Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cshwrnid Structured version   Visualization version   GIF version

Theorem cshwrnid 31135
Description: Cyclically shifting a word preserves its range. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Assertion
Ref Expression
cshwrnid ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = ran 𝑊)

Proof of Theorem cshwrnid
Dummy variables 𝑐 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzoelz 13316 . . . . . . . 8 (𝑖 ∈ (0..^(♯‘𝑊)) → 𝑖 ∈ ℤ)
213ad2ant3 1133 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ ℤ)
3 simp2 1135 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
42, 3zsubcld 12360 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑖𝑁) ∈ ℤ)
5 elfzo0 13356 . . . . . . . 8 (𝑖 ∈ (0..^(♯‘𝑊)) ↔ (𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑖 < (♯‘𝑊)))
65simp2bi 1144 . . . . . . 7 (𝑖 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
763ad2ant3 1133 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
8 zmodfzo 13542 . . . . . 6 (((𝑖𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((𝑖𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
94, 7, 8syl2anc 583 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
1093expa 1116 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
11 elfzoelz 13316 . . . . . . . 8 (𝑗 ∈ (0..^(♯‘𝑊)) → 𝑗 ∈ ℤ)
1211adantl 481 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑗 ∈ ℤ)
13 simplr 765 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
1412, 13zaddcld 12359 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (𝑗 + 𝑁) ∈ ℤ)
15 elfzo0 13356 . . . . . . . 8 (𝑗 ∈ (0..^(♯‘𝑊)) ↔ (𝑗 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑗 < (♯‘𝑊)))
1615simp2bi 1144 . . . . . . 7 (𝑗 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
1716adantl 481 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
18 zmodfzo 13542 . . . . . 6 (((𝑗 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((𝑗 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
1914, 17, 18syl2anc 583 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ((𝑗 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
20 simpr 484 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) ∧ 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊))) → 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊)))
2120oveq1d 7270 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) ∧ 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊))) → (𝑖𝑁) = (((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁))
2221oveq1d 7270 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) ∧ 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊))) → ((𝑖𝑁) mod (♯‘𝑊)) = ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊)))
2322eqeq2d 2749 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) ∧ 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊))) → (𝑗 = ((𝑖𝑁) mod (♯‘𝑊)) ↔ 𝑗 = ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊))))
2412zred 12355 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑗 ∈ ℝ)
2513zred 12355 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℝ)
2624, 25readdcld 10935 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (𝑗 + 𝑁) ∈ ℝ)
2717nnrpd 12699 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℝ+)
28 modsubmod 13577 . . . . . . 7 (((𝑗 + 𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊)) = (((𝑗 + 𝑁) − 𝑁) mod (♯‘𝑊)))
2926, 25, 27, 28syl3anc 1369 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊)) = (((𝑗 + 𝑁) − 𝑁) mod (♯‘𝑊)))
3012zcnd 12356 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑗 ∈ ℂ)
3113zcnd 12356 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℂ)
3230, 31pncand 11263 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ((𝑗 + 𝑁) − 𝑁) = 𝑗)
3332oveq1d 7270 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (((𝑗 + 𝑁) − 𝑁) mod (♯‘𝑊)) = (𝑗 mod (♯‘𝑊)))
34 zmodidfzoimp 13549 . . . . . . 7 (𝑗 ∈ (0..^(♯‘𝑊)) → (𝑗 mod (♯‘𝑊)) = 𝑗)
3534adantl 481 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (𝑗 mod (♯‘𝑊)) = 𝑗)
3629, 33, 353eqtrrd 2783 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑗 = ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊)))
3719, 23, 36rspcedvd 3555 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ∃𝑖 ∈ (0..^(♯‘𝑊))𝑗 = ((𝑖𝑁) mod (♯‘𝑊)))
38 simp3 1136 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → 𝑗 = ((𝑖𝑁) mod (♯‘𝑊)))
3938fveq2d 6760 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝑗) = ((𝑊 cyclShift 𝑁)‘((𝑖𝑁) mod (♯‘𝑊))))
40 simp1l 1195 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
41 simp1r 1196 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → 𝑁 ∈ ℤ)
42 simp2 1135 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊)))
43 cshwidxmodr 14445 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝑖𝑁) mod (♯‘𝑊))) = (𝑊𝑖))
4440, 41, 42, 43syl3anc 1369 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝑖𝑁) mod (♯‘𝑊))) = (𝑊𝑖))
4539, 44eqtrd 2778 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝑗) = (𝑊𝑖))
4645eqeq2d 2749 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → (𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗) ↔ 𝑐 = (𝑊𝑖)))
4710, 37, 46rexxfrd2 5331 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (∃𝑗 ∈ (0..^(♯‘𝑊))𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗) ↔ ∃𝑖 ∈ (0..^(♯‘𝑊))𝑐 = (𝑊𝑖)))
4847abbidv 2808 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → {𝑐 ∣ ∃𝑗 ∈ (0..^(♯‘𝑊))𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗)} = {𝑐 ∣ ∃𝑖 ∈ (0..^(♯‘𝑊))𝑐 = (𝑊𝑖)})
49 cshwfn 14442 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)))
50 fnrnfv 6811 . . 3 ((𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)) → ran (𝑊 cyclShift 𝑁) = {𝑐 ∣ ∃𝑗 ∈ (0..^(♯‘𝑊))𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗)})
5149, 50syl 17 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = {𝑐 ∣ ∃𝑗 ∈ (0..^(♯‘𝑊))𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗)})
52 wrdfn 14159 . . . 4 (𝑊 ∈ Word 𝑉𝑊 Fn (0..^(♯‘𝑊)))
5352adantr 480 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → 𝑊 Fn (0..^(♯‘𝑊)))
54 fnrnfv 6811 . . 3 (𝑊 Fn (0..^(♯‘𝑊)) → ran 𝑊 = {𝑐 ∣ ∃𝑖 ∈ (0..^(♯‘𝑊))𝑐 = (𝑊𝑖)})
5553, 54syl 17 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ran 𝑊 = {𝑐 ∣ ∃𝑖 ∈ (0..^(♯‘𝑊))𝑐 = (𝑊𝑖)})
5648, 51, 553eqtr4d 2788 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = ran 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wrex 3064   class class class wbr 5070  ran crn 5581   Fn wfn 6413  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802   + caddc 10805   < clt 10940  cmin 11135  cn 11903  0cn0 12163  cz 12249  +crp 12659  ..^cfzo 13311   mod cmo 13517  chash 13972  Word cword 14145   cyclShift ccsh 14429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-hash 13973  df-word 14146  df-concat 14202  df-substr 14282  df-pfx 14312  df-csh 14430
This theorem is referenced by:  cshf1o  31136  cycpmcl  31285
  Copyright terms: Public domain W3C validator