Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cshwrnid Structured version   Visualization version   GIF version

Theorem cshwrnid 32920
Description: Cyclically shifting a word preserves its range. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Assertion
Ref Expression
cshwrnid ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = ran 𝑊)

Proof of Theorem cshwrnid
Dummy variables 𝑐 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzoelz 13712 . . . . . . . 8 (𝑖 ∈ (0..^(♯‘𝑊)) → 𝑖 ∈ ℤ)
213ad2ant3 1135 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ ℤ)
3 simp2 1137 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
42, 3zsubcld 12748 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑖𝑁) ∈ ℤ)
5 elfzo0 13753 . . . . . . . 8 (𝑖 ∈ (0..^(♯‘𝑊)) ↔ (𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑖 < (♯‘𝑊)))
65simp2bi 1146 . . . . . . 7 (𝑖 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
763ad2ant3 1135 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
8 zmodfzo 13941 . . . . . 6 (((𝑖𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((𝑖𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
94, 7, 8syl2anc 583 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
1093expa 1118 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
11 elfzoelz 13712 . . . . . . . 8 (𝑗 ∈ (0..^(♯‘𝑊)) → 𝑗 ∈ ℤ)
1211adantl 481 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑗 ∈ ℤ)
13 simplr 768 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
1412, 13zaddcld 12747 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (𝑗 + 𝑁) ∈ ℤ)
15 elfzo0 13753 . . . . . . . 8 (𝑗 ∈ (0..^(♯‘𝑊)) ↔ (𝑗 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑗 < (♯‘𝑊)))
1615simp2bi 1146 . . . . . . 7 (𝑗 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
1716adantl 481 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
18 zmodfzo 13941 . . . . . 6 (((𝑗 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((𝑗 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
1914, 17, 18syl2anc 583 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ((𝑗 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
20 simpr 484 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) ∧ 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊))) → 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊)))
2120oveq1d 7460 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) ∧ 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊))) → (𝑖𝑁) = (((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁))
2221oveq1d 7460 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) ∧ 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊))) → ((𝑖𝑁) mod (♯‘𝑊)) = ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊)))
2322eqeq2d 2745 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) ∧ 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊))) → (𝑗 = ((𝑖𝑁) mod (♯‘𝑊)) ↔ 𝑗 = ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊))))
2412zred 12743 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑗 ∈ ℝ)
2513zred 12743 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℝ)
2624, 25readdcld 11315 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (𝑗 + 𝑁) ∈ ℝ)
2717nnrpd 13093 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℝ+)
28 modsubmod 13976 . . . . . . 7 (((𝑗 + 𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊)) = (((𝑗 + 𝑁) − 𝑁) mod (♯‘𝑊)))
2926, 25, 27, 28syl3anc 1371 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊)) = (((𝑗 + 𝑁) − 𝑁) mod (♯‘𝑊)))
3012zcnd 12744 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑗 ∈ ℂ)
3113zcnd 12744 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℂ)
3230, 31pncand 11644 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ((𝑗 + 𝑁) − 𝑁) = 𝑗)
3332oveq1d 7460 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (((𝑗 + 𝑁) − 𝑁) mod (♯‘𝑊)) = (𝑗 mod (♯‘𝑊)))
34 zmodidfzoimp 13948 . . . . . . 7 (𝑗 ∈ (0..^(♯‘𝑊)) → (𝑗 mod (♯‘𝑊)) = 𝑗)
3534adantl 481 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (𝑗 mod (♯‘𝑊)) = 𝑗)
3629, 33, 353eqtrrd 2779 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑗 = ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊)))
3719, 23, 36rspcedvd 3633 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ∃𝑖 ∈ (0..^(♯‘𝑊))𝑗 = ((𝑖𝑁) mod (♯‘𝑊)))
38 simp3 1138 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → 𝑗 = ((𝑖𝑁) mod (♯‘𝑊)))
3938fveq2d 6923 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝑗) = ((𝑊 cyclShift 𝑁)‘((𝑖𝑁) mod (♯‘𝑊))))
40 simp1l 1197 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
41 simp1r 1198 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → 𝑁 ∈ ℤ)
42 simp2 1137 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊)))
43 cshwidxmodr 14848 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝑖𝑁) mod (♯‘𝑊))) = (𝑊𝑖))
4440, 41, 42, 43syl3anc 1371 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝑖𝑁) mod (♯‘𝑊))) = (𝑊𝑖))
4539, 44eqtrd 2774 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝑗) = (𝑊𝑖))
4645eqeq2d 2745 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → (𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗) ↔ 𝑐 = (𝑊𝑖)))
4710, 37, 46rexxfrd2 5434 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (∃𝑗 ∈ (0..^(♯‘𝑊))𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗) ↔ ∃𝑖 ∈ (0..^(♯‘𝑊))𝑐 = (𝑊𝑖)))
4847abbidv 2805 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → {𝑐 ∣ ∃𝑗 ∈ (0..^(♯‘𝑊))𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗)} = {𝑐 ∣ ∃𝑖 ∈ (0..^(♯‘𝑊))𝑐 = (𝑊𝑖)})
49 cshwfn 14845 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)))
50 fnrnfv 6980 . . 3 ((𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)) → ran (𝑊 cyclShift 𝑁) = {𝑐 ∣ ∃𝑗 ∈ (0..^(♯‘𝑊))𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗)})
5149, 50syl 17 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = {𝑐 ∣ ∃𝑗 ∈ (0..^(♯‘𝑊))𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗)})
52 wrdfn 14572 . . . 4 (𝑊 ∈ Word 𝑉𝑊 Fn (0..^(♯‘𝑊)))
5352adantr 480 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → 𝑊 Fn (0..^(♯‘𝑊)))
54 fnrnfv 6980 . . 3 (𝑊 Fn (0..^(♯‘𝑊)) → ran 𝑊 = {𝑐 ∣ ∃𝑖 ∈ (0..^(♯‘𝑊))𝑐 = (𝑊𝑖)})
5553, 54syl 17 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ran 𝑊 = {𝑐 ∣ ∃𝑖 ∈ (0..^(♯‘𝑊))𝑐 = (𝑊𝑖)})
5648, 51, 553eqtr4d 2784 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = ran 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2103  {cab 2711  wrex 3072   class class class wbr 5169  ran crn 5700   Fn wfn 6567  cfv 6572  (class class class)co 7445  cr 11179  0cc0 11180   + caddc 11183   < clt 11320  cmin 11516  cn 12289  0cn0 12549  cz 12635  +crp 13053  ..^cfzo 13707   mod cmo 13916  chash 14375  Word cword 14558   cyclShift ccsh 14832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257  ax-pre-sup 11258
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-1st 8026  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-er 8759  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-sup 9507  df-inf 9508  df-card 10004  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-div 11944  df-nn 12290  df-2 12352  df-n0 12550  df-z 12636  df-uz 12900  df-rp 13054  df-fz 13564  df-fzo 13708  df-fl 13839  df-mod 13917  df-hash 14376  df-word 14559  df-concat 14615  df-substr 14685  df-pfx 14715  df-csh 14833
This theorem is referenced by:  cshf1o  32921  cycpmcl  33101
  Copyright terms: Public domain W3C validator