MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotarab Structured version   Visualization version   GIF version

Theorem riotarab 7357
Description: Restricted iota of a restricted abstraction. (Contributed by Scott Fenton, 8-Aug-2024.)
Hypothesis
Ref Expression
riotarab.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
riotarab (𝑥 ∈ {𝑦𝐴𝜓}𝜒) = (𝑥𝐴 (𝜑𝜒))
Distinct variable groups:   𝑦,𝐴   𝜑,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem riotarab
StepHypRef Expression
1 riotarab.1 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜓))
21bicomd 222 . . . . . . 7 (𝑥 = 𝑦 → (𝜓𝜑))
32equcoms 2024 . . . . . 6 (𝑦 = 𝑥 → (𝜓𝜑))
43elrab 3646 . . . . 5 (𝑥 ∈ {𝑦𝐴𝜓} ↔ (𝑥𝐴𝜑))
54anbi1i 625 . . . 4 ((𝑥 ∈ {𝑦𝐴𝜓} ∧ 𝜒) ↔ ((𝑥𝐴𝜑) ∧ 𝜒))
6 anass 470 . . . 4 (((𝑥𝐴𝜑) ∧ 𝜒) ↔ (𝑥𝐴 ∧ (𝜑𝜒)))
75, 6bitri 275 . . 3 ((𝑥 ∈ {𝑦𝐴𝜓} ∧ 𝜒) ↔ (𝑥𝐴 ∧ (𝜑𝜒)))
87iotabii 6482 . 2 (℩𝑥(𝑥 ∈ {𝑦𝐴𝜓} ∧ 𝜒)) = (℩𝑥(𝑥𝐴 ∧ (𝜑𝜒)))
9 df-riota 7314 . 2 (𝑥 ∈ {𝑦𝐴𝜓}𝜒) = (℩𝑥(𝑥 ∈ {𝑦𝐴𝜓} ∧ 𝜒))
10 df-riota 7314 . 2 (𝑥𝐴 (𝜑𝜒)) = (℩𝑥(𝑥𝐴 ∧ (𝜑𝜒)))
118, 9, 103eqtr4i 2775 1 (𝑥 ∈ {𝑦𝐴𝜓}𝜒) = (𝑥𝐴 (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  {crab 3408  cio 6447  crio 7313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3409  df-v 3448  df-in 3918  df-ss 3928  df-uni 4867  df-iota 6449  df-riota 7314
This theorem is referenced by:  eqscut  27147
  Copyright terms: Public domain W3C validator