Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmoxfrd Structured version   Visualization version   GIF version

Theorem rmoxfrd 30841
Description: Transfer "at most one" restricted quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.)
Hypotheses
Ref Expression
rmoxfrd.1 ((𝜑𝑦𝐶) → 𝐴𝐵)
rmoxfrd.2 ((𝜑𝑥𝐵) → ∃!𝑦𝐶 𝑥 = 𝐴)
rmoxfrd.3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rmoxfrd (𝜑 → (∃*𝑥𝐵 𝜓 ↔ ∃*𝑦𝐶 𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem rmoxfrd
StepHypRef Expression
1 rmoxfrd.1 . . . . . 6 ((𝜑𝑦𝐶) → 𝐴𝐵)
2 rmoxfrd.2 . . . . . . 7 ((𝜑𝑥𝐵) → ∃!𝑦𝐶 𝑥 = 𝐴)
3 reurex 3362 . . . . . . 7 (∃!𝑦𝐶 𝑥 = 𝐴 → ∃𝑦𝐶 𝑥 = 𝐴)
42, 3syl 17 . . . . . 6 ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)
5 rmoxfrd.3 . . . . . 6 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
61, 4, 5rexxfrd 5332 . . . . 5 (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑦𝐶 𝜒))
7 df-rex 3070 . . . . 5 (∃𝑥𝐵 𝜓 ↔ ∃𝑥(𝑥𝐵𝜓))
8 df-rex 3070 . . . . 5 (∃𝑦𝐶 𝜒 ↔ ∃𝑦(𝑦𝐶𝜒))
96, 7, 83bitr3g 313 . . . 4 (𝜑 → (∃𝑥(𝑥𝐵𝜓) ↔ ∃𝑦(𝑦𝐶𝜒)))
101, 2, 5reuxfr1d 3685 . . . . 5 (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐶 𝜒))
11 df-reu 3072 . . . . 5 (∃!𝑥𝐵 𝜓 ↔ ∃!𝑥(𝑥𝐵𝜓))
12 df-reu 3072 . . . . 5 (∃!𝑦𝐶 𝜒 ↔ ∃!𝑦(𝑦𝐶𝜒))
1310, 11, 123bitr3g 313 . . . 4 (𝜑 → (∃!𝑥(𝑥𝐵𝜓) ↔ ∃!𝑦(𝑦𝐶𝜒)))
149, 13imbi12d 345 . . 3 (𝜑 → ((∃𝑥(𝑥𝐵𝜓) → ∃!𝑥(𝑥𝐵𝜓)) ↔ (∃𝑦(𝑦𝐶𝜒) → ∃!𝑦(𝑦𝐶𝜒))))
15 moeu 2583 . . 3 (∃*𝑥(𝑥𝐵𝜓) ↔ (∃𝑥(𝑥𝐵𝜓) → ∃!𝑥(𝑥𝐵𝜓)))
16 moeu 2583 . . 3 (∃*𝑦(𝑦𝐶𝜒) ↔ (∃𝑦(𝑦𝐶𝜒) → ∃!𝑦(𝑦𝐶𝜒)))
1714, 15, 163bitr4g 314 . 2 (𝜑 → (∃*𝑥(𝑥𝐵𝜓) ↔ ∃*𝑦(𝑦𝐶𝜒)))
18 df-rmo 3071 . 2 (∃*𝑥𝐵 𝜓 ↔ ∃*𝑥(𝑥𝐵𝜓))
19 df-rmo 3071 . 2 (∃*𝑦𝐶 𝜒 ↔ ∃*𝑦(𝑦𝐶𝜒))
2017, 18, 193bitr4g 314 1 (𝜑 → (∃*𝑥𝐵 𝜓 ↔ ∃*𝑦𝐶 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  ∃*wmo 2538  ∃!weu 2568  wrex 3065  ∃!wreu 3066  ∃*wrmo 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072
This theorem is referenced by:  disjrdx  30930
  Copyright terms: Public domain W3C validator