Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cshwrnid Structured version   Visualization version   GIF version

Theorem cshwrnid 31233
Description: Cyclically shifting a word preserves its range. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Assertion
Ref Expression
cshwrnid ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = ran 𝑊)

Proof of Theorem cshwrnid
Dummy variables 𝑐 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzoelz 13387 . . . . . . . 8 (𝑖 ∈ (0..^(♯‘𝑊)) → 𝑖 ∈ ℤ)
213ad2ant3 1134 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑖 ∈ ℤ)
3 simp2 1136 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
42, 3zsubcld 12431 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (𝑖𝑁) ∈ ℤ)
5 elfzo0 13428 . . . . . . . 8 (𝑖 ∈ (0..^(♯‘𝑊)) ↔ (𝑖 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑖 < (♯‘𝑊)))
65simp2bi 1145 . . . . . . 7 (𝑖 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
763ad2ant3 1134 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
8 zmodfzo 13614 . . . . . 6 (((𝑖𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((𝑖𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
94, 7, 8syl2anc 584 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
1093expa 1117 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑖𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
11 elfzoelz 13387 . . . . . . . 8 (𝑗 ∈ (0..^(♯‘𝑊)) → 𝑗 ∈ ℤ)
1211adantl 482 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑗 ∈ ℤ)
13 simplr 766 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℤ)
1412, 13zaddcld 12430 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (𝑗 + 𝑁) ∈ ℤ)
15 elfzo0 13428 . . . . . . . 8 (𝑗 ∈ (0..^(♯‘𝑊)) ↔ (𝑗 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑗 < (♯‘𝑊)))
1615simp2bi 1145 . . . . . . 7 (𝑗 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
1716adantl 482 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℕ)
18 zmodfzo 13614 . . . . . 6 (((𝑗 + 𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((𝑗 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
1914, 17, 18syl2anc 584 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ((𝑗 + 𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
20 simpr 485 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) ∧ 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊))) → 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊)))
2120oveq1d 7290 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) ∧ 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊))) → (𝑖𝑁) = (((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁))
2221oveq1d 7290 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) ∧ 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊))) → ((𝑖𝑁) mod (♯‘𝑊)) = ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊)))
2322eqeq2d 2749 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) ∧ 𝑖 = ((𝑗 + 𝑁) mod (♯‘𝑊))) → (𝑗 = ((𝑖𝑁) mod (♯‘𝑊)) ↔ 𝑗 = ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊))))
2412zred 12426 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑗 ∈ ℝ)
2513zred 12426 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℝ)
2624, 25readdcld 11004 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (𝑗 + 𝑁) ∈ ℝ)
2717nnrpd 12770 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (♯‘𝑊) ∈ ℝ+)
28 modsubmod 13649 . . . . . . 7 (((𝑗 + 𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊)) = (((𝑗 + 𝑁) − 𝑁) mod (♯‘𝑊)))
2926, 25, 27, 28syl3anc 1370 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊)) = (((𝑗 + 𝑁) − 𝑁) mod (♯‘𝑊)))
3012zcnd 12427 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑗 ∈ ℂ)
3113zcnd 12427 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℂ)
3230, 31pncand 11333 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ((𝑗 + 𝑁) − 𝑁) = 𝑗)
3332oveq1d 7290 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (((𝑗 + 𝑁) − 𝑁) mod (♯‘𝑊)) = (𝑗 mod (♯‘𝑊)))
34 zmodidfzoimp 13621 . . . . . . 7 (𝑗 ∈ (0..^(♯‘𝑊)) → (𝑗 mod (♯‘𝑊)) = 𝑗)
3534adantl 482 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → (𝑗 mod (♯‘𝑊)) = 𝑗)
3629, 33, 353eqtrrd 2783 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → 𝑗 = ((((𝑗 + 𝑁) mod (♯‘𝑊)) − 𝑁) mod (♯‘𝑊)))
3719, 23, 36rspcedvd 3563 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑗 ∈ (0..^(♯‘𝑊))) → ∃𝑖 ∈ (0..^(♯‘𝑊))𝑗 = ((𝑖𝑁) mod (♯‘𝑊)))
38 simp3 1137 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → 𝑗 = ((𝑖𝑁) mod (♯‘𝑊)))
3938fveq2d 6778 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝑗) = ((𝑊 cyclShift 𝑁)‘((𝑖𝑁) mod (♯‘𝑊))))
40 simp1l 1196 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
41 simp1r 1197 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → 𝑁 ∈ ℤ)
42 simp2 1136 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → 𝑖 ∈ (0..^(♯‘𝑊)))
43 cshwidxmodr 14517 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝑖𝑁) mod (♯‘𝑊))) = (𝑊𝑖))
4440, 41, 42, 43syl3anc 1370 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝑖𝑁) mod (♯‘𝑊))) = (𝑊𝑖))
4539, 44eqtrd 2778 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝑗) = (𝑊𝑖))
4645eqeq2d 2749 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑖 ∈ (0..^(♯‘𝑊)) ∧ 𝑗 = ((𝑖𝑁) mod (♯‘𝑊))) → (𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗) ↔ 𝑐 = (𝑊𝑖)))
4710, 37, 46rexxfrd2 5336 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (∃𝑗 ∈ (0..^(♯‘𝑊))𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗) ↔ ∃𝑖 ∈ (0..^(♯‘𝑊))𝑐 = (𝑊𝑖)))
4847abbidv 2807 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → {𝑐 ∣ ∃𝑗 ∈ (0..^(♯‘𝑊))𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗)} = {𝑐 ∣ ∃𝑖 ∈ (0..^(♯‘𝑊))𝑐 = (𝑊𝑖)})
49 cshwfn 14514 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)))
50 fnrnfv 6829 . . 3 ((𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊)) → ran (𝑊 cyclShift 𝑁) = {𝑐 ∣ ∃𝑗 ∈ (0..^(♯‘𝑊))𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗)})
5149, 50syl 17 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = {𝑐 ∣ ∃𝑗 ∈ (0..^(♯‘𝑊))𝑐 = ((𝑊 cyclShift 𝑁)‘𝑗)})
52 wrdfn 14231 . . . 4 (𝑊 ∈ Word 𝑉𝑊 Fn (0..^(♯‘𝑊)))
5352adantr 481 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → 𝑊 Fn (0..^(♯‘𝑊)))
54 fnrnfv 6829 . . 3 (𝑊 Fn (0..^(♯‘𝑊)) → ran 𝑊 = {𝑐 ∣ ∃𝑖 ∈ (0..^(♯‘𝑊))𝑐 = (𝑊𝑖)})
5553, 54syl 17 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ran 𝑊 = {𝑐 ∣ ∃𝑖 ∈ (0..^(♯‘𝑊))𝑐 = (𝑊𝑖)})
5648, 51, 553eqtr4d 2788 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = ran 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wrex 3065   class class class wbr 5074  ran crn 5590   Fn wfn 6428  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871   + caddc 10874   < clt 11009  cmin 11205  cn 11973  0cn0 12233  cz 12319  +crp 12730  ..^cfzo 13382   mod cmo 13589  chash 14044  Word cword 14217   cyclShift ccsh 14501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-hash 14045  df-word 14218  df-concat 14274  df-substr 14354  df-pfx 14384  df-csh 14502
This theorem is referenced by:  cshf1o  31234  cycpmcl  31383
  Copyright terms: Public domain W3C validator