![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riotarab | Structured version Visualization version GIF version |
Description: Restricted iota of a restricted abstraction. (Contributed by Scott Fenton, 8-Aug-2024.) |
Ref | Expression |
---|---|
riotarab.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
riotarab | ⊢ (℩𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓}𝜒) = (℩𝑥 ∈ 𝐴 (𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotarab.1 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | bicomd 222 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜑)) |
3 | 2 | equcoms 2015 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜑)) |
4 | 3 | elrab 3684 | . . . . 5 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
5 | 4 | anbi1i 622 | . . . 4 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓} ∧ 𝜒) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜒)) |
6 | anass 467 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜒) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜒))) | |
7 | 5, 6 | bitri 274 | . . 3 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓} ∧ 𝜒) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜒))) |
8 | 7 | iotabii 6538 | . 2 ⊢ (℩𝑥(𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓} ∧ 𝜒)) = (℩𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜒))) |
9 | df-riota 7382 | . 2 ⊢ (℩𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓}𝜒) = (℩𝑥(𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓} ∧ 𝜒)) | |
10 | df-riota 7382 | . 2 ⊢ (℩𝑥 ∈ 𝐴 (𝜑 ∧ 𝜒)) = (℩𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜒))) | |
11 | 8, 9, 10 | 3eqtr4i 2766 | 1 ⊢ (℩𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓}𝜒) = (℩𝑥 ∈ 𝐴 (𝜑 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3430 ℩cio 6503 ℩crio 7381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3431 df-v 3475 df-in 3956 df-ss 3966 df-uni 4913 df-iota 6505 df-riota 7382 |
This theorem is referenced by: eqscut 27758 |
Copyright terms: Public domain | W3C validator |