Step | Hyp | Ref
| Expression |
1 | | poimirlem2.3 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑈:(1...𝑁)–1-1-onto→(1...𝑁)) |
2 | | dff1o3 6722 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (𝑈:(1...𝑁)–onto→(1...𝑁) ∧ Fun ◡𝑈)) |
3 | 2 | simprbi 497 |
. . . . . . . . . . . . . . . 16
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → Fun ◡𝑈) |
4 | 1, 3 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → Fun ◡𝑈) |
5 | | imadif 6518 |
. . . . . . . . . . . . . . 15
⊢ (Fun
◡𝑈 → (𝑈 “ ((1...𝑁) ∖ {(𝑉 + 1)})) = ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {(𝑉 + 1)}))) |
6 | 4, 5 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑈 “ ((1...𝑁) ∖ {(𝑉 + 1)})) = ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {(𝑉 + 1)}))) |
7 | | poimirlem2.4 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑉 ∈ (1...(𝑁 − 1))) |
8 | | fzp1elp1 13309 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑉 ∈ (1...(𝑁 − 1)) → (𝑉 + 1) ∈ (1...((𝑁 − 1) + 1))) |
9 | 7, 8 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑉 + 1) ∈ (1...((𝑁 − 1) + 1))) |
10 | | poimir.0 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑁 ∈ ℕ) |
11 | 10 | nncnd 11989 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑁 ∈ ℂ) |
12 | | npcan1 11400 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) |
13 | 11, 12 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
14 | 13 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (1...((𝑁 − 1) + 1)) = (1...𝑁)) |
15 | 9, 14 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑉 + 1) ∈ (1...𝑁)) |
16 | | fzsplit 13282 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑉 + 1) ∈ (1...𝑁) → (1...𝑁) = ((1...(𝑉 + 1)) ∪ (((𝑉 + 1) + 1)...𝑁))) |
17 | 15, 16 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (1...𝑁) = ((1...(𝑉 + 1)) ∪ (((𝑉 + 1) + 1)...𝑁))) |
18 | 17 | difeq1d 4056 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((1...𝑁) ∖ {(𝑉 + 1)}) = (((1...(𝑉 + 1)) ∪ (((𝑉 + 1) + 1)...𝑁)) ∖ {(𝑉 + 1)})) |
19 | | difundir 4214 |
. . . . . . . . . . . . . . . . 17
⊢
(((1...(𝑉 + 1))
∪ (((𝑉 + 1) +
1)...𝑁)) ∖ {(𝑉 + 1)}) = (((1...(𝑉 + 1)) ∖ {(𝑉 + 1)}) ∪ ((((𝑉 + 1) + 1)...𝑁) ∖ {(𝑉 + 1)})) |
20 | | elfzuz 13252 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑉 ∈ (1...(𝑁 − 1)) → 𝑉 ∈
(ℤ≥‘1)) |
21 | 7, 20 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑉 ∈
(ℤ≥‘1)) |
22 | | fzsuc 13303 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑉 ∈
(ℤ≥‘1) → (1...(𝑉 + 1)) = ((1...𝑉) ∪ {(𝑉 + 1)})) |
23 | 21, 22 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (1...(𝑉 + 1)) = ((1...𝑉) ∪ {(𝑉 + 1)})) |
24 | 23 | difeq1d 4056 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((1...(𝑉 + 1)) ∖ {(𝑉 + 1)}) = (((1...𝑉) ∪ {(𝑉 + 1)}) ∖ {(𝑉 + 1)})) |
25 | | difun2 4414 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((1...𝑉) ∪
{(𝑉 + 1)}) ∖ {(𝑉 + 1)}) = ((1...𝑉) ∖ {(𝑉 + 1)}) |
26 | 7 | elfzelzd 13257 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑉 ∈ ℤ) |
27 | 26 | zred 12426 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑉 ∈ ℝ) |
28 | 27 | ltp1d 11905 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑉 < (𝑉 + 1)) |
29 | 26 | peano2zd 12429 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑉 + 1) ∈ ℤ) |
30 | 29 | zred 12426 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑉 + 1) ∈ ℝ) |
31 | 27, 30 | ltnled 11122 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑉 < (𝑉 + 1) ↔ ¬ (𝑉 + 1) ≤ 𝑉)) |
32 | 28, 31 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ¬ (𝑉 + 1) ≤ 𝑉) |
33 | | elfzle2 13260 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑉 + 1) ∈ (1...𝑉) → (𝑉 + 1) ≤ 𝑉) |
34 | 32, 33 | nsyl 140 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ¬ (𝑉 + 1) ∈ (1...𝑉)) |
35 | | difsn 4731 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
(𝑉 + 1) ∈ (1...𝑉) → ((1...𝑉) ∖ {(𝑉 + 1)}) = (1...𝑉)) |
36 | 34, 35 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((1...𝑉) ∖ {(𝑉 + 1)}) = (1...𝑉)) |
37 | 25, 36 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (((1...𝑉) ∪ {(𝑉 + 1)}) ∖ {(𝑉 + 1)}) = (1...𝑉)) |
38 | 24, 37 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((1...(𝑉 + 1)) ∖ {(𝑉 + 1)}) = (1...𝑉)) |
39 | 30 | ltp1d 11905 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑉 + 1) < ((𝑉 + 1) + 1)) |
40 | | peano2re 11148 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑉 + 1) ∈ ℝ →
((𝑉 + 1) + 1) ∈
ℝ) |
41 | 30, 40 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((𝑉 + 1) + 1) ∈ ℝ) |
42 | 30, 41 | ltnled 11122 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑉 + 1) < ((𝑉 + 1) + 1) ↔ ¬ ((𝑉 + 1) + 1) ≤ (𝑉 + 1))) |
43 | 39, 42 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ¬ ((𝑉 + 1) + 1) ≤ (𝑉 + 1)) |
44 | | elfzle1 13259 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑉 + 1) ∈ (((𝑉 + 1) + 1)...𝑁) → ((𝑉 + 1) + 1) ≤ (𝑉 + 1)) |
45 | 43, 44 | nsyl 140 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ¬ (𝑉 + 1) ∈ (((𝑉 + 1) + 1)...𝑁)) |
46 | | difsn 4731 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
(𝑉 + 1) ∈ (((𝑉 + 1) + 1)...𝑁) → ((((𝑉 + 1) + 1)...𝑁) ∖ {(𝑉 + 1)}) = (((𝑉 + 1) + 1)...𝑁)) |
47 | 45, 46 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((((𝑉 + 1) + 1)...𝑁) ∖ {(𝑉 + 1)}) = (((𝑉 + 1) + 1)...𝑁)) |
48 | 38, 47 | uneq12d 4098 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((1...(𝑉 + 1)) ∖ {(𝑉 + 1)}) ∪ ((((𝑉 + 1) + 1)...𝑁) ∖ {(𝑉 + 1)})) = ((1...𝑉) ∪ (((𝑉 + 1) + 1)...𝑁))) |
49 | 19, 48 | eqtrid 2790 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (((1...(𝑉 + 1)) ∪ (((𝑉 + 1) + 1)...𝑁)) ∖ {(𝑉 + 1)}) = ((1...𝑉) ∪ (((𝑉 + 1) + 1)...𝑁))) |
50 | 18, 49 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((1...𝑁) ∖ {(𝑉 + 1)}) = ((1...𝑉) ∪ (((𝑉 + 1) + 1)...𝑁))) |
51 | 50 | imaeq2d 5969 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑈 “ ((1...𝑁) ∖ {(𝑉 + 1)})) = (𝑈 “ ((1...𝑉) ∪ (((𝑉 + 1) + 1)...𝑁)))) |
52 | 6, 51 | eqtr3d 2780 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {(𝑉 + 1)})) = (𝑈 “ ((1...𝑉) ∪ (((𝑉 + 1) + 1)...𝑁)))) |
53 | | imaundi 6053 |
. . . . . . . . . . . . 13
⊢ (𝑈 “ ((1...𝑉) ∪ (((𝑉 + 1) + 1)...𝑁))) = ((𝑈 “ (1...𝑉)) ∪ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) |
54 | 52, 53 | eqtrdi 2794 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {(𝑉 + 1)})) = ((𝑈 “ (1...𝑉)) ∪ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)))) |
55 | 54 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑛 ∈ ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {(𝑉 + 1)})) ↔ 𝑛 ∈ ((𝑈 “ (1...𝑉)) ∪ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))))) |
56 | | eldif 3897 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {(𝑉 + 1)})) ↔ (𝑛 ∈ (𝑈 “ (1...𝑁)) ∧ ¬ 𝑛 ∈ (𝑈 “ {(𝑉 + 1)}))) |
57 | | elun 4083 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ((𝑈 “ (1...𝑉)) ∪ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) ↔ (𝑛 ∈ (𝑈 “ (1...𝑉)) ∨ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)))) |
58 | 55, 56, 57 | 3bitr3g 313 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑛 ∈ (𝑈 “ (1...𝑁)) ∧ ¬ 𝑛 ∈ (𝑈 “ {(𝑉 + 1)})) ↔ (𝑛 ∈ (𝑈 “ (1...𝑉)) ∨ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))))) |
59 | 58 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → ((𝑛 ∈ (𝑈 “ (1...𝑁)) ∧ ¬ 𝑛 ∈ (𝑈 “ {(𝑉 + 1)})) ↔ (𝑛 ∈ (𝑈 “ (1...𝑉)) ∨ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))))) |
60 | | imassrn 5980 |
. . . . . . . . . . . . . . . 16
⊢ (𝑈 “ (1...𝑉)) ⊆ ran 𝑈 |
61 | | f1of 6716 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈:(1...𝑁)⟶(1...𝑁)) |
62 | 1, 61 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑈:(1...𝑁)⟶(1...𝑁)) |
63 | 62 | frnd 6608 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ran 𝑈 ⊆ (1...𝑁)) |
64 | 60, 63 | sstrid 3932 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑈 “ (1...𝑉)) ⊆ (1...𝑁)) |
65 | 64 | sselda 3921 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) → 𝑛 ∈ (1...𝑁)) |
66 | | poimirlem2.2 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑇:(1...𝑁)⟶ℤ) |
67 | 66 | ffnd 6601 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑇 Fn (1...𝑁)) |
68 | 67 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) → 𝑇 Fn (1...𝑁)) |
69 | | 1ex 10971 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ∈
V |
70 | | fnconstg 6662 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1 ∈
V → ((𝑈 “
(1...𝑉)) × {1}) Fn
(𝑈 “ (1...𝑉))) |
71 | 69, 70 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑈 “ (1...𝑉)) × {1}) Fn (𝑈 “ (1...𝑉)) |
72 | | c0ex 10969 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ∈
V |
73 | | fnconstg 6662 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0 ∈
V → ((𝑈 “
((𝑉 + 1)...𝑁)) × {0}) Fn (𝑈 “ ((𝑉 + 1)...𝑁))) |
74 | 72, 73 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}) Fn (𝑈 “ ((𝑉 + 1)...𝑁)) |
75 | 71, 74 | pm3.2i 471 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑈 “ (1...𝑉)) × {1}) Fn (𝑈 “ (1...𝑉)) ∧ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}) Fn (𝑈 “ ((𝑉 + 1)...𝑁))) |
76 | | imain 6519 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (Fun
◡𝑈 → (𝑈 “ ((1...𝑉) ∩ ((𝑉 + 1)...𝑁))) = ((𝑈 “ (1...𝑉)) ∩ (𝑈 “ ((𝑉 + 1)...𝑁)))) |
77 | 4, 76 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑈 “ ((1...𝑉) ∩ ((𝑉 + 1)...𝑁))) = ((𝑈 “ (1...𝑉)) ∩ (𝑈 “ ((𝑉 + 1)...𝑁)))) |
78 | | fzdisj 13283 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑉 < (𝑉 + 1) → ((1...𝑉) ∩ ((𝑉 + 1)...𝑁)) = ∅) |
79 | 28, 78 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((1...𝑉) ∩ ((𝑉 + 1)...𝑁)) = ∅) |
80 | 79 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑈 “ ((1...𝑉) ∩ ((𝑉 + 1)...𝑁))) = (𝑈 “ ∅)) |
81 | | ima0 5985 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑈 “ ∅) =
∅ |
82 | 80, 81 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑈 “ ((1...𝑉) ∩ ((𝑉 + 1)...𝑁))) = ∅) |
83 | 77, 82 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑈 “ (1...𝑉)) ∩ (𝑈 “ ((𝑉 + 1)...𝑁))) = ∅) |
84 | | fnun 6545 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑈 “
(1...𝑉)) × {1}) Fn
(𝑈 “ (1...𝑉)) ∧ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}) Fn (𝑈 “ ((𝑉 + 1)...𝑁))) ∧ ((𝑈 “ (1...𝑉)) ∩ (𝑈 “ ((𝑉 + 1)...𝑁))) = ∅) → (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})) Fn ((𝑈 “ (1...𝑉)) ∪ (𝑈 “ ((𝑉 + 1)...𝑁)))) |
85 | 75, 83, 84 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})) Fn ((𝑈 “ (1...𝑉)) ∪ (𝑈 “ ((𝑉 + 1)...𝑁)))) |
86 | | imaundi 6053 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑈 “ ((1...𝑉) ∪ ((𝑉 + 1)...𝑁))) = ((𝑈 “ (1...𝑉)) ∪ (𝑈 “ ((𝑉 + 1)...𝑁))) |
87 | 10 | nnzd 12425 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑁 ∈ ℤ) |
88 | | peano2zm 12363 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) |
89 | 87, 88 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) |
90 | | uzid 12597 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑁 − 1) ∈ ℤ
→ (𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1))) |
91 | 89, 90 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1))) |
92 | | peano2uz 12641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
93 | 91, 92 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
94 | 13, 93 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
95 | | fzss2 13296 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈
(ℤ≥‘(𝑁 − 1)) → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
96 | 94, 95 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
97 | 96, 7 | sseldd 3922 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑉 ∈ (1...𝑁)) |
98 | | fzsplit 13282 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑉 ∈ (1...𝑁) → (1...𝑁) = ((1...𝑉) ∪ ((𝑉 + 1)...𝑁))) |
99 | 97, 98 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (1...𝑁) = ((1...𝑉) ∪ ((𝑉 + 1)...𝑁))) |
100 | 99 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑈 “ (1...𝑁)) = (𝑈 “ ((1...𝑉) ∪ ((𝑉 + 1)...𝑁)))) |
101 | | f1ofo 6723 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈:(1...𝑁)–onto→(1...𝑁)) |
102 | 1, 101 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑈:(1...𝑁)–onto→(1...𝑁)) |
103 | | foima 6693 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑈:(1...𝑁)–onto→(1...𝑁) → (𝑈 “ (1...𝑁)) = (1...𝑁)) |
104 | 102, 103 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑈 “ (1...𝑁)) = (1...𝑁)) |
105 | 100, 104 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑈 “ ((1...𝑉) ∪ ((𝑉 + 1)...𝑁))) = (1...𝑁)) |
106 | 86, 105 | eqtr3id 2792 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑈 “ (1...𝑉)) ∪ (𝑈 “ ((𝑉 + 1)...𝑁))) = (1...𝑁)) |
107 | 106 | fneq2d 6527 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})) Fn ((𝑈 “ (1...𝑉)) ∪ (𝑈 “ ((𝑉 + 1)...𝑁))) ↔ (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})) Fn (1...𝑁))) |
108 | 85, 107 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
109 | 108 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) → (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
110 | | fzfid 13693 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) → (1...𝑁) ∈ Fin) |
111 | | inidm 4152 |
. . . . . . . . . . . . . . . 16
⊢
((1...𝑁) ∩
(1...𝑁)) = (1...𝑁) |
112 | | eqidd 2739 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) ∧ 𝑛 ∈ (1...𝑁)) → (𝑇‘𝑛) = (𝑇‘𝑛)) |
113 | | fvun1 6859 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑈 “ (1...𝑉)) × {1}) Fn (𝑈 “ (1...𝑉)) ∧ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}) Fn (𝑈 “ ((𝑉 + 1)...𝑁)) ∧ (((𝑈 “ (1...𝑉)) ∩ (𝑈 “ ((𝑉 + 1)...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (1...𝑉)))) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...𝑉)) × {1})‘𝑛)) |
114 | 71, 74, 113 | mp3an12 1450 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑈 “ (1...𝑉)) ∩ (𝑈 “ ((𝑉 + 1)...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...𝑉)) × {1})‘𝑛)) |
115 | 83, 114 | sylan 580 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...𝑉)) × {1})‘𝑛)) |
116 | 69 | fvconst2 7079 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ (𝑈 “ (1...𝑉)) → (((𝑈 “ (1...𝑉)) × {1})‘𝑛) = 1) |
117 | 116 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) → (((𝑈 “ (1...𝑉)) × {1})‘𝑛) = 1) |
118 | 115, 117 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = 1) |
119 | 118 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) ∧ 𝑛 ∈ (1...𝑁)) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = 1) |
120 | 68, 109, 110, 110, 111, 112, 119 | ofval 7544 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇‘𝑛) + 1)) |
121 | | fnconstg 6662 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1 ∈
V → ((𝑈 “
(1...(𝑉 + 1))) × {1})
Fn (𝑈 “ (1...(𝑉 + 1)))) |
122 | 69, 121 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑈 “ (1...(𝑉 + 1))) × {1}) Fn (𝑈 “ (1...(𝑉 + 1))) |
123 | | fnconstg 6662 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0 ∈
V → ((𝑈 “
(((𝑉 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) |
124 | 72, 123 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑉 + 1) + 1)...𝑁)) |
125 | 122, 124 | pm3.2i 471 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑈 “ (1...(𝑉 + 1))) × {1}) Fn (𝑈 “ (1...(𝑉 + 1))) ∧ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) |
126 | | imain 6519 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (Fun
◡𝑈 → (𝑈 “ ((1...(𝑉 + 1)) ∩ (((𝑉 + 1) + 1)...𝑁))) = ((𝑈 “ (1...(𝑉 + 1))) ∩ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)))) |
127 | 4, 126 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑈 “ ((1...(𝑉 + 1)) ∩ (((𝑉 + 1) + 1)...𝑁))) = ((𝑈 “ (1...(𝑉 + 1))) ∩ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)))) |
128 | | fzdisj 13283 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑉 + 1) < ((𝑉 + 1) + 1) → ((1...(𝑉 + 1)) ∩ (((𝑉 + 1) + 1)...𝑁)) = ∅) |
129 | 39, 128 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((1...(𝑉 + 1)) ∩ (((𝑉 + 1) + 1)...𝑁)) = ∅) |
130 | 129 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑈 “ ((1...(𝑉 + 1)) ∩ (((𝑉 + 1) + 1)...𝑁))) = (𝑈 “ ∅)) |
131 | 130, 81 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑈 “ ((1...(𝑉 + 1)) ∩ (((𝑉 + 1) + 1)...𝑁))) = ∅) |
132 | 127, 131 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑈 “ (1...(𝑉 + 1))) ∩ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) = ∅) |
133 | | fnun 6545 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑈 “
(1...(𝑉 + 1))) × {1})
Fn (𝑈 “ (1...(𝑉 + 1))) ∧ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) ∧ ((𝑈 “ (1...(𝑉 + 1))) ∩ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) = ∅) → (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑉 + 1))) ∪ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)))) |
134 | 125, 132,
133 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑉 + 1))) ∪ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)))) |
135 | | imaundi 6053 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑈 “ ((1...(𝑉 + 1)) ∪ (((𝑉 + 1) + 1)...𝑁))) = ((𝑈 “ (1...(𝑉 + 1))) ∪ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) |
136 | 17 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑈 “ (1...𝑁)) = (𝑈 “ ((1...(𝑉 + 1)) ∪ (((𝑉 + 1) + 1)...𝑁)))) |
137 | 136, 104 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑈 “ ((1...(𝑉 + 1)) ∪ (((𝑉 + 1) + 1)...𝑁))) = (1...𝑁)) |
138 | 135, 137 | eqtr3id 2792 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑈 “ (1...(𝑉 + 1))) ∪ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) = (1...𝑁)) |
139 | 138 | fneq2d 6527 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑉 + 1))) ∪ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) ↔ (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁))) |
140 | 134, 139 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
141 | 140 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) → (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
142 | | uzid 12597 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑉 ∈ ℤ → 𝑉 ∈
(ℤ≥‘𝑉)) |
143 | 26, 142 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑉 ∈ (ℤ≥‘𝑉)) |
144 | | peano2uz 12641 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑉 ∈
(ℤ≥‘𝑉) → (𝑉 + 1) ∈
(ℤ≥‘𝑉)) |
145 | 143, 144 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑉 + 1) ∈
(ℤ≥‘𝑉)) |
146 | | fzss2 13296 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑉 + 1) ∈
(ℤ≥‘𝑉) → (1...𝑉) ⊆ (1...(𝑉 + 1))) |
147 | 145, 146 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (1...𝑉) ⊆ (1...(𝑉 + 1))) |
148 | | imass2 6010 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1...𝑉) ⊆
(1...(𝑉 + 1)) → (𝑈 “ (1...𝑉)) ⊆ (𝑈 “ (1...(𝑉 + 1)))) |
149 | 147, 148 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑈 “ (1...𝑉)) ⊆ (𝑈 “ (1...(𝑉 + 1)))) |
150 | 149 | sselda 3921 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) → 𝑛 ∈ (𝑈 “ (1...(𝑉 + 1)))) |
151 | | fvun1 6859 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑈 “ (1...(𝑉 + 1))) × {1}) Fn (𝑈 “ (1...(𝑉 + 1))) ∧ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑉 + 1) + 1)...𝑁)) ∧ (((𝑈 “ (1...(𝑉 + 1))) ∩ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 + 1))))) → ((((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...(𝑉 + 1))) × {1})‘𝑛)) |
152 | 122, 124,
151 | mp3an12 1450 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑈 “ (1...(𝑉 + 1))) ∩ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 + 1)))) → ((((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...(𝑉 + 1))) × {1})‘𝑛)) |
153 | 132, 152 | sylan 580 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 + 1)))) → ((((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...(𝑉 + 1))) × {1})‘𝑛)) |
154 | 69 | fvconst2 7079 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ (𝑈 “ (1...(𝑉 + 1))) → (((𝑈 “ (1...(𝑉 + 1))) × {1})‘𝑛) = 1) |
155 | 154 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 + 1)))) → (((𝑈 “ (1...(𝑉 + 1))) × {1})‘𝑛) = 1) |
156 | 153, 155 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 + 1)))) → ((((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))‘𝑛) = 1) |
157 | 150, 156 | syldan 591 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) → ((((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))‘𝑛) = 1) |
158 | 157 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) ∧ 𝑛 ∈ (1...𝑁)) → ((((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))‘𝑛) = 1) |
159 | 68, 141, 110, 110, 111, 112, 158 | ofval 7544 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘f + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇‘𝑛) + 1)) |
160 | 120, 159 | eqtr4d 2781 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇 ∘f + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))‘𝑛)) |
161 | 65, 160 | mpdan 684 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...𝑉))) → ((𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇 ∘f + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))‘𝑛)) |
162 | | imassrn 5980 |
. . . . . . . . . . . . . . . 16
⊢ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)) ⊆ ran 𝑈 |
163 | 162, 63 | sstrid 3932 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑈 “ (((𝑉 + 1) + 1)...𝑁)) ⊆ (1...𝑁)) |
164 | 163 | sselda 3921 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → 𝑛 ∈ (1...𝑁)) |
165 | 67 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → 𝑇 Fn (1...𝑁)) |
166 | 108 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
167 | | fzfid 13693 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → (1...𝑁) ∈ Fin) |
168 | | eqidd 2739 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → (𝑇‘𝑛) = (𝑇‘𝑛)) |
169 | | uzid 12597 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑉 + 1) ∈ ℤ →
(𝑉 + 1) ∈
(ℤ≥‘(𝑉 + 1))) |
170 | 29, 169 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑉 + 1) ∈
(ℤ≥‘(𝑉 + 1))) |
171 | | peano2uz 12641 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑉 + 1) ∈
(ℤ≥‘(𝑉 + 1)) → ((𝑉 + 1) + 1) ∈
(ℤ≥‘(𝑉 + 1))) |
172 | 170, 171 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑉 + 1) + 1) ∈
(ℤ≥‘(𝑉 + 1))) |
173 | | fzss1 13295 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑉 + 1) + 1) ∈
(ℤ≥‘(𝑉 + 1)) → (((𝑉 + 1) + 1)...𝑁) ⊆ ((𝑉 + 1)...𝑁)) |
174 | 172, 173 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (((𝑉 + 1) + 1)...𝑁) ⊆ ((𝑉 + 1)...𝑁)) |
175 | | imass2 6010 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑉 + 1) + 1)...𝑁) ⊆ ((𝑉 + 1)...𝑁) → (𝑈 “ (((𝑉 + 1) + 1)...𝑁)) ⊆ (𝑈 “ ((𝑉 + 1)...𝑁))) |
176 | 174, 175 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑈 “ (((𝑉 + 1) + 1)...𝑁)) ⊆ (𝑈 “ ((𝑉 + 1)...𝑁))) |
177 | 176 | sselda 3921 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) |
178 | | fvun2 6860 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑈 “ (1...𝑉)) × {1}) Fn (𝑈 “ (1...𝑉)) ∧ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}) Fn (𝑈 “ ((𝑉 + 1)...𝑁)) ∧ (((𝑈 “ (1...𝑉)) ∩ (𝑈 “ ((𝑉 + 1)...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁)))) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})‘𝑛)) |
179 | 71, 74, 178 | mp3an12 1450 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑈 “ (1...𝑉)) ∩ (𝑈 “ ((𝑉 + 1)...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})‘𝑛)) |
180 | 83, 179 | sylan 580 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})‘𝑛)) |
181 | 72 | fvconst2 7079 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁)) → (((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})‘𝑛) = 0) |
182 | 181 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → (((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})‘𝑛) = 0) |
183 | 180, 182 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = 0) |
184 | 177, 183 | syldan 591 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = 0) |
185 | 184 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = 0) |
186 | 165, 166,
167, 167, 111, 168, 185 | ofval 7544 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇‘𝑛) + 0)) |
187 | 140 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
188 | | fvun2 6860 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑈 “ (1...(𝑉 + 1))) × {1}) Fn (𝑈 “ (1...(𝑉 + 1))) ∧ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑉 + 1) + 1)...𝑁)) ∧ (((𝑈 “ (1...(𝑉 + 1))) ∩ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)))) → ((((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})‘𝑛)) |
189 | 122, 124,
188 | mp3an12 1450 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑈 “ (1...(𝑉 + 1))) ∩ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → ((((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})‘𝑛)) |
190 | 132, 189 | sylan 580 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → ((((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})‘𝑛)) |
191 | 72 | fvconst2 7079 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)) → (((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})‘𝑛) = 0) |
192 | 191 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → (((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})‘𝑛) = 0) |
193 | 190, 192 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → ((((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))‘𝑛) = 0) |
194 | 193 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → ((((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))‘𝑛) = 0) |
195 | 165, 187,
167, 167, 111, 168, 194 | ofval 7544 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘f + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇‘𝑛) + 0)) |
196 | 186, 195 | eqtr4d 2781 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇 ∘f + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))‘𝑛)) |
197 | 164, 196 | mpdan 684 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → ((𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇 ∘f + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))‘𝑛)) |
198 | 161, 197 | jaodan 955 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (𝑈 “ (1...𝑉)) ∨ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)))) → ((𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇 ∘f + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))‘𝑛)) |
199 | 198 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ (𝑛 ∈ (𝑈 “ (1...𝑉)) ∨ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)))) → ((𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇 ∘f + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))‘𝑛)) |
200 | | poimirlem2.1 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))) |
201 | 200 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))) |
202 | | vex 3436 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑦 ∈ V |
203 | | ovex 7308 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 + 1) ∈ V |
204 | 202, 203 | ifex 4509 |
. . . . . . . . . . . . . . . 16
⊢ if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) ∈ V |
205 | 204 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = (𝑉 − 1)) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) ∈ V) |
206 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = (𝑉 − 1) → (𝑦 < 𝑀 ↔ (𝑉 − 1) < 𝑀)) |
207 | 206 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 = (𝑉 − 1)) → (𝑦 < 𝑀 ↔ (𝑉 − 1) < 𝑀)) |
208 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 = (𝑉 − 1)) → 𝑦 = (𝑉 − 1)) |
209 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = (𝑉 − 1) → (𝑦 + 1) = ((𝑉 − 1) + 1)) |
210 | 26 | zcnd 12427 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑉 ∈ ℂ) |
211 | | npcan1 11400 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑉 ∈ ℂ → ((𝑉 − 1) + 1) = 𝑉) |
212 | 210, 211 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((𝑉 − 1) + 1) = 𝑉) |
213 | 209, 212 | sylan9eqr 2800 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 = (𝑉 − 1)) → (𝑦 + 1) = 𝑉) |
214 | 207, 208,
213 | ifbieq12d 4487 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 = (𝑉 − 1)) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = if((𝑉 − 1) < 𝑀, (𝑉 − 1), 𝑉)) |
215 | 214 | adantlr 712 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = (𝑉 − 1)) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = if((𝑉 − 1) < 𝑀, (𝑉 − 1), 𝑉)) |
216 | | poimirlem2.5 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑀 ∈ ((0...𝑁) ∖ {𝑉})) |
217 | 216 | eldifad 3899 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) |
218 | 217 | elfzelzd 13257 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑀 ∈ ℤ) |
219 | | zltlem1 12373 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑀 ∈ ℤ ∧ 𝑉 ∈ ℤ) → (𝑀 < 𝑉 ↔ 𝑀 ≤ (𝑉 − 1))) |
220 | 218, 26, 219 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑀 < 𝑉 ↔ 𝑀 ≤ (𝑉 − 1))) |
221 | 218 | zred 12426 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑀 ∈ ℝ) |
222 | | peano2zm 12363 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑉 ∈ ℤ → (𝑉 − 1) ∈
ℤ) |
223 | 26, 222 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑉 − 1) ∈ ℤ) |
224 | 223 | zred 12426 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑉 − 1) ∈ ℝ) |
225 | 221, 224 | lenltd 11121 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑀 ≤ (𝑉 − 1) ↔ ¬ (𝑉 − 1) < 𝑀)) |
226 | 220, 225 | bitrd 278 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑀 < 𝑉 ↔ ¬ (𝑉 − 1) < 𝑀)) |
227 | 226 | biimpa 477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → ¬ (𝑉 − 1) < 𝑀) |
228 | 227 | iffalsed 4470 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → if((𝑉 − 1) < 𝑀, (𝑉 − 1), 𝑉) = 𝑉) |
229 | 228 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = (𝑉 − 1)) → if((𝑉 − 1) < 𝑀, (𝑉 − 1), 𝑉) = 𝑉) |
230 | 215, 229 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = (𝑉 − 1)) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = 𝑉) |
231 | 230 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = (𝑉 − 1)) → (𝑗 = if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) ↔ 𝑗 = 𝑉)) |
232 | 231 | biimpa 477 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = (𝑉 − 1)) ∧ 𝑗 = if(𝑦 < 𝑀, 𝑦, (𝑦 + 1))) → 𝑗 = 𝑉) |
233 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑉 → (1...𝑗) = (1...𝑉)) |
234 | 233 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑉 → (𝑈 “ (1...𝑗)) = (𝑈 “ (1...𝑉))) |
235 | 234 | xpeq1d 5618 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑉 → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...𝑉)) × {1})) |
236 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑉 → (𝑗 + 1) = (𝑉 + 1)) |
237 | 236 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑉 → ((𝑗 + 1)...𝑁) = ((𝑉 + 1)...𝑁)) |
238 | 237 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑉 → (𝑈 “ ((𝑗 + 1)...𝑁)) = (𝑈 “ ((𝑉 + 1)...𝑁))) |
239 | 238 | xpeq1d 5618 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑉 → ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) = ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})) |
240 | 235, 239 | uneq12d 4098 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑉 → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) = (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))) |
241 | 240 | oveq2d 7291 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑉 → (𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))) |
242 | 232, 241 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = (𝑉 − 1)) ∧ 𝑗 = if(𝑦 < 𝑀, 𝑦, (𝑦 + 1))) → (𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))) |
243 | 205, 242 | csbied 3870 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = (𝑉 − 1)) → ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))) |
244 | | elfzm1b 13334 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑉 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑉 ∈ (1...𝑁) ↔ (𝑉 − 1) ∈ (0...(𝑁 − 1)))) |
245 | 26, 87, 244 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑉 ∈ (1...𝑁) ↔ (𝑉 − 1) ∈ (0...(𝑁 − 1)))) |
246 | 97, 245 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑉 − 1) ∈ (0...(𝑁 − 1))) |
247 | 246 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → (𝑉 − 1) ∈ (0...(𝑁 − 1))) |
248 | | ovexd 7310 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → (𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))) ∈ V) |
249 | 201, 243,
247, 248 | fvmptd 6882 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → (𝐹‘(𝑉 − 1)) = (𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))) |
250 | 249 | fveq1d 6776 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → ((𝐹‘(𝑉 − 1))‘𝑛) = ((𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛)) |
251 | 250 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ (𝑛 ∈ (𝑈 “ (1...𝑉)) ∨ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)))) → ((𝐹‘(𝑉 − 1))‘𝑛) = ((𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛)) |
252 | 204 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = 𝑉) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) ∈ V) |
253 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑉 → (𝑦 < 𝑀 ↔ 𝑉 < 𝑀)) |
254 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑉 → 𝑦 = 𝑉) |
255 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑉 → (𝑦 + 1) = (𝑉 + 1)) |
256 | 253, 254,
255 | ifbieq12d 4487 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑉 → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = if(𝑉 < 𝑀, 𝑉, (𝑉 + 1))) |
257 | | ltnsym 11073 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑀 ∈ ℝ ∧ 𝑉 ∈ ℝ) → (𝑀 < 𝑉 → ¬ 𝑉 < 𝑀)) |
258 | 221, 27, 257 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑀 < 𝑉 → ¬ 𝑉 < 𝑀)) |
259 | 258 | imp 407 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → ¬ 𝑉 < 𝑀) |
260 | 259 | iffalsed 4470 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → if(𝑉 < 𝑀, 𝑉, (𝑉 + 1)) = (𝑉 + 1)) |
261 | 256, 260 | sylan9eqr 2800 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = 𝑉) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = (𝑉 + 1)) |
262 | 261 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = 𝑉) → (𝑗 = if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) ↔ 𝑗 = (𝑉 + 1))) |
263 | 262 | biimpa 477 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = 𝑉) ∧ 𝑗 = if(𝑦 < 𝑀, 𝑦, (𝑦 + 1))) → 𝑗 = (𝑉 + 1)) |
264 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑉 + 1) → (1...𝑗) = (1...(𝑉 + 1))) |
265 | 264 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑉 + 1) → (𝑈 “ (1...𝑗)) = (𝑈 “ (1...(𝑉 + 1)))) |
266 | 265 | xpeq1d 5618 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = (𝑉 + 1) → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...(𝑉 + 1))) × {1})) |
267 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = (𝑉 + 1) → (𝑗 + 1) = ((𝑉 + 1) + 1)) |
268 | 267 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑉 + 1) → ((𝑗 + 1)...𝑁) = (((𝑉 + 1) + 1)...𝑁)) |
269 | 268 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑉 + 1) → (𝑈 “ ((𝑗 + 1)...𝑁)) = (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) |
270 | 269 | xpeq1d 5618 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = (𝑉 + 1) → ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) = ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})) |
271 | 266, 270 | uneq12d 4098 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = (𝑉 + 1) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) = (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))) |
272 | 271 | oveq2d 7291 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑉 + 1) → (𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))) |
273 | 263, 272 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = 𝑉) ∧ 𝑗 = if(𝑦 < 𝑀, 𝑦, (𝑦 + 1))) → (𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))) |
274 | 252, 273 | csbied 3870 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑦 = 𝑉) → ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))) |
275 | | fz1ssfz0 13352 |
. . . . . . . . . . . . . . . 16
⊢
(1...(𝑁 − 1))
⊆ (0...(𝑁 −
1)) |
276 | 275, 7 | sselid 3919 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑉 ∈ (0...(𝑁 − 1))) |
277 | 276 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → 𝑉 ∈ (0...(𝑁 − 1))) |
278 | | ovexd 7310 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → (𝑇 ∘f + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0}))) ∈ V) |
279 | 201, 274,
277, 278 | fvmptd 6882 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → (𝐹‘𝑉) = (𝑇 ∘f + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))) |
280 | 279 | fveq1d 6776 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → ((𝐹‘𝑉)‘𝑛) = ((𝑇 ∘f + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))‘𝑛)) |
281 | 280 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ (𝑛 ∈ (𝑈 “ (1...𝑉)) ∨ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)))) → ((𝐹‘𝑉)‘𝑛) = ((𝑇 ∘f + (((𝑈 “ (1...(𝑉 + 1))) × {1}) ∪ ((𝑈 “ (((𝑉 + 1) + 1)...𝑁)) × {0})))‘𝑛)) |
282 | 199, 251,
281 | 3eqtr4d 2788 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ (𝑛 ∈ (𝑈 “ (1...𝑉)) ∨ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁)))) → ((𝐹‘(𝑉 − 1))‘𝑛) = ((𝐹‘𝑉)‘𝑛)) |
283 | 282 | ex 413 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → ((𝑛 ∈ (𝑈 “ (1...𝑉)) ∨ 𝑛 ∈ (𝑈 “ (((𝑉 + 1) + 1)...𝑁))) → ((𝐹‘(𝑉 − 1))‘𝑛) = ((𝐹‘𝑉)‘𝑛))) |
284 | 59, 283 | sylbid 239 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → ((𝑛 ∈ (𝑈 “ (1...𝑁)) ∧ ¬ 𝑛 ∈ (𝑈 “ {(𝑉 + 1)})) → ((𝐹‘(𝑉 − 1))‘𝑛) = ((𝐹‘𝑉)‘𝑛))) |
285 | 284 | expdimp 453 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑛 ∈ (𝑈 “ (1...𝑁))) → (¬ 𝑛 ∈ (𝑈 “ {(𝑉 + 1)}) → ((𝐹‘(𝑉 − 1))‘𝑛) = ((𝐹‘𝑉)‘𝑛))) |
286 | 285 | necon1ad 2960 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑛 ∈ (𝑈 “ (1...𝑁))) → (((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 ∈ (𝑈 “ {(𝑉 + 1)}))) |
287 | | elimasni 5999 |
. . . . . . . 8
⊢ (𝑛 ∈ (𝑈 “ {(𝑉 + 1)}) → (𝑉 + 1)𝑈𝑛) |
288 | | eqcom 2745 |
. . . . . . . . 9
⊢ (𝑛 = (𝑈‘(𝑉 + 1)) ↔ (𝑈‘(𝑉 + 1)) = 𝑛) |
289 | | f1ofn 6717 |
. . . . . . . . . . 11
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈 Fn (1...𝑁)) |
290 | 1, 289 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 Fn (1...𝑁)) |
291 | | fnbrfvb 6822 |
. . . . . . . . . 10
⊢ ((𝑈 Fn (1...𝑁) ∧ (𝑉 + 1) ∈ (1...𝑁)) → ((𝑈‘(𝑉 + 1)) = 𝑛 ↔ (𝑉 + 1)𝑈𝑛)) |
292 | 290, 15, 291 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑈‘(𝑉 + 1)) = 𝑛 ↔ (𝑉 + 1)𝑈𝑛)) |
293 | 288, 292 | syl5bb 283 |
. . . . . . . 8
⊢ (𝜑 → (𝑛 = (𝑈‘(𝑉 + 1)) ↔ (𝑉 + 1)𝑈𝑛)) |
294 | 287, 293 | syl5ibr 245 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ (𝑈 “ {(𝑉 + 1)}) → 𝑛 = (𝑈‘(𝑉 + 1)))) |
295 | 294 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑛 ∈ (𝑈 “ (1...𝑁))) → (𝑛 ∈ (𝑈 “ {(𝑉 + 1)}) → 𝑛 = (𝑈‘(𝑉 + 1)))) |
296 | 286, 295 | syld 47 |
. . . . 5
⊢ (((𝜑 ∧ 𝑀 < 𝑉) ∧ 𝑛 ∈ (𝑈 “ (1...𝑁))) → (((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = (𝑈‘(𝑉 + 1)))) |
297 | 296 | ralrimiva 3103 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → ∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = (𝑈‘(𝑉 + 1)))) |
298 | | fvex 6787 |
. . . . 5
⊢ (𝑈‘(𝑉 + 1)) ∈ V |
299 | | eqeq2 2750 |
. . . . . . 7
⊢ (𝑚 = (𝑈‘(𝑉 + 1)) → (𝑛 = 𝑚 ↔ 𝑛 = (𝑈‘(𝑉 + 1)))) |
300 | 299 | imbi2d 341 |
. . . . . 6
⊢ (𝑚 = (𝑈‘(𝑉 + 1)) → ((((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = 𝑚) ↔ (((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = (𝑈‘(𝑉 + 1))))) |
301 | 300 | ralbidv 3112 |
. . . . 5
⊢ (𝑚 = (𝑈‘(𝑉 + 1)) → (∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = 𝑚) ↔ ∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = (𝑈‘(𝑉 + 1))))) |
302 | 298, 301 | spcev 3545 |
. . . 4
⊢
(∀𝑛 ∈
(𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = (𝑈‘(𝑉 + 1))) → ∃𝑚∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = 𝑚)) |
303 | 297, 302 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑀 < 𝑉) → ∃𝑚∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = 𝑚)) |
304 | | imadif 6518 |
. . . . . . . . . . . . . . 15
⊢ (Fun
◡𝑈 → (𝑈 “ ((1...𝑁) ∖ {𝑉})) = ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {𝑉}))) |
305 | 4, 304 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑈 “ ((1...𝑁) ∖ {𝑉})) = ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {𝑉}))) |
306 | 99 | difeq1d 4056 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((1...𝑁) ∖ {𝑉}) = (((1...𝑉) ∪ ((𝑉 + 1)...𝑁)) ∖ {𝑉})) |
307 | | difundir 4214 |
. . . . . . . . . . . . . . . . 17
⊢
(((1...𝑉) ∪
((𝑉 + 1)...𝑁)) ∖ {𝑉}) = (((1...𝑉) ∖ {𝑉}) ∪ (((𝑉 + 1)...𝑁) ∖ {𝑉})) |
308 | 212, 21 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((𝑉 − 1) + 1) ∈
(ℤ≥‘1)) |
309 | | uzid 12597 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑉 − 1) ∈ ℤ
→ (𝑉 − 1) ∈
(ℤ≥‘(𝑉 − 1))) |
310 | 223, 309 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑉 − 1) ∈
(ℤ≥‘(𝑉 − 1))) |
311 | | peano2uz 12641 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑉 − 1) ∈
(ℤ≥‘(𝑉 − 1)) → ((𝑉 − 1) + 1) ∈
(ℤ≥‘(𝑉 − 1))) |
312 | 310, 311 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑉 − 1) + 1) ∈
(ℤ≥‘(𝑉 − 1))) |
313 | 212, 312 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑉 ∈ (ℤ≥‘(𝑉 − 1))) |
314 | | fzsplit2 13281 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑉 − 1) + 1) ∈
(ℤ≥‘1) ∧ 𝑉 ∈ (ℤ≥‘(𝑉 − 1))) → (1...𝑉) = ((1...(𝑉 − 1)) ∪ (((𝑉 − 1) + 1)...𝑉))) |
315 | 308, 313,
314 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (1...𝑉) = ((1...(𝑉 − 1)) ∪ (((𝑉 − 1) + 1)...𝑉))) |
316 | 212 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (((𝑉 − 1) + 1)...𝑉) = (𝑉...𝑉)) |
317 | | fzsn 13298 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑉 ∈ ℤ → (𝑉...𝑉) = {𝑉}) |
318 | 26, 317 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑉...𝑉) = {𝑉}) |
319 | 316, 318 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (((𝑉 − 1) + 1)...𝑉) = {𝑉}) |
320 | 319 | uneq2d 4097 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((1...(𝑉 − 1)) ∪ (((𝑉 − 1) + 1)...𝑉)) = ((1...(𝑉 − 1)) ∪ {𝑉})) |
321 | 315, 320 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (1...𝑉) = ((1...(𝑉 − 1)) ∪ {𝑉})) |
322 | 321 | difeq1d 4056 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((1...𝑉) ∖ {𝑉}) = (((1...(𝑉 − 1)) ∪ {𝑉}) ∖ {𝑉})) |
323 | | difun2 4414 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((1...(𝑉 −
1)) ∪ {𝑉}) ∖
{𝑉}) = ((1...(𝑉 − 1)) ∖ {𝑉}) |
324 | 27 | ltm1d 11907 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑉 − 1) < 𝑉) |
325 | 224, 27 | ltnled 11122 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑉 − 1) < 𝑉 ↔ ¬ 𝑉 ≤ (𝑉 − 1))) |
326 | 324, 325 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ¬ 𝑉 ≤ (𝑉 − 1)) |
327 | | elfzle2 13260 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑉 ∈ (1...(𝑉 − 1)) → 𝑉 ≤ (𝑉 − 1)) |
328 | 326, 327 | nsyl 140 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ¬ 𝑉 ∈ (1...(𝑉 − 1))) |
329 | | difsn 4731 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
𝑉 ∈ (1...(𝑉 − 1)) → ((1...(𝑉 − 1)) ∖ {𝑉}) = (1...(𝑉 − 1))) |
330 | 328, 329 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((1...(𝑉 − 1)) ∖ {𝑉}) = (1...(𝑉 − 1))) |
331 | 323, 330 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (((1...(𝑉 − 1)) ∪ {𝑉}) ∖ {𝑉}) = (1...(𝑉 − 1))) |
332 | 322, 331 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((1...𝑉) ∖ {𝑉}) = (1...(𝑉 − 1))) |
333 | | elfzle1 13259 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑉 ∈ ((𝑉 + 1)...𝑁) → (𝑉 + 1) ≤ 𝑉) |
334 | 32, 333 | nsyl 140 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ¬ 𝑉 ∈ ((𝑉 + 1)...𝑁)) |
335 | | difsn 4731 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑉 ∈ ((𝑉 + 1)...𝑁) → (((𝑉 + 1)...𝑁) ∖ {𝑉}) = ((𝑉 + 1)...𝑁)) |
336 | 334, 335 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (((𝑉 + 1)...𝑁) ∖ {𝑉}) = ((𝑉 + 1)...𝑁)) |
337 | 332, 336 | uneq12d 4098 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((1...𝑉) ∖ {𝑉}) ∪ (((𝑉 + 1)...𝑁) ∖ {𝑉})) = ((1...(𝑉 − 1)) ∪ ((𝑉 + 1)...𝑁))) |
338 | 307, 337 | eqtrid 2790 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (((1...𝑉) ∪ ((𝑉 + 1)...𝑁)) ∖ {𝑉}) = ((1...(𝑉 − 1)) ∪ ((𝑉 + 1)...𝑁))) |
339 | 306, 338 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((1...𝑁) ∖ {𝑉}) = ((1...(𝑉 − 1)) ∪ ((𝑉 + 1)...𝑁))) |
340 | 339 | imaeq2d 5969 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑈 “ ((1...𝑁) ∖ {𝑉})) = (𝑈 “ ((1...(𝑉 − 1)) ∪ ((𝑉 + 1)...𝑁)))) |
341 | 305, 340 | eqtr3d 2780 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {𝑉})) = (𝑈 “ ((1...(𝑉 − 1)) ∪ ((𝑉 + 1)...𝑁)))) |
342 | | imaundi 6053 |
. . . . . . . . . . . . 13
⊢ (𝑈 “ ((1...(𝑉 − 1)) ∪ ((𝑉 + 1)...𝑁))) = ((𝑈 “ (1...(𝑉 − 1))) ∪ (𝑈 “ ((𝑉 + 1)...𝑁))) |
343 | 341, 342 | eqtrdi 2794 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {𝑉})) = ((𝑈 “ (1...(𝑉 − 1))) ∪ (𝑈 “ ((𝑉 + 1)...𝑁)))) |
344 | 343 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑛 ∈ ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {𝑉})) ↔ 𝑛 ∈ ((𝑈 “ (1...(𝑉 − 1))) ∪ (𝑈 “ ((𝑉 + 1)...𝑁))))) |
345 | | eldif 3897 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {𝑉})) ↔ (𝑛 ∈ (𝑈 “ (1...𝑁)) ∧ ¬ 𝑛 ∈ (𝑈 “ {𝑉}))) |
346 | | elun 4083 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ((𝑈 “ (1...(𝑉 − 1))) ∪ (𝑈 “ ((𝑉 + 1)...𝑁))) ↔ (𝑛 ∈ (𝑈 “ (1...(𝑉 − 1))) ∨ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁)))) |
347 | 344, 345,
346 | 3bitr3g 313 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑛 ∈ (𝑈 “ (1...𝑁)) ∧ ¬ 𝑛 ∈ (𝑈 “ {𝑉})) ↔ (𝑛 ∈ (𝑈 “ (1...(𝑉 − 1))) ∨ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))))) |
348 | 347 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → ((𝑛 ∈ (𝑈 “ (1...𝑁)) ∧ ¬ 𝑛 ∈ (𝑈 “ {𝑉})) ↔ (𝑛 ∈ (𝑈 “ (1...(𝑉 − 1))) ∨ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))))) |
349 | | imassrn 5980 |
. . . . . . . . . . . . . . . 16
⊢ (𝑈 “ (1...(𝑉 − 1))) ⊆ ran 𝑈 |
350 | 349, 63 | sstrid 3932 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑈 “ (1...(𝑉 − 1))) ⊆ (1...𝑁)) |
351 | 350 | sselda 3921 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) → 𝑛 ∈ (1...𝑁)) |
352 | 67 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) → 𝑇 Fn (1...𝑁)) |
353 | | fnconstg 6662 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1 ∈
V → ((𝑈 “
(1...(𝑉 − 1)))
× {1}) Fn (𝑈 “
(1...(𝑉 −
1)))) |
354 | 69, 353 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑈 “ (1...(𝑉 − 1))) × {1}) Fn (𝑈 “ (1...(𝑉 − 1))) |
355 | | fnconstg 6662 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0 ∈
V → ((𝑈 “ (𝑉...𝑁)) × {0}) Fn (𝑈 “ (𝑉...𝑁))) |
356 | 72, 355 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑈 “ (𝑉...𝑁)) × {0}) Fn (𝑈 “ (𝑉...𝑁)) |
357 | 354, 356 | pm3.2i 471 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑈 “ (1...(𝑉 − 1))) × {1}) Fn (𝑈 “ (1...(𝑉 − 1))) ∧ ((𝑈 “ (𝑉...𝑁)) × {0}) Fn (𝑈 “ (𝑉...𝑁))) |
358 | | imain 6519 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (Fun
◡𝑈 → (𝑈 “ ((1...(𝑉 − 1)) ∩ (𝑉...𝑁))) = ((𝑈 “ (1...(𝑉 − 1))) ∩ (𝑈 “ (𝑉...𝑁)))) |
359 | 4, 358 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑈 “ ((1...(𝑉 − 1)) ∩ (𝑉...𝑁))) = ((𝑈 “ (1...(𝑉 − 1))) ∩ (𝑈 “ (𝑉...𝑁)))) |
360 | | fzdisj 13283 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑉 − 1) < 𝑉 → ((1...(𝑉 − 1)) ∩ (𝑉...𝑁)) = ∅) |
361 | 324, 360 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((1...(𝑉 − 1)) ∩ (𝑉...𝑁)) = ∅) |
362 | 361 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑈 “ ((1...(𝑉 − 1)) ∩ (𝑉...𝑁))) = (𝑈 “ ∅)) |
363 | 362, 81 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑈 “ ((1...(𝑉 − 1)) ∩ (𝑉...𝑁))) = ∅) |
364 | 359, 363 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑈 “ (1...(𝑉 − 1))) ∩ (𝑈 “ (𝑉...𝑁))) = ∅) |
365 | | fnun 6545 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑈 “
(1...(𝑉 − 1)))
× {1}) Fn (𝑈 “
(1...(𝑉 − 1))) ∧
((𝑈 “ (𝑉...𝑁)) × {0}) Fn (𝑈 “ (𝑉...𝑁))) ∧ ((𝑈 “ (1...(𝑉 − 1))) ∩ (𝑈 “ (𝑉...𝑁))) = ∅) → (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑉 − 1))) ∪ (𝑈 “ (𝑉...𝑁)))) |
366 | 357, 364,
365 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑉 − 1))) ∪ (𝑈 “ (𝑉...𝑁)))) |
367 | | imaundi 6053 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑈 “ ((1...(𝑉 − 1)) ∪ (𝑉...𝑁))) = ((𝑈 “ (1...(𝑉 − 1))) ∪ (𝑈 “ (𝑉...𝑁))) |
368 | | uzss 12605 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑉 ∈
(ℤ≥‘(𝑉 − 1)) →
(ℤ≥‘𝑉) ⊆
(ℤ≥‘(𝑉 − 1))) |
369 | 313, 368 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 →
(ℤ≥‘𝑉) ⊆
(ℤ≥‘(𝑉 − 1))) |
370 | | elfzuz3 13253 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑉 ∈ (1...(𝑁 − 1)) → (𝑁 − 1) ∈
(ℤ≥‘𝑉)) |
371 | 7, 370 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑁 − 1) ∈
(ℤ≥‘𝑉)) |
372 | 369, 371 | sseldd 3922 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝑁 − 1) ∈
(ℤ≥‘(𝑉 − 1))) |
373 | | peano2uz 12641 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑁 − 1) ∈
(ℤ≥‘(𝑉 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑉 − 1))) |
374 | 372, 373 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑉 − 1))) |
375 | 13, 374 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑉 − 1))) |
376 | | fzsplit2 13281 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑉 − 1) + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑉 − 1))) → (1...𝑁) = ((1...(𝑉 − 1)) ∪ (((𝑉 − 1) + 1)...𝑁))) |
377 | 308, 375,
376 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (1...𝑁) = ((1...(𝑉 − 1)) ∪ (((𝑉 − 1) + 1)...𝑁))) |
378 | 212 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (((𝑉 − 1) + 1)...𝑁) = (𝑉...𝑁)) |
379 | 378 | uneq2d 4097 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((1...(𝑉 − 1)) ∪ (((𝑉 − 1) + 1)...𝑁)) = ((1...(𝑉 − 1)) ∪ (𝑉...𝑁))) |
380 | 377, 379 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (1...𝑁) = ((1...(𝑉 − 1)) ∪ (𝑉...𝑁))) |
381 | 380 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑈 “ (1...𝑁)) = (𝑈 “ ((1...(𝑉 − 1)) ∪ (𝑉...𝑁)))) |
382 | 381, 104 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑈 “ ((1...(𝑉 − 1)) ∪ (𝑉...𝑁))) = (1...𝑁)) |
383 | 367, 382 | eqtr3id 2792 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑈 “ (1...(𝑉 − 1))) ∪ (𝑈 “ (𝑉...𝑁))) = (1...𝑁)) |
384 | 383 | fneq2d 6527 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})) Fn ((𝑈 “ (1...(𝑉 − 1))) ∪ (𝑈 “ (𝑉...𝑁))) ↔ (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})) Fn (1...𝑁))) |
385 | 366, 384 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})) Fn (1...𝑁)) |
386 | 385 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) → (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})) Fn (1...𝑁)) |
387 | | fzfid 13693 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) → (1...𝑁) ∈ Fin) |
388 | | eqidd 2739 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) ∧ 𝑛 ∈ (1...𝑁)) → (𝑇‘𝑛) = (𝑇‘𝑛)) |
389 | | fvun1 6859 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑈 “ (1...(𝑉 − 1))) × {1}) Fn (𝑈 “ (1...(𝑉 − 1))) ∧ ((𝑈 “ (𝑉...𝑁)) × {0}) Fn (𝑈 “ (𝑉...𝑁)) ∧ (((𝑈 “ (1...(𝑉 − 1))) ∩ (𝑈 “ (𝑉...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1))))) → ((((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...(𝑉 − 1))) × {1})‘𝑛)) |
390 | 354, 356,
389 | mp3an12 1450 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑈 “ (1...(𝑉 − 1))) ∩ (𝑈 “ (𝑉...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) → ((((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...(𝑉 − 1))) × {1})‘𝑛)) |
391 | 364, 390 | sylan 580 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) → ((((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (1...(𝑉 − 1))) × {1})‘𝑛)) |
392 | 69 | fvconst2 7079 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ (𝑈 “ (1...(𝑉 − 1))) → (((𝑈 “ (1...(𝑉 − 1))) × {1})‘𝑛) = 1) |
393 | 392 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) → (((𝑈 “ (1...(𝑉 − 1))) × {1})‘𝑛) = 1) |
394 | 391, 393 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) → ((((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))‘𝑛) = 1) |
395 | 394 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) ∧ 𝑛 ∈ (1...𝑁)) → ((((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))‘𝑛) = 1) |
396 | 352, 386,
387, 387, 111, 388, 395 | ofval 7544 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘f + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))‘𝑛) = ((𝑇‘𝑛) + 1)) |
397 | 108 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) → (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
398 | | fzss2 13296 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑉 ∈
(ℤ≥‘(𝑉 − 1)) → (1...(𝑉 − 1)) ⊆ (1...𝑉)) |
399 | 313, 398 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (1...(𝑉 − 1)) ⊆ (1...𝑉)) |
400 | | imass2 6010 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1...(𝑉 − 1))
⊆ (1...𝑉) →
(𝑈 “ (1...(𝑉 − 1))) ⊆ (𝑈 “ (1...𝑉))) |
401 | 399, 400 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑈 “ (1...(𝑉 − 1))) ⊆ (𝑈 “ (1...𝑉))) |
402 | 401 | sselda 3921 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) → 𝑛 ∈ (𝑈 “ (1...𝑉))) |
403 | 402, 118 | syldan 591 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = 1) |
404 | 403 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) ∧ 𝑛 ∈ (1...𝑁)) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = 1) |
405 | 352, 397,
387, 387, 111, 388, 404 | ofval 7544 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇‘𝑛) + 1)) |
406 | 396, 405 | eqtr4d 2781 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘f + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))‘𝑛) = ((𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛)) |
407 | 351, 406 | mpdan 684 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (1...(𝑉 − 1)))) → ((𝑇 ∘f + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))‘𝑛) = ((𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛)) |
408 | | imassrn 5980 |
. . . . . . . . . . . . . . . 16
⊢ (𝑈 “ ((𝑉 + 1)...𝑁)) ⊆ ran 𝑈 |
409 | 408, 63 | sstrid 3932 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑈 “ ((𝑉 + 1)...𝑁)) ⊆ (1...𝑁)) |
410 | 409 | sselda 3921 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → 𝑛 ∈ (1...𝑁)) |
411 | 67 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → 𝑇 Fn (1...𝑁)) |
412 | 385 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})) Fn (1...𝑁)) |
413 | | fzfid 13693 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → (1...𝑁) ∈ Fin) |
414 | | eqidd 2739 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → (𝑇‘𝑛) = (𝑇‘𝑛)) |
415 | | fzss1 13295 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑉 + 1) ∈
(ℤ≥‘𝑉) → ((𝑉 + 1)...𝑁) ⊆ (𝑉...𝑁)) |
416 | 145, 415 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑉 + 1)...𝑁) ⊆ (𝑉...𝑁)) |
417 | | imass2 6010 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑉 + 1)...𝑁) ⊆ (𝑉...𝑁) → (𝑈 “ ((𝑉 + 1)...𝑁)) ⊆ (𝑈 “ (𝑉...𝑁))) |
418 | 416, 417 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑈 “ ((𝑉 + 1)...𝑁)) ⊆ (𝑈 “ (𝑉...𝑁))) |
419 | 418 | sselda 3921 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → 𝑛 ∈ (𝑈 “ (𝑉...𝑁))) |
420 | | fvun2 6860 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑈 “ (1...(𝑉 − 1))) × {1}) Fn (𝑈 “ (1...(𝑉 − 1))) ∧ ((𝑈 “ (𝑉...𝑁)) × {0}) Fn (𝑈 “ (𝑉...𝑁)) ∧ (((𝑈 “ (1...(𝑉 − 1))) ∩ (𝑈 “ (𝑉...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (𝑉...𝑁)))) → ((((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (𝑉...𝑁)) × {0})‘𝑛)) |
421 | 354, 356,
420 | mp3an12 1450 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑈 “ (1...(𝑉 − 1))) ∩ (𝑈 “ (𝑉...𝑁))) = ∅ ∧ 𝑛 ∈ (𝑈 “ (𝑉...𝑁))) → ((((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (𝑉...𝑁)) × {0})‘𝑛)) |
422 | 364, 421 | sylan 580 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑉...𝑁))) → ((((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))‘𝑛) = (((𝑈 “ (𝑉...𝑁)) × {0})‘𝑛)) |
423 | 72 | fvconst2 7079 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ (𝑈 “ (𝑉...𝑁)) → (((𝑈 “ (𝑉...𝑁)) × {0})‘𝑛) = 0) |
424 | 423 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑉...𝑁))) → (((𝑈 “ (𝑉...𝑁)) × {0})‘𝑛) = 0) |
425 | 422, 424 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ (𝑉...𝑁))) → ((((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))‘𝑛) = 0) |
426 | 419, 425 | syldan 591 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → ((((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))‘𝑛) = 0) |
427 | 426 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → ((((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))‘𝑛) = 0) |
428 | 411, 412,
413, 413, 111, 414, 427 | ofval 7544 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘f + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))‘𝑛) = ((𝑇‘𝑛) + 0)) |
429 | 108 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
430 | 183 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → ((((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))‘𝑛) = 0) |
431 | 411, 429,
413, 413, 111, 414, 430 | ofval 7544 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛) = ((𝑇‘𝑛) + 0)) |
432 | 428, 431 | eqtr4d 2781 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑇 ∘f + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))‘𝑛) = ((𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛)) |
433 | 410, 432 | mpdan 684 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → ((𝑇 ∘f + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))‘𝑛) = ((𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛)) |
434 | 407, 433 | jaodan 955 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (𝑈 “ (1...(𝑉 − 1))) ∨ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁)))) → ((𝑇 ∘f + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))‘𝑛) = ((𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛)) |
435 | 434 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ (𝑛 ∈ (𝑈 “ (1...(𝑉 − 1))) ∨ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁)))) → ((𝑇 ∘f + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))‘𝑛) = ((𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛)) |
436 | 200 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))) |
437 | 204 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ 𝑦 = (𝑉 − 1)) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) ∈ V) |
438 | 214 | adantlr 712 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ 𝑦 = (𝑉 − 1)) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = if((𝑉 − 1) < 𝑀, (𝑉 − 1), 𝑉)) |
439 | | lttr 11051 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑉 − 1) ∈ ℝ ∧
𝑉 ∈ ℝ ∧
𝑀 ∈ ℝ) →
(((𝑉 − 1) < 𝑉 ∧ 𝑉 < 𝑀) → (𝑉 − 1) < 𝑀)) |
440 | 224, 27, 221, 439 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (((𝑉 − 1) < 𝑉 ∧ 𝑉 < 𝑀) → (𝑉 − 1) < 𝑀)) |
441 | 324, 440 | mpand 692 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑉 < 𝑀 → (𝑉 − 1) < 𝑀)) |
442 | 441 | imp 407 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → (𝑉 − 1) < 𝑀) |
443 | 442 | iftrued 4467 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → if((𝑉 − 1) < 𝑀, (𝑉 − 1), 𝑉) = (𝑉 − 1)) |
444 | 443 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ 𝑦 = (𝑉 − 1)) → if((𝑉 − 1) < 𝑀, (𝑉 − 1), 𝑉) = (𝑉 − 1)) |
445 | 438, 444 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ 𝑦 = (𝑉 − 1)) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = (𝑉 − 1)) |
446 | | simpll 764 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ 𝑦 = (𝑉 − 1)) → 𝜑) |
447 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = (𝑉 − 1) → (1...𝑗) = (1...(𝑉 − 1))) |
448 | 447 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑉 − 1) → (𝑈 “ (1...𝑗)) = (𝑈 “ (1...(𝑉 − 1)))) |
449 | 448 | xpeq1d 5618 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑉 − 1) → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...(𝑉 − 1))) × {1})) |
450 | 449 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 = (𝑉 − 1)) → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...(𝑉 − 1))) × {1})) |
451 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = (𝑉 − 1) → (𝑗 + 1) = ((𝑉 − 1) + 1)) |
452 | 451, 212 | sylan9eqr 2800 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 = (𝑉 − 1)) → (𝑗 + 1) = 𝑉) |
453 | 452 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 = (𝑉 − 1)) → ((𝑗 + 1)...𝑁) = (𝑉...𝑁)) |
454 | 453 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 = (𝑉 − 1)) → (𝑈 “ ((𝑗 + 1)...𝑁)) = (𝑈 “ (𝑉...𝑁))) |
455 | 454 | xpeq1d 5618 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 = (𝑉 − 1)) → ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) = ((𝑈 “ (𝑉...𝑁)) × {0})) |
456 | 450, 455 | uneq12d 4098 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 = (𝑉 − 1)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) = (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))) |
457 | 456 | oveq2d 7291 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 = (𝑉 − 1)) → (𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))) |
458 | 446, 457 | sylan 580 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑉 < 𝑀) ∧ 𝑦 = (𝑉 − 1)) ∧ 𝑗 = (𝑉 − 1)) → (𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))) |
459 | 437, 445,
458 | csbied2 3872 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ 𝑦 = (𝑉 − 1)) → ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))) |
460 | 246 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → (𝑉 − 1) ∈ (0...(𝑁 − 1))) |
461 | | ovexd 7310 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → (𝑇 ∘f + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0}))) ∈ V) |
462 | 436, 459,
460, 461 | fvmptd 6882 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → (𝐹‘(𝑉 − 1)) = (𝑇 ∘f + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))) |
463 | 462 | fveq1d 6776 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → ((𝐹‘(𝑉 − 1))‘𝑛) = ((𝑇 ∘f + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))‘𝑛)) |
464 | 463 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ (𝑛 ∈ (𝑈 “ (1...(𝑉 − 1))) ∨ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁)))) → ((𝐹‘(𝑉 − 1))‘𝑛) = ((𝑇 ∘f + (((𝑈 “ (1...(𝑉 − 1))) × {1}) ∪ ((𝑈 “ (𝑉...𝑁)) × {0})))‘𝑛)) |
465 | 204 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑉 < 𝑀 ∧ 𝑦 = 𝑉) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) ∈ V) |
466 | | iftrue 4465 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑉 < 𝑀 → if(𝑉 < 𝑀, 𝑉, (𝑉 + 1)) = 𝑉) |
467 | 256, 466 | sylan9eqr 2800 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑉 < 𝑀 ∧ 𝑦 = 𝑉) → if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) = 𝑉) |
468 | 467 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑉 < 𝑀 ∧ 𝑦 = 𝑉) → (𝑗 = if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) ↔ 𝑗 = 𝑉)) |
469 | 468 | biimpa 477 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑉 < 𝑀 ∧ 𝑦 = 𝑉) ∧ 𝑗 = if(𝑦 < 𝑀, 𝑦, (𝑦 + 1))) → 𝑗 = 𝑉) |
470 | 469, 241 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑉 < 𝑀 ∧ 𝑦 = 𝑉) ∧ 𝑗 = if(𝑦 < 𝑀, 𝑦, (𝑦 + 1))) → (𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))) |
471 | 465, 470 | csbied 3870 |
. . . . . . . . . . . . . . 15
⊢ ((𝑉 < 𝑀 ∧ 𝑦 = 𝑉) → ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))) |
472 | 471 | adantll 711 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ 𝑦 = 𝑉) → ⦋if(𝑦 < 𝑀, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))) |
473 | 276 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → 𝑉 ∈ (0...(𝑁 − 1))) |
474 | | ovexd 7310 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → (𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0}))) ∈ V) |
475 | 436, 472,
473, 474 | fvmptd 6882 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → (𝐹‘𝑉) = (𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))) |
476 | 475 | fveq1d 6776 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → ((𝐹‘𝑉)‘𝑛) = ((𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛)) |
477 | 476 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ (𝑛 ∈ (𝑈 “ (1...(𝑉 − 1))) ∨ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁)))) → ((𝐹‘𝑉)‘𝑛) = ((𝑇 ∘f + (((𝑈 “ (1...𝑉)) × {1}) ∪ ((𝑈 “ ((𝑉 + 1)...𝑁)) × {0})))‘𝑛)) |
478 | 435, 464,
477 | 3eqtr4d 2788 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ (𝑛 ∈ (𝑈 “ (1...(𝑉 − 1))) ∨ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁)))) → ((𝐹‘(𝑉 − 1))‘𝑛) = ((𝐹‘𝑉)‘𝑛)) |
479 | 478 | ex 413 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → ((𝑛 ∈ (𝑈 “ (1...(𝑉 − 1))) ∨ 𝑛 ∈ (𝑈 “ ((𝑉 + 1)...𝑁))) → ((𝐹‘(𝑉 − 1))‘𝑛) = ((𝐹‘𝑉)‘𝑛))) |
480 | 348, 479 | sylbid 239 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → ((𝑛 ∈ (𝑈 “ (1...𝑁)) ∧ ¬ 𝑛 ∈ (𝑈 “ {𝑉})) → ((𝐹‘(𝑉 − 1))‘𝑛) = ((𝐹‘𝑉)‘𝑛))) |
481 | 480 | expdimp 453 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ 𝑛 ∈ (𝑈 “ (1...𝑁))) → (¬ 𝑛 ∈ (𝑈 “ {𝑉}) → ((𝐹‘(𝑉 − 1))‘𝑛) = ((𝐹‘𝑉)‘𝑛))) |
482 | 481 | necon1ad 2960 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ 𝑛 ∈ (𝑈 “ (1...𝑁))) → (((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 ∈ (𝑈 “ {𝑉}))) |
483 | | elimasni 5999 |
. . . . . . . 8
⊢ (𝑛 ∈ (𝑈 “ {𝑉}) → 𝑉𝑈𝑛) |
484 | | eqcom 2745 |
. . . . . . . . 9
⊢ (𝑛 = (𝑈‘𝑉) ↔ (𝑈‘𝑉) = 𝑛) |
485 | | fnbrfvb 6822 |
. . . . . . . . . 10
⊢ ((𝑈 Fn (1...𝑁) ∧ 𝑉 ∈ (1...𝑁)) → ((𝑈‘𝑉) = 𝑛 ↔ 𝑉𝑈𝑛)) |
486 | 290, 97, 485 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑈‘𝑉) = 𝑛 ↔ 𝑉𝑈𝑛)) |
487 | 484, 486 | syl5bb 283 |
. . . . . . . 8
⊢ (𝜑 → (𝑛 = (𝑈‘𝑉) ↔ 𝑉𝑈𝑛)) |
488 | 483, 487 | syl5ibr 245 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ (𝑈 “ {𝑉}) → 𝑛 = (𝑈‘𝑉))) |
489 | 488 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ 𝑛 ∈ (𝑈 “ (1...𝑁))) → (𝑛 ∈ (𝑈 “ {𝑉}) → 𝑛 = (𝑈‘𝑉))) |
490 | 482, 489 | syld 47 |
. . . . 5
⊢ (((𝜑 ∧ 𝑉 < 𝑀) ∧ 𝑛 ∈ (𝑈 “ (1...𝑁))) → (((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = (𝑈‘𝑉))) |
491 | 490 | ralrimiva 3103 |
. . . 4
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → ∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = (𝑈‘𝑉))) |
492 | | fvex 6787 |
. . . . 5
⊢ (𝑈‘𝑉) ∈ V |
493 | | eqeq2 2750 |
. . . . . . 7
⊢ (𝑚 = (𝑈‘𝑉) → (𝑛 = 𝑚 ↔ 𝑛 = (𝑈‘𝑉))) |
494 | 493 | imbi2d 341 |
. . . . . 6
⊢ (𝑚 = (𝑈‘𝑉) → ((((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = 𝑚) ↔ (((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = (𝑈‘𝑉)))) |
495 | 494 | ralbidv 3112 |
. . . . 5
⊢ (𝑚 = (𝑈‘𝑉) → (∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = 𝑚) ↔ ∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = (𝑈‘𝑉)))) |
496 | 492, 495 | spcev 3545 |
. . . 4
⊢
(∀𝑛 ∈
(𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = (𝑈‘𝑉)) → ∃𝑚∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = 𝑚)) |
497 | 491, 496 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑉 < 𝑀) → ∃𝑚∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = 𝑚)) |
498 | | eldifsni 4723 |
. . . . 5
⊢ (𝑀 ∈ ((0...𝑁) ∖ {𝑉}) → 𝑀 ≠ 𝑉) |
499 | 216, 498 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑀 ≠ 𝑉) |
500 | 221, 27 | lttri2d 11114 |
. . . 4
⊢ (𝜑 → (𝑀 ≠ 𝑉 ↔ (𝑀 < 𝑉 ∨ 𝑉 < 𝑀))) |
501 | 499, 500 | mpbid 231 |
. . 3
⊢ (𝜑 → (𝑀 < 𝑉 ∨ 𝑉 < 𝑀)) |
502 | 303, 497,
501 | mpjaodan 956 |
. 2
⊢ (𝜑 → ∃𝑚∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = 𝑚)) |
503 | | nfv 1917 |
. . . 4
⊢
Ⅎ𝑚((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) |
504 | 503 | rmo2 3820 |
. . 3
⊢
(∃*𝑛 ∈
(𝑈 “ (1...𝑁))((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) ↔ ∃𝑚∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = 𝑚)) |
505 | | rmoeq1 3345 |
. . . 4
⊢ ((𝑈 “ (1...𝑁)) = (1...𝑁) → (∃*𝑛 ∈ (𝑈 “ (1...𝑁))((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) ↔ ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛))) |
506 | 104, 505 | syl 17 |
. . 3
⊢ (𝜑 → (∃*𝑛 ∈ (𝑈 “ (1...𝑁))((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) ↔ ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛))) |
507 | 504, 506 | bitr3id 285 |
. 2
⊢ (𝜑 → (∃𝑚∀𝑛 ∈ (𝑈 “ (1...𝑁))(((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛) → 𝑛 = 𝑚) ↔ ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛))) |
508 | 502, 507 | mpbid 231 |
1
⊢ (𝜑 → ∃*𝑛 ∈ (1...𝑁)((𝐹‘(𝑉 − 1))‘𝑛) ≠ ((𝐹‘𝑉)‘𝑛)) |