Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cshwrnid Structured version   Visualization version   GIF version

Theorem cshwrnid 30953
Description: Cyclically shifting a word preserves its range. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Assertion
Ref Expression
cshwrnid ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = ran 𝑊)

Proof of Theorem cshwrnid
Dummy variables 𝑐 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzoelz 13243 . . . . . . . 8 (𝑖 ∈ (0..^(♯‘𝑊)) → 𝑖 ∈ ℤ)
213ad2ant3 1137 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ ℤ)
3 simp2 1139 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
42, 3zsubcld 12287 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑖𝑁) ∈ ℤ)
5 elfzo0 13283 . . . . . . . 8 (𝑖 ∈ (0..^(♯‘𝑊)) ↔ (𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑖 < (♯‘𝑊)))
65simp2bi 1148 . . . . . . 7 (𝑖 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
763ad2ant3 1137 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
8 zmodfzo 13467 . . . . . 6 (((𝑖𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((𝑖𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
94, 7, 8syl2anc 587 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
1093expa 1120 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
11 elfzoelz 13243 . . . . . . . 8 (𝑗 ∈ (0..^(♯‘𝑊)) → 𝑗 ∈ ℤ)
1211adantl 485 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑗 ∈ ℤ)
13 simplr 769 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
1412, 13zaddcld 12286 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (𝑗 + 𝑁) ∈ ℤ)
15 elfzo0 13283 . . . . . . . 8 (𝑗 ∈ (0..^(♯‘𝑊)) ↔ (𝑗 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑗 < (♯‘𝑊)))
1615simp2bi 1148 . . . . . . 7 (𝑗 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
1716adantl 485 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
18 zmodfzo 13467 . . . . . 6 (((𝑗 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((𝑗 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
1914, 17, 18syl2anc 587 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ((𝑗 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
20 simpr 488 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) ∧ 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊))) → 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊)))
2120oveq1d 7228 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) ∧ 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊))) → (𝑖𝑁) = (((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁))
2221oveq1d 7228 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) ∧ 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊))) → ((𝑖𝑁) mod (♯‘𝑊)) = ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊)))
2322eqeq2d 2748 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) ∧ 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊))) → (𝑗 = ((𝑖𝑁) mod (♯‘𝑊)) ↔ 𝑗 = ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊))))
2412zred 12282 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑗 ∈ ℝ)
2513zred 12282 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℝ)
2624, 25readdcld 10862 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (𝑗 + 𝑁) ∈ ℝ)
2717nnrpd 12626 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℝ+)
28 modsubmod 13502 . . . . . . 7 (((𝑗 + 𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊)) = (((𝑗 + 𝑁) − 𝑁) mod (♯‘𝑊)))
2926, 25, 27, 28syl3anc 1373 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊)) = (((𝑗 + 𝑁) − 𝑁) mod (♯‘𝑊)))
3012zcnd 12283 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑗 ∈ ℂ)
3113zcnd 12283 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℂ)
3230, 31pncand 11190 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ((𝑗 + 𝑁) − 𝑁) = 𝑗)
3332oveq1d 7228 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (((𝑗 + 𝑁) − 𝑁) mod (♯‘𝑊)) = (𝑗 mod (♯‘𝑊)))
34 zmodidfzoimp 13474 . . . . . . 7 (𝑗 ∈ (0..^(♯‘𝑊)) → (𝑗 mod (♯‘𝑊)) = 𝑗)
3534adantl 485 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (𝑗 mod (♯‘𝑊)) = 𝑗)
3629, 33, 353eqtrrd 2782 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑗 = ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊)))
3719, 23, 36rspcedvd 3540 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ∃𝑖 ∈ (0..^(♯‘𝑊))𝑗 = ((𝑖𝑁) mod (♯‘𝑊)))
38 simp3 1140 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → 𝑗 = ((𝑖𝑁) mod (♯‘𝑊)))
3938fveq2d 6721 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝑗) = ((𝑊 cyclShift 𝑁)‘((𝑖𝑁) mod (♯‘𝑊))))
40 simp1l 1199 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
41 simp1r 1200 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → 𝑁 ∈ ℤ)
42 simp2 1139 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊)))
43 cshwidxmodr 14369 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝑖𝑁) mod (♯‘𝑊))) = (𝑊𝑖))
4440, 41, 42, 43syl3anc 1373 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝑖𝑁) mod (♯‘𝑊))) = (𝑊𝑖))
4539, 44eqtrd 2777 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝑗) = (𝑊𝑖))
4645eqeq2d 2748 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → (𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗) ↔ 𝑐 = (𝑊𝑖)))
4710, 37, 46rexxfrd2 5306 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (∃𝑗 ∈ (0..^(♯‘𝑊))𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗) ↔ ∃𝑖 ∈ (0..^(♯‘𝑊))𝑐 = (𝑊𝑖)))
4847abbidv 2807 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → {𝑐 ∣ ∃𝑗 ∈ (0..^(♯‘𝑊))𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗)} = {𝑐 ∣ ∃𝑖 ∈ (0..^(♯‘𝑊))𝑐 = (𝑊𝑖)})
49 cshwfn 14366 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)))
50 fnrnfv 6772 . . 3 ((𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)) → ran (𝑊 cyclShift 𝑁) = {𝑐 ∣ ∃𝑗 ∈ (0..^(♯‘𝑊))𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗)})
5149, 50syl 17 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = {𝑐 ∣ ∃𝑗 ∈ (0..^(♯‘𝑊))𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗)})
52 wrdfn 14083 . . . 4 (𝑊 ∈ Word 𝑉𝑊 Fn (0..^(♯‘𝑊)))
5352adantr 484 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → 𝑊 Fn (0..^(♯‘𝑊)))
54 fnrnfv 6772 . . 3 (𝑊 Fn (0..^(♯‘𝑊)) → ran 𝑊 = {𝑐 ∣ ∃𝑖 ∈ (0..^(♯‘𝑊))𝑐 = (𝑊𝑖)})
5553, 54syl 17 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ran 𝑊 = {𝑐 ∣ ∃𝑖 ∈ (0..^(♯‘𝑊))𝑐 = (𝑊𝑖)})
5648, 51, 553eqtr4d 2787 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = ran 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  {cab 2714  wrex 3062   class class class wbr 5053  ran crn 5552   Fn wfn 6375  cfv 6380  (class class class)co 7213  cr 10728  0cc0 10729   + caddc 10732   < clt 10867  cmin 11062  cn 11830  0cn0 12090  cz 12176  +crp 12586  ..^cfzo 13238   mod cmo 13442  chash 13896  Word cword 14069   cyclShift ccsh 14353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-hash 13897  df-word 14070  df-concat 14126  df-substr 14206  df-pfx 14236  df-csh 14354
This theorem is referenced by:  cshf1o  30954  cycpmcl  31102
  Copyright terms: Public domain W3C validator