MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotarab Structured version   Visualization version   GIF version

Theorem riotarab 7409
Description: Restricted iota of a restricted abstraction. (Contributed by Scott Fenton, 8-Aug-2024.)
Hypothesis
Ref Expression
riotarab.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
riotarab (𝑥 ∈ {𝑦𝐴𝜓}𝜒) = (𝑥𝐴 (𝜑𝜒))
Distinct variable groups:   𝑦,𝐴   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem riotarab
StepHypRef Expression
1 riotarab.1 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜓))
21bicomd 223 . . . . . . 7 (𝑥 = 𝑦 → (𝜓𝜑))
32equcoms 2020 . . . . . 6 (𝑦 = 𝑥 → (𝜓𝜑))
43elrab 3676 . . . . 5 (𝑥 ∈ {𝑦𝐴𝜓} ↔ (𝑥𝐴𝜑))
54anbi1i 624 . . . 4 ((𝑥 ∈ {𝑦𝐴𝜓} ∧ 𝜒) ↔ ((𝑥𝐴𝜑) ∧ 𝜒))
6 anass 468 . . . 4 (((𝑥𝐴𝜑) ∧ 𝜒) ↔ (𝑥𝐴 ∧ (𝜑𝜒)))
75, 6bitri 275 . . 3 ((𝑥 ∈ {𝑦𝐴𝜓} ∧ 𝜒) ↔ (𝑥𝐴 ∧ (𝜑𝜒)))
87iotabii 6521 . 2 (℩𝑥(𝑥 ∈ {𝑦𝐴𝜓} ∧ 𝜒)) = (℩𝑥(𝑥𝐴 ∧ (𝜑𝜒)))
9 df-riota 7367 . 2 (𝑥 ∈ {𝑦𝐴𝜓}𝜒) = (℩𝑥(𝑥 ∈ {𝑦𝐴𝜓} ∧ 𝜒))
10 df-riota 7367 . 2 (𝑥𝐴 (𝜑𝜒)) = (℩𝑥(𝑥𝐴 ∧ (𝜑𝜒)))
118, 9, 103eqtr4i 2769 1 (𝑥 ∈ {𝑦𝐴𝜓}𝜒) = (𝑥𝐴 (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3420  cio 6487  crio 7366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-ss 3948  df-uni 4889  df-iota 6489  df-riota 7367
This theorem is referenced by:  eqscut  27774
  Copyright terms: Public domain W3C validator