Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riotaclb | Structured version Visualization version GIF version |
Description: Bidirectional closure of restricted iota when domain is not empty. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 24-Dec-2016.) (Revised by NM, 13-Sep-2018.) |
Ref | Expression |
---|---|
riotaclb | ⊢ (¬ ∅ ∈ 𝐴 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotacl 7206 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) | |
2 | riotaund 7228 | . . . . . 6 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∅) | |
3 | 2 | eleq1d 2823 | . . . . 5 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → ((℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴 ↔ ∅ ∈ 𝐴)) |
4 | 3 | notbid 321 | . . . 4 ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (¬ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴 ↔ ¬ ∅ ∈ 𝐴)) |
5 | 4 | biimprcd 253 | . . 3 ⊢ (¬ ∅ ∈ 𝐴 → (¬ ∃!𝑥 ∈ 𝐴 𝜑 → ¬ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴)) |
6 | 5 | con4d 115 | . 2 ⊢ (¬ ∅ ∈ 𝐴 → ((℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴 → ∃!𝑥 ∈ 𝐴 𝜑)) |
7 | 1, 6 | impbid2 229 | 1 ⊢ (¬ ∅ ∈ 𝐴 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∈ wcel 2111 ∃!wreu 3064 ∅c0 4251 ℩crio 7187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3422 df-sbc 3709 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-nul 4252 df-sn 4556 df-pr 4558 df-uni 4834 df-iota 6355 df-riota 7188 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |