MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotaclb Structured version   Visualization version   GIF version

Theorem riotaclb 7267
Description: Bidirectional closure of restricted iota when domain is not empty. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 24-Dec-2016.) (Revised by NM, 13-Sep-2018.)
Assertion
Ref Expression
riotaclb (¬ ∅ ∈ 𝐴 → (∃!𝑥𝐴 𝜑 ↔ (𝑥𝐴 𝜑) ∈ 𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riotaclb
StepHypRef Expression
1 riotacl 7243 . 2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
2 riotaund 7265 . . . . . 6 (¬ ∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = ∅)
32eleq1d 2824 . . . . 5 (¬ ∃!𝑥𝐴 𝜑 → ((𝑥𝐴 𝜑) ∈ 𝐴 ↔ ∅ ∈ 𝐴))
43notbid 317 . . . 4 (¬ ∃!𝑥𝐴 𝜑 → (¬ (𝑥𝐴 𝜑) ∈ 𝐴 ↔ ¬ ∅ ∈ 𝐴))
54biimprcd 249 . . 3 (¬ ∅ ∈ 𝐴 → (¬ ∃!𝑥𝐴 𝜑 → ¬ (𝑥𝐴 𝜑) ∈ 𝐴))
65con4d 115 . 2 (¬ ∅ ∈ 𝐴 → ((𝑥𝐴 𝜑) ∈ 𝐴 → ∃!𝑥𝐴 𝜑))
71, 6impbid2 225 1 (¬ ∅ ∈ 𝐴 → (∃!𝑥𝐴 𝜑 ↔ (𝑥𝐴 𝜑) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wcel 2109  ∃!wreu 3067  c0 4261  crio 7224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-sn 4567  df-pr 4569  df-uni 4845  df-iota 6388  df-riota 7225
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator