MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smatvscl Structured version   Visualization version   GIF version

Theorem smatvscl 21136
Description: Closure of the scalar multiplication in the ring of scalar matrices. (matvscl 21043 analog.) (Contributed by AV, 24-Dec-2019.)
Hypotheses
Ref Expression
smatvscl.k 𝐾 = (Base‘𝑅)
smatvscl.a 𝐴 = (𝑁 Mat 𝑅)
smatvscl.s 𝑆 = (𝑁 ScMat 𝑅)
smatvscl.t = ( ·𝑠𝐴)
Assertion
Ref Expression
smatvscl (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑋𝑆)) → (𝐶 𝑋) ∈ 𝑆)

Proof of Theorem smatvscl
Dummy variables 𝑐 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
2 smatvscl.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
3 eqid 2824 . . . . 5 (Base‘𝐴) = (Base‘𝐴)
4 eqid 2824 . . . . 5 (1r𝐴) = (1r𝐴)
5 smatvscl.t . . . . 5 = ( ·𝑠𝐴)
6 smatvscl.s . . . . 5 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatel 21117 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝑆 ↔ (𝑋 ∈ (Base‘𝐴) ∧ ∃𝑐 ∈ (Base‘𝑅)𝑋 = (𝑐 (1r𝐴)))))
8 oveq2 7167 . . . . . . . . . 10 (𝑋 = (𝑐 (1r𝐴)) → (𝐶 𝑋) = (𝐶 (𝑐 (1r𝐴))))
98adantl 484 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑋 = (𝑐 (1r𝐴))) → (𝐶 𝑋) = (𝐶 (𝑐 (1r𝐴))))
102matlmod 21041 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)
1110ad3antrrr 728 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → 𝐴 ∈ LMod)
12 smatvscl.k . . . . . . . . . . . . . . . . 17 𝐾 = (Base‘𝑅)
132matsca2 21032 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴))
1413fveq2d 6677 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑅) = (Base‘(Scalar‘𝐴)))
1512, 14syl5eq 2871 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐾 = (Base‘(Scalar‘𝐴)))
1615eleq2d 2901 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐶𝐾𝐶 ∈ (Base‘(Scalar‘𝐴))))
1716biimpa 479 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) → 𝐶 ∈ (Base‘(Scalar‘𝐴)))
1817ad2antrr 724 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → 𝐶 ∈ (Base‘(Scalar‘𝐴)))
1913ad2antrr 724 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) → 𝑅 = (Scalar‘𝐴))
2019fveq2d 6677 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) → (Base‘𝑅) = (Base‘(Scalar‘𝐴)))
2120eleq2d 2901 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) → (𝑐 ∈ (Base‘𝑅) ↔ 𝑐 ∈ (Base‘(Scalar‘𝐴))))
2221biimpa 479 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → 𝑐 ∈ (Base‘(Scalar‘𝐴)))
232matring 21055 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
243, 4ringidcl 19321 . . . . . . . . . . . . . . 15 (𝐴 ∈ Ring → (1r𝐴) ∈ (Base‘𝐴))
2523, 24syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ (Base‘𝐴))
2625ad3antrrr 728 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → (1r𝐴) ∈ (Base‘𝐴))
27 eqid 2824 . . . . . . . . . . . . . 14 (Scalar‘𝐴) = (Scalar‘𝐴)
28 eqid 2824 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
29 eqid 2824 . . . . . . . . . . . . . 14 (.r‘(Scalar‘𝐴)) = (.r‘(Scalar‘𝐴))
303, 27, 5, 28, 29lmodvsass 19662 . . . . . . . . . . . . 13 ((𝐴 ∈ LMod ∧ (𝐶 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑐 ∈ (Base‘(Scalar‘𝐴)) ∧ (1r𝐴) ∈ (Base‘𝐴))) → ((𝐶(.r‘(Scalar‘𝐴))𝑐) (1r𝐴)) = (𝐶 (𝑐 (1r𝐴))))
3111, 18, 22, 26, 30syl13anc 1368 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → ((𝐶(.r‘(Scalar‘𝐴))𝑐) (1r𝐴)) = (𝐶 (𝑐 (1r𝐴))))
3231eqcomd 2830 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → (𝐶 (𝑐 (1r𝐴))) = ((𝐶(.r‘(Scalar‘𝐴))𝑐) (1r𝐴)))
33 simplll 773 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3413adantr 483 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) → 𝑅 = (Scalar‘𝐴))
3534eqcomd 2830 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) → (Scalar‘𝐴) = 𝑅)
3635ad2antrr 724 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → (Scalar‘𝐴) = 𝑅)
3736fveq2d 6677 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → (.r‘(Scalar‘𝐴)) = (.r𝑅))
3837oveqd 7176 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → (𝐶(.r‘(Scalar‘𝐴))𝑐) = (𝐶(.r𝑅)𝑐))
39 simp-4r 782 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
40 simpllr 774 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → 𝐶𝐾)
4112eqcomi 2833 . . . . . . . . . . . . . . . . . 18 (Base‘𝑅) = 𝐾
4241eleq2i 2907 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ (Base‘𝑅) ↔ 𝑐𝐾)
4342biimpi 218 . . . . . . . . . . . . . . . 16 (𝑐 ∈ (Base‘𝑅) → 𝑐𝐾)
4443adantl 484 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → 𝑐𝐾)
45 eqid 2824 . . . . . . . . . . . . . . . 16 (.r𝑅) = (.r𝑅)
4612, 45ringcl 19314 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝑐𝐾) → (𝐶(.r𝑅)𝑐) ∈ 𝐾)
4739, 40, 44, 46syl3anc 1367 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → (𝐶(.r𝑅)𝑐) ∈ 𝐾)
4838, 47eqeltrd 2916 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → (𝐶(.r‘(Scalar‘𝐴))𝑐) ∈ 𝐾)
4912, 2, 3, 5matvscl 21043 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝐶(.r‘(Scalar‘𝐴))𝑐) ∈ 𝐾 ∧ (1r𝐴) ∈ (Base‘𝐴))) → ((𝐶(.r‘(Scalar‘𝐴))𝑐) (1r𝐴)) ∈ (Base‘𝐴))
5033, 48, 26, 49syl12anc 834 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → ((𝐶(.r‘(Scalar‘𝐴))𝑐) (1r𝐴)) ∈ (Base‘𝐴))
51 oveq1 7166 . . . . . . . . . . . . . . 15 ((𝐶(.r‘(Scalar‘𝐴))𝑐) = 𝑒 → ((𝐶(.r‘(Scalar‘𝐴))𝑐) (1r𝐴)) = (𝑒 (1r𝐴)))
5251eqcoms 2832 . . . . . . . . . . . . . 14 (𝑒 = (𝐶(.r‘(Scalar‘𝐴))𝑐) → ((𝐶(.r‘(Scalar‘𝐴))𝑐) (1r𝐴)) = (𝑒 (1r𝐴)))
5352adantl 484 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑒 = (𝐶(.r‘(Scalar‘𝐴))𝑐)) → ((𝐶(.r‘(Scalar‘𝐴))𝑐) (1r𝐴)) = (𝑒 (1r𝐴)))
5448, 53rspcedeq2vd 3633 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → ∃𝑒𝐾 ((𝐶(.r‘(Scalar‘𝐴))𝑐) (1r𝐴)) = (𝑒 (1r𝐴)))
5512, 2, 3, 4, 5, 6scmatel 21117 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (((𝐶(.r‘(Scalar‘𝐴))𝑐) (1r𝐴)) ∈ 𝑆 ↔ (((𝐶(.r‘(Scalar‘𝐴))𝑐) (1r𝐴)) ∈ (Base‘𝐴) ∧ ∃𝑒𝐾 ((𝐶(.r‘(Scalar‘𝐴))𝑐) (1r𝐴)) = (𝑒 (1r𝐴)))))
5655ad3antrrr 728 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → (((𝐶(.r‘(Scalar‘𝐴))𝑐) (1r𝐴)) ∈ 𝑆 ↔ (((𝐶(.r‘(Scalar‘𝐴))𝑐) (1r𝐴)) ∈ (Base‘𝐴) ∧ ∃𝑒𝐾 ((𝐶(.r‘(Scalar‘𝐴))𝑐) (1r𝐴)) = (𝑒 (1r𝐴)))))
5750, 54, 56mpbir2and 711 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → ((𝐶(.r‘(Scalar‘𝐴))𝑐) (1r𝐴)) ∈ 𝑆)
5832, 57eqeltrd 2916 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) → (𝐶 (𝑐 (1r𝐴))) ∈ 𝑆)
5958adantr 483 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑋 = (𝑐 (1r𝐴))) → (𝐶 (𝑐 (1r𝐴))) ∈ 𝑆)
609, 59eqeltrd 2916 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑋 = (𝑐 (1r𝐴))) → (𝐶 𝑋) ∈ 𝑆)
6160rexlimdva2 3290 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) ∧ 𝑋 ∈ (Base‘𝐴)) → (∃𝑐 ∈ (Base‘𝑅)𝑋 = (𝑐 (1r𝐴)) → (𝐶 𝑋) ∈ 𝑆))
6261expimpd 456 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝐶𝐾) → ((𝑋 ∈ (Base‘𝐴) ∧ ∃𝑐 ∈ (Base‘𝑅)𝑋 = (𝑐 (1r𝐴))) → (𝐶 𝑋) ∈ 𝑆))
6362ex 415 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐶𝐾 → ((𝑋 ∈ (Base‘𝐴) ∧ ∃𝑐 ∈ (Base‘𝑅)𝑋 = (𝑐 (1r𝐴))) → (𝐶 𝑋) ∈ 𝑆)))
6463com23 86 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑋 ∈ (Base‘𝐴) ∧ ∃𝑐 ∈ (Base‘𝑅)𝑋 = (𝑐 (1r𝐴))) → (𝐶𝐾 → (𝐶 𝑋) ∈ 𝑆)))
657, 64sylbid 242 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝑆 → (𝐶𝐾 → (𝐶 𝑋) ∈ 𝑆)))
6665com23 86 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐶𝐾 → (𝑋𝑆 → (𝐶 𝑋) ∈ 𝑆)))
6766imp32 421 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑋𝑆)) → (𝐶 𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wrex 3142  cfv 6358  (class class class)co 7159  Fincfn 8512  Basecbs 16486  .rcmulr 16569  Scalarcsca 16571   ·𝑠 cvsca 16572  1rcur 19254  Ringcrg 19300  LModclmod 19637   Mat cmat 21019   ScMat cscmat 21101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-ot 4579  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-sup 8909  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-hom 16592  df-cco 16593  df-0g 16718  df-gsum 16719  df-prds 16724  df-pws 16726  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-mhm 17959  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-mulg 18228  df-subg 18279  df-ghm 18359  df-cntz 18450  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-subrg 19536  df-lmod 19639  df-lss 19707  df-sra 19947  df-rgmod 19948  df-dsmm 20879  df-frlm 20894  df-mamu 20998  df-mat 21020  df-scmat 21103
This theorem is referenced by:  scmatlss  21137  scmatf  21141
  Copyright terms: Public domain W3C validator