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑗 ∈ ℝ)
2513zred 12729 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℝ)
2624, 25readdcld 11297 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (𝑗 + 𝑁) ∈ ℝ)
2717nnrpd 13082 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℝ+)
28 modsubmod 13976 . . . . . . 7 (((𝑗 + 𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊)) = (((𝑗 + 𝑁) − 𝑁) mod (♯‘𝑊)))
2926, 25, 27, 28syl3anc 1372 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊)) = (((𝑗 + 𝑁) − 𝑁) mod (♯‘𝑊)))
3012zcnd 12730 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑗 ∈ ℂ)
3113zcnd 12730 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℂ)
3230, 31pncand 11628 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ((𝑗 + 𝑁) − 𝑁) = 𝑗)
3332oveq1d 7453 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (((𝑗 + 𝑁) − 𝑁) mod (♯‘𝑊)) = (𝑗 mod (♯‘𝑊)))
34 zmodidfzoimp 13947 . . . . . . 7 (𝑗 ∈ (0..^(♯‘𝑊)) → (𝑗 mod (♯‘𝑊)) = 𝑗)
3534adantl 481 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (𝑗 mod (♯‘𝑊)) = 𝑗)
3629, 33, 353eqtrrd 2782 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑗 = ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊)))
3719, 23, 36rspcedvd 3627 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ∃𝑖 ∈ (0..^(♯‘𝑊))𝑗 = ((𝑖𝑁) mod (♯‘𝑊)))
38 simp3 1139 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → 𝑗 = ((𝑖𝑁) mod (♯‘𝑊)))
3938fveq2d 6918 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝑗) = ((𝑊 cyclShift 𝑁)‘((𝑖𝑁) mod (♯‘𝑊))))
40 simp1l 1198 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
41 simp1r 1199 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → 𝑁 ∈ ℤ)
42 simp2 1138 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊)))
43 cshwidxmodr 14848 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝑖𝑁) mod (♯‘𝑊))) = (𝑊𝑖))
4440, 41, 42, 43syl3anc 1372 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝑖𝑁) mod (♯‘𝑊))) = (𝑊𝑖))
4539, 44eqtrd 2777 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝑗) = (𝑊𝑖))
4645eqeq2d 2748 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → (𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗) ↔ 𝑐 = (𝑊𝑖)))
4710, 37, 46rexxfrd2 5422 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (∃𝑗 ∈ (0..^(♯‘𝑊))𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗) ↔ ∃𝑖 ∈ (0..^(♯‘𝑊))𝑐 = (𝑊𝑖)))
4847abbidv 2808 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → {𝑐 ∣ ∃𝑗 ∈ (0..^(♯‘𝑊))𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗)} = {𝑐 ∣ ∃𝑖 ∈ (0..^(♯‘𝑊))𝑐 = (𝑊𝑖)})
49 cshwfn 14845 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)))
50 fnrnfv 6975 . . 3 ((𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)) → ran (𝑊 cyclShift 𝑁) = {𝑐 ∣ ∃𝑗 ∈ (0..^(♯‘𝑊))𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗)})
5149, 50syl 17 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = {𝑐 ∣ ∃𝑗 ∈ (0..^(♯‘𝑊))𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗)})
52 wrdfn 14572 . . . 4 (𝑊 ∈ Word 𝑉𝑊 Fn (0..^(♯‘𝑊)))
5352adantr 480 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → 𝑊 Fn (0..^(♯‘𝑊)))
54 fnrnfv 6975 . . 3 (𝑊 Fn (0..^(♯‘𝑊)) → ran 𝑊 = {𝑐 ∣ ∃𝑖 ∈ (0..^(♯‘𝑊))𝑐 = (𝑊𝑖)})
5553, 54syl 17 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ran 𝑊 = {𝑐 ∣ ∃𝑖 ∈ (0..^(♯‘𝑊))𝑐 = (𝑊𝑖)})
5648, 51, 553eqtr4d 2787 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = ran 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1539  wcel 2108  {cab 2714  wrex 3070   class class class wbr 5151  ran crn 5694   Fn wfn 6564  cfv 6569  (class class class)co 7438  cr 11161  0cc0 11162   + caddc 11165   < clt 11302  cmin 11499  cn 12273  0cn0 12533  cz 12620  +crp 13041  ..^cfzo 13700   mod cmo 13915  chash 14375  Word cword 14558   cyclShift ccsh 14832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239  ax-pre-sup 11240
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-sup 9489  df-inf 9490  df-card 9986  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928  df-nn 12274  df-2 12336  df-n0 12534  df-z 12621  df-uz 12886  df-rp 13042  df-fz 13554  df-fzo 13701  df-fl 13838  df-mod 13916  df-hash 14376  df-word 14559  df-concat 14615  df-substr 14685  df-pfx 14715  df-csh 14833
This theorem is referenced by:  cshf1o  32964  cycpmcl  33151
  Copyright terms: Public domain W3C validator