Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . . . 5
β’
(Baseβπ
) =
(Baseβπ
) |
2 | | smatvscl.a |
. . . . 5
β’ π΄ = (π Mat π
) |
3 | | eqid 2732 |
. . . . 5
β’
(Baseβπ΄) =
(Baseβπ΄) |
4 | | eqid 2732 |
. . . . 5
β’
(1rβπ΄) = (1rβπ΄) |
5 | | smatvscl.t |
. . . . 5
β’ β = (
Β·π βπ΄) |
6 | | smatvscl.s |
. . . . 5
β’ π = (π ScMat π
) |
7 | 1, 2, 3, 4, 5, 6 | scmatel 21998 |
. . . 4
β’ ((π β Fin β§ π
β Ring) β (π β π β (π β (Baseβπ΄) β§ βπ β (Baseβπ
)π = (π β
(1rβπ΄))))) |
8 | | oveq2 7413 |
. . . . . . . . . 10
β’ (π = (π β
(1rβπ΄))
β (πΆ β π) = (πΆ β (π β
(1rβπ΄)))) |
9 | 8 | adantl 482 |
. . . . . . . . 9
β’
((((((π β Fin
β§ π
β Ring) β§
πΆ β πΎ) β§ π β (Baseβπ΄)) β§ π β (Baseβπ
)) β§ π = (π β
(1rβπ΄)))
β (πΆ β π) = (πΆ β (π β
(1rβπ΄)))) |
10 | 2 | matlmod 21922 |
. . . . . . . . . . . . . 14
β’ ((π β Fin β§ π
β Ring) β π΄ β LMod) |
11 | 10 | ad3antrrr 728 |
. . . . . . . . . . . . 13
β’
(((((π β Fin
β§ π
β Ring) β§
πΆ β πΎ) β§ π β (Baseβπ΄)) β§ π β (Baseβπ
)) β π΄ β LMod) |
12 | | smatvscl.k |
. . . . . . . . . . . . . . . . 17
β’ πΎ = (Baseβπ
) |
13 | 2 | matsca2 21913 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β Fin β§ π
β Ring) β π
= (Scalarβπ΄)) |
14 | 13 | fveq2d 6892 |
. . . . . . . . . . . . . . . . 17
β’ ((π β Fin β§ π
β Ring) β
(Baseβπ
) =
(Baseβ(Scalarβπ΄))) |
15 | 12, 14 | eqtrid 2784 |
. . . . . . . . . . . . . . . 16
β’ ((π β Fin β§ π
β Ring) β πΎ =
(Baseβ(Scalarβπ΄))) |
16 | 15 | eleq2d 2819 |
. . . . . . . . . . . . . . 15
β’ ((π β Fin β§ π
β Ring) β (πΆ β πΎ β πΆ β (Baseβ(Scalarβπ΄)))) |
17 | 16 | biimpa 477 |
. . . . . . . . . . . . . 14
β’ (((π β Fin β§ π
β Ring) β§ πΆ β πΎ) β πΆ β (Baseβ(Scalarβπ΄))) |
18 | 17 | ad2antrr 724 |
. . . . . . . . . . . . 13
β’
(((((π β Fin
β§ π
β Ring) β§
πΆ β πΎ) β§ π β (Baseβπ΄)) β§ π β (Baseβπ
)) β πΆ β (Baseβ(Scalarβπ΄))) |
19 | 13 | ad2antrr 724 |
. . . . . . . . . . . . . . . 16
β’ ((((π β Fin β§ π
β Ring) β§ πΆ β πΎ) β§ π β (Baseβπ΄)) β π
= (Scalarβπ΄)) |
20 | 19 | fveq2d 6892 |
. . . . . . . . . . . . . . 15
β’ ((((π β Fin β§ π
β Ring) β§ πΆ β πΎ) β§ π β (Baseβπ΄)) β (Baseβπ
) = (Baseβ(Scalarβπ΄))) |
21 | 20 | eleq2d 2819 |
. . . . . . . . . . . . . 14
β’ ((((π β Fin β§ π
β Ring) β§ πΆ β πΎ) β§ π β (Baseβπ΄)) β (π β (Baseβπ
) β π β (Baseβ(Scalarβπ΄)))) |
22 | 21 | biimpa 477 |
. . . . . . . . . . . . 13
β’
(((((π β Fin
β§ π
β Ring) β§
πΆ β πΎ) β§ π β (Baseβπ΄)) β§ π β (Baseβπ
)) β π β (Baseβ(Scalarβπ΄))) |
23 | 2 | matring 21936 |
. . . . . . . . . . . . . . 15
β’ ((π β Fin β§ π
β Ring) β π΄ β Ring) |
24 | 3, 4 | ringidcl 20076 |
. . . . . . . . . . . . . . 15
β’ (π΄ β Ring β
(1rβπ΄)
β (Baseβπ΄)) |
25 | 23, 24 | syl 17 |
. . . . . . . . . . . . . 14
β’ ((π β Fin β§ π
β Ring) β
(1rβπ΄)
β (Baseβπ΄)) |
26 | 25 | ad3antrrr 728 |
. . . . . . . . . . . . 13
β’
(((((π β Fin
β§ π
β Ring) β§
πΆ β πΎ) β§ π β (Baseβπ΄)) β§ π β (Baseβπ
)) β (1rβπ΄) β (Baseβπ΄)) |
27 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(Scalarβπ΄) =
(Scalarβπ΄) |
28 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(Baseβ(Scalarβπ΄)) = (Baseβ(Scalarβπ΄)) |
29 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(.rβ(Scalarβπ΄)) =
(.rβ(Scalarβπ΄)) |
30 | 3, 27, 5, 28, 29 | lmodvsass 20489 |
. . . . . . . . . . . . 13
β’ ((π΄ β LMod β§ (πΆ β
(Baseβ(Scalarβπ΄)) β§ π β (Baseβ(Scalarβπ΄)) β§
(1rβπ΄)
β (Baseβπ΄)))
β ((πΆ(.rβ(Scalarβπ΄))π) β
(1rβπ΄)) =
(πΆ β (π β
(1rβπ΄)))) |
31 | 11, 18, 22, 26, 30 | syl13anc 1372 |
. . . . . . . . . . . 12
β’
(((((π β Fin
β§ π
β Ring) β§
πΆ β πΎ) β§ π β (Baseβπ΄)) β§ π β (Baseβπ
)) β ((πΆ(.rβ(Scalarβπ΄))π) β
(1rβπ΄)) =
(πΆ β (π β
(1rβπ΄)))) |
32 | 31 | eqcomd 2738 |
. . . . . . . . . . 11
β’
(((((π β Fin
β§ π
β Ring) β§
πΆ β πΎ) β§ π β (Baseβπ΄)) β§ π β (Baseβπ
)) β (πΆ β (π β
(1rβπ΄))) =
((πΆ(.rβ(Scalarβπ΄))π) β
(1rβπ΄))) |
33 | | simplll 773 |
. . . . . . . . . . . . 13
β’
(((((π β Fin
β§ π
β Ring) β§
πΆ β πΎ) β§ π β (Baseβπ΄)) β§ π β (Baseβπ
)) β (π β Fin β§ π
β Ring)) |
34 | 13 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β Fin β§ π
β Ring) β§ πΆ β πΎ) β π
= (Scalarβπ΄)) |
35 | 34 | eqcomd 2738 |
. . . . . . . . . . . . . . . . 17
β’ (((π β Fin β§ π
β Ring) β§ πΆ β πΎ) β (Scalarβπ΄) = π
) |
36 | 35 | ad2antrr 724 |
. . . . . . . . . . . . . . . 16
β’
(((((π β Fin
β§ π
β Ring) β§
πΆ β πΎ) β§ π β (Baseβπ΄)) β§ π β (Baseβπ
)) β (Scalarβπ΄) = π
) |
37 | 36 | fveq2d 6892 |
. . . . . . . . . . . . . . 15
β’
(((((π β Fin
β§ π
β Ring) β§
πΆ β πΎ) β§ π β (Baseβπ΄)) β§ π β (Baseβπ
)) β
(.rβ(Scalarβπ΄)) = (.rβπ
)) |
38 | 37 | oveqd 7422 |
. . . . . . . . . . . . . 14
β’
(((((π β Fin
β§ π
β Ring) β§
πΆ β πΎ) β§ π β (Baseβπ΄)) β§ π β (Baseβπ
)) β (πΆ(.rβ(Scalarβπ΄))π) = (πΆ(.rβπ
)π)) |
39 | | simp-4r 782 |
. . . . . . . . . . . . . . 15
β’
(((((π β Fin
β§ π
β Ring) β§
πΆ β πΎ) β§ π β (Baseβπ΄)) β§ π β (Baseβπ
)) β π
β Ring) |
40 | | simpllr 774 |
. . . . . . . . . . . . . . 15
β’
(((((π β Fin
β§ π
β Ring) β§
πΆ β πΎ) β§ π β (Baseβπ΄)) β§ π β (Baseβπ
)) β πΆ β πΎ) |
41 | 12 | eqcomi 2741 |
. . . . . . . . . . . . . . . . . 18
β’
(Baseβπ
) =
πΎ |
42 | 41 | eleq2i 2825 |
. . . . . . . . . . . . . . . . 17
β’ (π β (Baseβπ
) β π β πΎ) |
43 | 42 | biimpi 215 |
. . . . . . . . . . . . . . . 16
β’ (π β (Baseβπ
) β π β πΎ) |
44 | 43 | adantl 482 |
. . . . . . . . . . . . . . 15
β’
(((((π β Fin
β§ π
β Ring) β§
πΆ β πΎ) β§ π β (Baseβπ΄)) β§ π β (Baseβπ
)) β π β πΎ) |
45 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
β’
(.rβπ
) = (.rβπ
) |
46 | 12, 45 | ringcl 20066 |
. . . . . . . . . . . . . . 15
β’ ((π
β Ring β§ πΆ β πΎ β§ π β πΎ) β (πΆ(.rβπ
)π) β πΎ) |
47 | 39, 40, 44, 46 | syl3anc 1371 |
. . . . . . . . . . . . . 14
β’
(((((π β Fin
β§ π
β Ring) β§
πΆ β πΎ) β§ π β (Baseβπ΄)) β§ π β (Baseβπ
)) β (πΆ(.rβπ
)π) β πΎ) |
48 | 38, 47 | eqeltrd 2833 |
. . . . . . . . . . . . 13
β’
(((((π β Fin
β§ π
β Ring) β§
πΆ β πΎ) β§ π β (Baseβπ΄)) β§ π β (Baseβπ
)) β (πΆ(.rβ(Scalarβπ΄))π) β πΎ) |
49 | 12, 2, 3, 5 | matvscl 21924 |
. . . . . . . . . . . . 13
β’ (((π β Fin β§ π
β Ring) β§ ((πΆ(.rβ(Scalarβπ΄))π) β πΎ β§ (1rβπ΄) β (Baseβπ΄))) β ((πΆ(.rβ(Scalarβπ΄))π) β
(1rβπ΄))
β (Baseβπ΄)) |
50 | 33, 48, 26, 49 | syl12anc 835 |
. . . . . . . . . . . 12
β’
(((((π β Fin
β§ π
β Ring) β§
πΆ β πΎ) β§ π β (Baseβπ΄)) β§ π β (Baseβπ
)) β ((πΆ(.rβ(Scalarβπ΄))π) β
(1rβπ΄))
β (Baseβπ΄)) |
51 | | oveq1 7412 |
. . . . . . . . . . . . . . 15
β’ ((πΆ(.rβ(Scalarβπ΄))π) = π β ((πΆ(.rβ(Scalarβπ΄))π) β
(1rβπ΄)) =
(π β
(1rβπ΄))) |
52 | 51 | eqcoms 2740 |
. . . . . . . . . . . . . 14
β’ (π = (πΆ(.rβ(Scalarβπ΄))π) β ((πΆ(.rβ(Scalarβπ΄))π) β
(1rβπ΄)) =
(π β
(1rβπ΄))) |
53 | 52 | adantl 482 |
. . . . . . . . . . . . 13
β’
((((((π β Fin
β§ π
β Ring) β§
πΆ β πΎ) β§ π β (Baseβπ΄)) β§ π β (Baseβπ
)) β§ π = (πΆ(.rβ(Scalarβπ΄))π)) β ((πΆ(.rβ(Scalarβπ΄))π) β
(1rβπ΄)) =
(π β
(1rβπ΄))) |
54 | 48, 53 | rspcedeq2vd 3618 |
. . . . . . . . . . . 12
β’
(((((π β Fin
β§ π
β Ring) β§
πΆ β πΎ) β§ π β (Baseβπ΄)) β§ π β (Baseβπ
)) β βπ β πΎ ((πΆ(.rβ(Scalarβπ΄))π) β
(1rβπ΄)) =
(π β
(1rβπ΄))) |
55 | 12, 2, 3, 4, 5, 6 | scmatel 21998 |
. . . . . . . . . . . . 13
β’ ((π β Fin β§ π
β Ring) β (((πΆ(.rβ(Scalarβπ΄))π) β
(1rβπ΄))
β π β (((πΆ(.rβ(Scalarβπ΄))π) β
(1rβπ΄))
β (Baseβπ΄) β§
βπ β πΎ ((πΆ(.rβ(Scalarβπ΄))π) β
(1rβπ΄)) =
(π β
(1rβπ΄))))) |
56 | 55 | ad3antrrr 728 |
. . . . . . . . . . . 12
β’
(((((π β Fin
β§ π
β Ring) β§
πΆ β πΎ) β§ π β (Baseβπ΄)) β§ π β (Baseβπ
)) β (((πΆ(.rβ(Scalarβπ΄))π) β
(1rβπ΄))
β π β (((πΆ(.rβ(Scalarβπ΄))π) β
(1rβπ΄))
β (Baseβπ΄) β§
βπ β πΎ ((πΆ(.rβ(Scalarβπ΄))π) β
(1rβπ΄)) =
(π β
(1rβπ΄))))) |
57 | 50, 54, 56 | mpbir2and 711 |
. . . . . . . . . . 11
β’
(((((π β Fin
β§ π
β Ring) β§
πΆ β πΎ) β§ π β (Baseβπ΄)) β§ π β (Baseβπ
)) β ((πΆ(.rβ(Scalarβπ΄))π) β
(1rβπ΄))
β π) |
58 | 32, 57 | eqeltrd 2833 |
. . . . . . . . . 10
β’
(((((π β Fin
β§ π
β Ring) β§
πΆ β πΎ) β§ π β (Baseβπ΄)) β§ π β (Baseβπ
)) β (πΆ β (π β
(1rβπ΄)))
β π) |
59 | 58 | adantr 481 |
. . . . . . . . 9
β’
((((((π β Fin
β§ π
β Ring) β§
πΆ β πΎ) β§ π β (Baseβπ΄)) β§ π β (Baseβπ
)) β§ π = (π β
(1rβπ΄)))
β (πΆ β (π β
(1rβπ΄)))
β π) |
60 | 9, 59 | eqeltrd 2833 |
. . . . . . . 8
β’
((((((π β Fin
β§ π
β Ring) β§
πΆ β πΎ) β§ π β (Baseβπ΄)) β§ π β (Baseβπ
)) β§ π = (π β
(1rβπ΄)))
β (πΆ β π) β π) |
61 | 60 | rexlimdva2 3157 |
. . . . . . 7
β’ ((((π β Fin β§ π
β Ring) β§ πΆ β πΎ) β§ π β (Baseβπ΄)) β (βπ β (Baseβπ
)π = (π β
(1rβπ΄))
β (πΆ β π) β π)) |
62 | 61 | expimpd 454 |
. . . . . 6
β’ (((π β Fin β§ π
β Ring) β§ πΆ β πΎ) β ((π β (Baseβπ΄) β§ βπ β (Baseβπ
)π = (π β
(1rβπ΄)))
β (πΆ β π) β π)) |
63 | 62 | ex 413 |
. . . . 5
β’ ((π β Fin β§ π
β Ring) β (πΆ β πΎ β ((π β (Baseβπ΄) β§ βπ β (Baseβπ
)π = (π β
(1rβπ΄)))
β (πΆ β π) β π))) |
64 | 63 | com23 86 |
. . . 4
β’ ((π β Fin β§ π
β Ring) β ((π β (Baseβπ΄) β§ βπ β (Baseβπ
)π = (π β
(1rβπ΄)))
β (πΆ β πΎ β (πΆ β π) β π))) |
65 | 7, 64 | sylbid 239 |
. . 3
β’ ((π β Fin β§ π
β Ring) β (π β π β (πΆ β πΎ β (πΆ β π) β π))) |
66 | 65 | com23 86 |
. 2
β’ ((π β Fin β§ π
β Ring) β (πΆ β πΎ β (π β π β (πΆ β π) β π))) |
67 | 66 | imp32 419 |
1
β’ (((π β Fin β§ π
β Ring) β§ (πΆ β πΎ β§ π β π)) β (πΆ β π) β π) |