|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > riotarab | Structured version Visualization version GIF version | ||
| Description: Restricted iota of a restricted abstraction. (Contributed by Scott Fenton, 8-Aug-2024.) | 
| Ref | Expression | 
|---|---|
| riotarab.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| riotarab | ⊢ (℩𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓}𝜒) = (℩𝑥 ∈ 𝐴 (𝜑 ∧ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | riotarab.1 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | bicomd 223 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜑)) | 
| 3 | 2 | equcoms 2018 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜑)) | 
| 4 | 3 | elrab 3691 | . . . . 5 ⊢ (𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | 
| 5 | 4 | anbi1i 624 | . . . 4 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓} ∧ 𝜒) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜒)) | 
| 6 | anass 468 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝜒) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜒))) | |
| 7 | 5, 6 | bitri 275 | . . 3 ⊢ ((𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓} ∧ 𝜒) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜒))) | 
| 8 | 7 | iotabii 6545 | . 2 ⊢ (℩𝑥(𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓} ∧ 𝜒)) = (℩𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜒))) | 
| 9 | df-riota 7389 | . 2 ⊢ (℩𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓}𝜒) = (℩𝑥(𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓} ∧ 𝜒)) | |
| 10 | df-riota 7389 | . 2 ⊢ (℩𝑥 ∈ 𝐴 (𝜑 ∧ 𝜒)) = (℩𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜒))) | |
| 11 | 8, 9, 10 | 3eqtr4i 2774 | 1 ⊢ (℩𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓}𝜒) = (℩𝑥 ∈ 𝐴 (𝜑 ∧ 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3435 ℩cio 6511 ℩crio 7388 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-ss 3967 df-uni 4907 df-iota 6513 df-riota 7389 | 
| This theorem is referenced by: eqscut 27851 | 
| Copyright terms: Public domain | W3C validator |