![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmoxfrd | Structured version Visualization version GIF version |
Description: Transfer "at most one" restricted quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.) |
Ref | Expression |
---|---|
rmoxfrd.1 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
rmoxfrd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
rmoxfrd.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rmoxfrd | ⊢ (𝜑 → (∃*𝑥 ∈ 𝐵 𝜓 ↔ ∃*𝑦 ∈ 𝐶 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmoxfrd.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) | |
2 | rmoxfrd.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
3 | reurex 3380 | . . . . . . 7 ⊢ (∃!𝑦 ∈ 𝐶 𝑥 = 𝐴 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
4 | 2, 3 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) |
5 | rmoxfrd.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
6 | 1, 4, 5 | rexxfrd 5407 | . . . . 5 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) |
7 | df-rex 3071 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
8 | df-rex 3071 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐶 𝜒 ↔ ∃𝑦(𝑦 ∈ 𝐶 ∧ 𝜒)) | |
9 | 6, 7, 8 | 3bitr3g 312 | . . . 4 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓) ↔ ∃𝑦(𝑦 ∈ 𝐶 ∧ 𝜒))) |
10 | 1, 2, 5 | reuxfr1d 3746 | . . . . 5 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
11 | df-reu 3377 | . . . . 5 ⊢ (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
12 | df-reu 3377 | . . . . 5 ⊢ (∃!𝑦 ∈ 𝐶 𝜒 ↔ ∃!𝑦(𝑦 ∈ 𝐶 ∧ 𝜒)) | |
13 | 10, 11, 12 | 3bitr3g 312 | . . . 4 ⊢ (𝜑 → (∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜓) ↔ ∃!𝑦(𝑦 ∈ 𝐶 ∧ 𝜒))) |
14 | 9, 13 | imbi12d 344 | . . 3 ⊢ (𝜑 → ((∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓) → ∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) ↔ (∃𝑦(𝑦 ∈ 𝐶 ∧ 𝜒) → ∃!𝑦(𝑦 ∈ 𝐶 ∧ 𝜒)))) |
15 | moeu 2577 | . . 3 ⊢ (∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓) → ∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜓))) | |
16 | moeu 2577 | . . 3 ⊢ (∃*𝑦(𝑦 ∈ 𝐶 ∧ 𝜒) ↔ (∃𝑦(𝑦 ∈ 𝐶 ∧ 𝜒) → ∃!𝑦(𝑦 ∈ 𝐶 ∧ 𝜒))) | |
17 | 14, 15, 16 | 3bitr4g 313 | . 2 ⊢ (𝜑 → (∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜓) ↔ ∃*𝑦(𝑦 ∈ 𝐶 ∧ 𝜒))) |
18 | df-rmo 3376 | . 2 ⊢ (∃*𝑥 ∈ 𝐵 𝜓 ↔ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
19 | df-rmo 3376 | . 2 ⊢ (∃*𝑦 ∈ 𝐶 𝜒 ↔ ∃*𝑦(𝑦 ∈ 𝐶 ∧ 𝜒)) | |
20 | 17, 18, 19 | 3bitr4g 313 | 1 ⊢ (𝜑 → (∃*𝑥 ∈ 𝐵 𝜓 ↔ ∃*𝑦 ∈ 𝐶 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∃*wmo 2532 ∃!weu 2562 ∃wrex 3070 ∃!wreu 3374 ∃*wrmo 3375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 |
This theorem is referenced by: disjrdx 32077 |
Copyright terms: Public domain | W3C validator |